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Abstract: Electrocatalytic CO2 reduction to valued products is a promising way to mitigate the
greenhouse effect, as this reaction makes use of the excess CO2 in the atmosphere and at the same
time forms valued fuels to partially fulfill the energy demand for human beings. Among these
valued products, methane is considered a high-value product with a high energy density. This review
systematically summarizes the recently studied reaction mechanisms for CO2 electroreduction to CH4.
It guides us in designing effective electrocatalysts with an improved electrocatalytic performance.
In addition, we briefly summarize the recent progress on CO2 electroreduction into CH4 from
the instructive catalyst design, including catalyst structure engineering and catalyst component
engineering, and then briefly discuss the electrolyte effect. Furthermore, we also provide a simplified
techno-economic analysis of this technology. These summaries are helpful for beginners to rapidly
master the contents related to the electroreduction of carbon dioxide to methane and also help to
promote the further development of this field.
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1. Introduction

Anthropogenic activities, particularly the extensive utilization of fossil fuels, have
caused a significant increase in atmospheric CO2 concentrations, exacerbating the ongoing
climate change crisis. Increased levels of CO2 lead to a heightened greenhouse effect, result-
ing in several adverse impacts on the global climate, including an increase in temperatures
and sea level, altered precipitation patterns, and an increased frequency and intensity
of natural disasters. These phenomena, in turn, have far-reaching ecological, social, and
economic consequences, such as habitat destruction, species extinction, displacement of
populations, and loss of biodiversity. Therefore, it is imperative to adopt sustainable
energy sources and practices that reduce our dependence on fossil fuels to mitigate the
detrimental effects of climate change and ensure a sustainable future for the planet and
its inhabitants [1–7]. Thus, the reduction of CO2 to carbon-containing fuels is a promising
technology for reducing CO2 emissions and achieving a sustainable future. This approach
allows the conversion of intermittent renewable energy into high-energy fuels, providing
a pathway to reduce our reliance on fossil fuels. Additionally, integrating CO2 into the
global energy cycle through hydrocarbon synthesis allows us to achieve true global carbon
neutrality [8–13]. At present, the main technologies aimed at reducing CO2 emissions
include photo-, electro-, bio-, thermal, and their synergistic catalyses [14–19]. Each of these
methods has its own set of advantages and limitations. For instance, photocatalysis is easy
to perform and has a broad range of applications; however, it suffers from poor catalyst
stability and lifespan [20]. Biocatalysis involves using biological enzymes to catalyze CO2
in mild-reaction conditions with good selectivity; however, yields are often low and catalyst
deactivation is a common issue [21]. In this context, we focus on electrocatalytic technology
due to its rapid reaction rate, excellent selectivity, and established industrial infrastruc-
ture. Additionally, the proportion of electricity generated by renewable energy sources is
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increasingly significant in the total electricity mix [22]. Additionally, the process offers a
means of energy storage, making it a viable option for balancing the fluctuating supply
and demand of energy. However, the development of cost-effective, large-scale CO2RR
systems is crucial for the successful deployment of this technology. Further research and
technological advancements in this area are necessary to advance toward a carbon-neutral
future [5,23–29].

Methane, which is among the products of CO2RR, is regarded as a high-value com-
modity due to its high energy density of 55.5 MJ/kg. Moreover, the methane produced by
the electrochemical reduction of CO2 is not emitted into the atmosphere and contributes
to the greenhouse effect as the well-established infrastructure for gas pipelines, allowing
for the seamless storage, consumption, and distribution of methane, rendering it a widely
utilized component of natural gas. With a composition of 21.4% of total primary energy,
methane boasts a high abundance and is an attractive candidate for various energy appli-
cations [30–34]. Concomitantly, contemporary technology offers the potential to convert
CH4 into fundamental chemicals through various routes, such as the oxidative conversion
into syngas or direct conversion into other chemical compounds [35–38]. Even after the
inevitable transition to thermonuclear energy in the distant future, methane remains the
most portable, easily stored, and transported fuel and general-purpose chemical raw mate-
rial [39]. Most importantly, the next generation of rocket fuel will be liquid methane; the
in situ production of methane as rocket fuel on alien planets, such as Mars, will become a
key technology for human interstellar navigation. Therefore, the development of CO2RR
technology to prepare high amounts of CH4 is necessary for this application.

However, it is unfavorable to convert CO2 into CH4 due to the presence of π bonds in
CO2 molecules. In addition to the limitation of sluggish reaction kinetics, the hydrogen
evolution reaction (HER) will also compete with CO2RR [40]. To solve the abovementioned
challenges, developing electrode catalysts with a high efficiency and good selectivity is
necessary and urgent. In recent years, numerous efforts have been devoted to the design
and synthesis of suitable heterogeneous electrocatalysts for the electrocatalytic reduction of
CO2, and some of them have shown outstanding CH4 selectivity [41]. To a certain extent,
some of the problems have been solved; however, there are still challenges to be faced
concerning the CO2RR to CH4 formation process. Therefore, understanding the reaction
mechanism and a summary of the related work based on the CO2RR to CH4 formation
process are necessary, which will contribute to further developments in the field.

Although methane has the advantages of its high calorific value and well-established
transportation infrastructure, the market price of methane is relatively low because the
development of the technology to exploit shale gas and methane hydrate result in a large
global methane supply. Hence, it is imperative to perform a technical–economic analysis
of the industrial implementation of CO2 electrolysis concerning CH4 formation. Techno-
economic analysis is a fundamental tool for assessing the economic benefits and costs
of emerging technologies in practical applications. An assessment of the technical and
economic aspects of a novel technology is an indispensable step in the process of translating
it from the research into practical application [42–45]. In the context of the electrocatalytic
reduction of CO2 for the formation of CH4, a comprehensive economic analysis can provide
valuable guidance to researchers for developing catalysts that are more responsive to the
complex and dynamic demands of the market.

In this review, we summarize the latest progress in CO2RR for the selective electrocat-
alytic reduction of CO2 to CH4 in an aqueous solution based on heterogeneous catalysts.
Firstly, we discuss the reaction mechanisms and electrolyte effect, fundamentally, which
provides an insight into designing electrolyzers and electrocatalysts with an improved
performance. Then, we focus on several electrocatalysts with an excellent catalytic per-
formance and great development potential. A prevalent characteristic shared among the
majority of these electrocatalysts is the presence of the copper element, which is expounded
upon in the section on the reaction mechanism. In addition, we provide a simplified techno-
economic analysis for this technology. Finally, we anticipate electrochemical catalysts’
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further development prospects and challenges. We are confident that this review will be
helpful for beginners in this field and will further advance the development of CO2RR.

2. Reaction Mechanism

Many research efforts have attempted to discover the mechanism of the electrochemical
reduction of CO2 to CH4 from both experimental [46–49] and computational points of
view [49–54]. From the pure-thermodynamics point of view, it is possible to reduce carbon
dioxide to CH4 at a potential of + 0.17 V vs. reversible hydrogen electrode (RHE) [55]
(Table 1). However, numerous studies have shown that CO2 electrochemical reduction to
CH4 consists of multiple elementary steps [47,52]. As shown in Figure 1A, CO2 is firstly
absorbed on the catalyst and hydrogenated into *COOH via an electron transfer–proton
coupling process [51]. Then, the *COOH is further evolved into *CO, which is the main
branch point to determine whether or not to produce oxygen-containing products. In path
I, *CO goes through a CHO* intermediate, with the overall path proceeding as:

CO2*→ COOH*→ CO*→ CHO*→ CH2O*→ CH3O*→ CH4 + O* or CH3OH*

(the H+ + e− reactants and H2O product formed were left off).

The step to determine the selectivity is the final CH3O* reduction step. It was found
that the production of CH4 had a more favorable reaction-free energy. In path II, *CO goes
through a COH* intermediate with the overall path proceeding as:

CO*→ COH*→ C*→ CH*→ CH2*→ CH3*→ CH4*

(the H+ + e− reactants and H2O products formed were left off).

Notably, from Peterson et al.’s work, we know that the absorption energy of the
intermediate is crucial for product distributions [56]. For example, the metals (Au, Ag, and
Zn) with weak *CO-bound energy produce little methane because CO experiences priority
desorption before any further reductions occur [57–59]. Additionally, metals (Pt, Pd, and
Ni) with strong *CO-bound energy cannot remove the *CO from the surface because of the
highly unfavorable thermodynamic conditions. Thus, CO2 can only be reduced further to
CH4 with an exceedingly low Faraday efficiency (FE) on these electrodes [60]. In contrast,
the metal Cu is located near the top of the volcano curve of the limit potential. This means
that the *CO-adsorption intensity of Cu is suitable for CH4 production via the CO2RR
process (Figure 1B–D).

Table 1. Half reactions and potentials of CO2 electrochemical-reduction reactions.

Half-Reactions Formula Electrode Potential/V (vs. RHE)

CO2 + H2O + 2e− → CO + 2OH− −0.10
CO2 + 2H2O + 2e− → HCOOH + 2OH− −0.20 (pH < 4); −0.20 + 0.059 (pH > 4)
CO2 + 3H2O + 4e− → HCHO + 4OH− −0.07
CO2 + 5H2O + 6e− → CH3OH + 6OH− 0.02

CO2 + 6H2O + 8e− → CH4 + 8OH− 0.17
2CO2 + 8H2O + 12e− → C2H4 + 12OH− 0.08

2CO2 + 9H2O + 12e− → CH3CH2OH + 12OH− 0.09
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Figure 1. (A) Pathway of CO2RR for CH4 formation on Cu (111). Reproduced with permission from 
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intermediates. Reproduced with permission from Ref. [56]. 
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CH4 formation process on reconstructed Cu2O microparticles. 

As for the surface-reaction mechanism, two hypotheses were proposed, which are 
the Eley–Rideal (H comes from the solution) and Langmuir–Hinshelwood (H comes from 
the surface-adsorbed hydrogen (*H)) mechanisms, respectively (Figure 2B,C). Yogesh and 
coworkers [62] studied the mechanism of electrochemical CO2 reduced to CH4 on the sur-
face of Cu. They found that the methane production rate was significantly suppressed 
when increasing the pressure of CO. However, for the Eley–Rideal mechanism, the reac-
tion rate should be positively correlated with the pressure of CO, which was inconsistent 
with the experimental phenomena. The experimental result thus excludes the Eley–Rideal 
mechanism and strongly supports the Langmuir–Hinshelwood mechanism, where COads 
and Hads are in competition with each other for surface sites. The result was also confirmed 
by Asthagiri and coworkers’ works with the DFT calculation [51]. 

Figure 1. (A) Pathway of CO2RR for CH4 formation on Cu (111). Reproduced with permission
from Ref. [13]; (B) volcano plot of limiting potentials versus CO-binding strength for CO2 reduc-
tion; (C,D) linear energetic scaling relationships between absorption energy of CO (EB) and certain
adsorbed intermediates. Reproduced with permission from Ref. [56].

Notably, some details of the reactions may be slightly different from what was men-
tioned above over different CO2RR catalysts. As shown in Figure 2A, Dong et al. [61]
reported that *CO protonated through a similar bridge configuration on the Cu2O/Cu
interface. This conclusion was confirmed by the density functional theory (DFT) cal-
culation. Interestingly, they also found that the Cu2O/Cu interface formed during the
electrochemical reaction process played a crucial role in determining the selectivity of
methane formation, which may indicate that the crystal plane is not the key factor for the
CO2RR to CH4 formation process on reconstructed Cu2O microparticles.

As for the surface-reaction mechanism, two hypotheses were proposed, which are
the Eley–Rideal (H comes from the solution) and Langmuir–Hinshelwood (H comes from
the surface-adsorbed hydrogen (*H)) mechanisms, respectively (Figure 2B,C). Yogesh and
coworkers [62] studied the mechanism of electrochemical CO2 reduced to CH4 on the
surface of Cu. They found that the methane production rate was significantly suppressed
when increasing the pressure of CO. However, for the Eley–Rideal mechanism, the reaction
rate should be positively correlated with the pressure of CO, which was inconsistent with
the experimental phenomena. The experimental result thus excludes the Eley–Rideal
mechanism and strongly supports the Langmuir–Hinshelwood mechanism, where COads
and Hads are in competition with each other for surface sites. The result was also confirmed
by Asthagiri and coworkers’ works with the DFT calculation [51].
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3. Electrolyte Effect
3.1. CO2 Reduction in Aqueous Electrolytes

A mild-reaction condition is usually associated with decreased expenses. Additionally,
a lab reactor, such as H-shaped electrochemical and flow cells, is present in an aqueous
environment with alkaline electrolytes [63–65]. Thus, understanding the reaction condition
in an aqueous environment and the corresponding influencing factors is very helpful.

The environment near the interface of the catalysts, such as the pH and concentration
of CO2, is different from bulk electrolytes [66,67]. Therefore, we need an overall under-
standing of the process to improve the reactivity. First, the pH near the cathode interface
greatly impacts the reaction pathways and the formation of certain intermediates. The
generated OH− during the CO2RR process cannot be immediately transferred to the bulk
electrolyte resulting in the pH in the vicinity of the cathode being much higher than that in
the bulk electrolyte [68–70]. Ma et al. [71] reported a simple method to determine the local
pH experimenting in GDE-based high-rate CO electroreduction. They found that a high
local pH facilitated the formation of C2 products. Therefore, we can add buffering agents,
such as KHCO3 and phosphate, to the electrolyte to reduce the C2 product and facilitate
the formation of CH4. It is well-known that CO2 in water is in acid-base multiequilibrium:
CO2 + H2O + OH−
 HCO3

− + H2O 
 H2CO3 + OH−. Higher local pH values would
decrease the CO2 concentration near the interface of the cathode, resulting in the slow kinet-
ics of CO2RR [72]. A higher pH also decreases the concentration of the H* intermediate [73].
According to the Langmuir–Hinshelwood mechanism, this will inhibit the formation of
CH4. Thus, it is critical to investigate the role of the electrolyte on electrochemical CO2RR.

In addition to the pH effect, hydrated cations can also affect the interfacial interactions
occurring at the surface [74–76]. First, hydrated alkali metal cations can serve as a buffer
to offset an elevated pH and reduced CO2 concentration in the vicinity of the cathode.
The buffering capacity follows the order of Cs+ > Rb+ > K+ > Na+ > Li+ [77]. According
to Chen’s group, the intermediates are stabilized by the electric double-layer (EDL) field
formed across the Helmholtz layer via the adsorbate dipole-field interaction, which can be
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adjusted by changing M+ at the interface [78]. Additionally, Koper et al. [79] found that
a CO2 reduction does not occur in the absence of metal cations in the solution. Based on
this phenomenon, they proposed that metal cations’ main role is stabilizing critical carbon
dioxide intermediates. This remarkable observation extends to other common catalysts
as well.

3.2. CO2 Reduction in Non-Aqueous Electrolytes

Nonaqueous electrolytes can be categorized into three distinct types: ionic liquids
(molten salts that are composed of organic cations and organic/inorganic anions), organic
liquids (such as acetonitrile, methanol, and dimethyl sulfoxide), and mixed solutions of
the two. [80]. Non-aqueous electrolytes usually have a higher CO2 solubility. In methanol
electrolytes, the CO2 solubility is five times higher than that in water at room tempera-
ture [81]. Additionally, the absence of proton donors in non-aqueous electrolytes creates an
environment that depresses the hydrogen evolution reaction (HER) during electrochemical
reactions [82]. Furthermore, due to the variety of non-aqueous electrolytes, we can obtain
specific products of CO2RR by modifying the electrolyte [80]. In the realm of non-aqueous
electrolytes, the electrochemical reduction of CO2 is commonly believed to follow a series
of pathways. Initially, CO2 is activated to create the CO2•− anion radical, which is deemed
the rate-limiting step. Subsequently, two CO2•− radicals dimerize to produce oxalate, or a
disproportionation reaction between CO2•− and CO2 generates CO and CO3

2−. Lastly,
in the presence of trace amounts of H2O, CO2•− can be protonated to form HCOOH or
dissociated to produce CO and OH− [83].

Despite their numerous advantages, the capital cost of non-aqueous electrolytes is
much higher than aqueous electrolytes. Additionally, due to the complex structure of
non-aqueous electrolytes, the reaction mechanisms remain poorly understood. Hence, a
significant amount of further research is necessary before non-aqueous electrolytes can be
effectively implemented in industrial applications [84].

4. Progress in the Design of Catalysts for CO2 Electroreduction to CH4

In this section, we presented a range of state-of-the-art catalysts and their corre-
sponding construction strategies in a highly informative manner. In order to facilitate
the comprehension and applicability of the presented results, illustrative examples were
provided in each section, which serves to provide an intuitive understanding of the cata-
lyst construction process. Additionally, it is noteworthy that certain catalysts displayed
exceptional electrocatalytic performances, thus highlighting their potential for further ex-
ploration and development. Some of the catalysts and their performers are summarized
in Table 2.

Table 2. Some catalysts for the heterogeneous electrocatalysis of carbon dioxide to methane.

Catalyst Electrolyte Current Density
(mA cm−2)

Applied Potential
(V) vs. RHE CH4 FE Ref.

FeSA 1 M KHCO3 200 −1.1 64% [85]
Cu-CDS 0.5 M KHCO3 40 −1.14~−1.64 78% [86]

Cu68Ag32 nanowire 0.5 M KHCO3 80 −1.17 60% [87]
MCH-3 1 M KHO 398.1 −1.0 76.7% [88]

Cu-based cMOF 1 M KOH 162.4 −0.9 80% [89]
Zn-MNC 1 M KHCO3 31.8 −1.8 85% [90]
n-Cu/C 0.1 M NaHCO3 - −1.35 80% [91]
Cu NW 0.1 M KHCO3 - −1.25 55% [92]

Cu−Bi NPs 0.5 M KHCO3 37.2 −1.2 70.6% [93]
NNU-33(H) 1 M KOH 391.79 −0.9 82% [94]

Cu2+ SA on CeO2 1 M KOH 200 −0.82 65% [95]
CoPc@Zn-N-C 1 M KOH 44.3 ± 7.3 −1.24 18.3 ± 1.7% [96]
Ag@Cu2O-6.4 1 M KOH 178 ± 5 −1.2 74 ± 2% [97]
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4.1. Catalyst-Structure Engineering

In heterogeneous catalysis, the catalyst’s structure impacts the product distribution of
electrocatalyzed CO2 [98–101]. This section focuses on summarizing the different structures
of the catalysts, mainly including nanostructured, porous, and single-atom catalysts.

4.1.1. Nanostructured Catalysts

At present, the nano-Cu electrode has been widely studied and used to improve the
selectivity and energy efficiency of CO2RR for CH4 formations [102,103]. The reactivity of
CO2RR for CH4 formations over nanostructured Cu is affected by numerous parameters,
such as size, coordinated sites, and morphology [104–106]. When the size of nanoparticles
decreases, the radius decreases, which results in the increase in ratio of surface to bulk
atoms increasing and a decrease in the average coordination of surface atoms. This phe-
nomenon can also be called the activity–selectivity–size relationship [107]. For example,
Peter et al. [108] constructed a series of sizes of Cu nanoparticles (Cu NPs) (diameter:
1.2~20.3 nm) (Figure 3A,B). They found that the catalytic activity and selectivity for H2
and CO products were dramatically increased with the decrease in Cu NP sizes, meaning
that the formation of CH4 was inhibited, in particular when the size of Cu NPs was less
than 5 nm (Figure 3C,D). In contrast, the bulk Cu catalysts produced CH4 as the primary
hydrocarbon product from CO2RR. Buonsanti et al. [109] studied Cu nanocubes (Cu NC)
with 24, 44, and 63 nm edge lengths afforded by colloidal chemistry (Figure 3E). As shown
in Figure 3F, the cube with a 44 nm edge length has the highest selectivity for CO2RR at
80%. The surface-atom-density statistical analysis indicated that the edge sites played a
key role in the formation of CO2RR. Although Cu NCs did not possess a high selectivity
for the CH4 formation, it was observed that the size significantly affected the reactivity of
the nanostructured catalysts. As shown in Figure 3G,H, a Cu nanowire (Cu NW) catalyst
was reported by Yang et al., and such catalysts exhibit high CH4 selectivity, reaching a
CH4 FE of 55% at −1.25 V vs. RHE (Figure 3I–L) [92]. To further study the effect of the
morphology of Cu NW on hydrocarbon selectivity, they wrapped the wires with graphene
oxide to keep the morphology stable. It was surprising that the selectivity presented no
significant change, indicating that hydrocarbon selectivity is sensitive to the morphology
of the catalysts.

As the aforementioned nanostructured Cu elements were not supported by any sub-
strate, the particles could easily aggregate during the electrochemical reaction. The nanos-
tructures supported on substrates also received great attention for their superior perfor-
mance in electrocatalysts [110,111]. As shown in Figure 4A–D, Alivisatos et al. [91] reported
a catalyst that Cu nanoparticles supported on glassy carbon (n-Cu/C) capped with tetrade-
cylphosphonate. The catalyst achieved a methanation current density 4 times higher than
the pure Cu foil electrode, and its average CH4 FE was 80% during the process of extended
electrolysis, which is one of the highest CH4 FE values for room-temperature methanation
ever reported (Figure 4E–H). The author proposed that graphene may contribute to lower-
ing the energy barrier of the key step by modifying the electron properties of the anchored
Cu nanoparticles due to graphene’s unique electronic and physical properties. Additionally,
it is easier to increase the Cu–Cu distance on n-Cu/C than that on Cu (111) when the CHO*
species is formed on the Cu nanoparticle surface [112]. However, they found that Cu
particles supported on glassy carbon can grow during the reaction process, which may be
attributed to a combination of particle coalescence and dissolution–redeposition during the
electrochemical reaction (Figure 4C,D). The growth of Cu particles impairs the reactivity
of the catalyst. Therefore, we need to find strategies to further improve the stability of
this catalyst.
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Figure 3. (A) Models of spherical Cu NPs with 2.2 and 6.9 nm diameters and the quantity of Cu
atoms with different coordination numbers; (B) population (relative ratio) of surface atoms with
a specific CN as a function of particle diameter; (C) the composition of gaseous-reaction products;
(D) FE of reaction products during CO2 electroreduction are a function of the diameter of Cu NPs
(reproduced with permission from Ref. [108]); (E) density of adsorption sites in Cu NC cubes to the
edge length; (F) FE of each product in Cu NC cubes and Cu foil at −1.1 V vs. RHE (reproduced
with permission from Ref. [109]); (G) TEM image of bare wires (the insert shows the 5-fold twinned
structure, showing a high proportion of low–coordination edge sites); (H) TEM micrograph of Cu
NWs loaded on carbon; (I–L) Cu NW initial electrocatalytic activity and selectivity. Reproduced with
permission from Ref. [92].
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4.1.2. Porous Catalysts

Porous catalysts have attracted considerable attention, recently, because of their large
specific surface areas, high density of surface-active sites, efficient mass transfer, and opti-
mization of intrinsic activity [113–116]. In addition, nanopores provide a low coordination
position for the reaction [117]. The selectivity of porous catalysts can be changed by increas-
ing the residence time of the intermediates [104]. Because of this characteristic, various
porous catalysts for the selective catalysis of CO2 to CH4 and relevant strategies have been
developed [118]. Wen et al. [88] reported a perfluorinated covalent triazine framework (FN-
CTF-400) that shows an astonishingly selective catalysis of CO2 to CH4 with a dominant
competitive advantage over HER. As shown in Figure 5A–F, the CH4 FE value is about
78.7% at potentials between −0.4 and −0.6 V vs. RHE, and what is even more impressive
is that the CH4 FE value of FN-CTF 400 can reach 99.3% at the potential between −0.7 and
−0.9 V vs. RHE. However, when the potential increases above −1.0 V, the efficiency gradu-
ally decreases to 65%. According to the DFT calculations, the high-selectivity depends on
the doping fluorine, which regulates the activity of N, making it more conducive to CH4
production (Figure 5G–K). Wen et al.’s outstanding work provides important guidance for
designing carbon dioxide electroreduction strategies for more favored materials.

MOF (metal organic framework) and COF (covalent organic framework) are two
kinds of crystalline porous materials with a periodic network structure. They have
recently been widely used in electrochemistry, especially as an energy-related electro-
catalyst for their unique structure. Lan et al. [89] synthesized and studied a series of
honeycomb-like porous crystalline hetero-electrocatalysts. This is a core–shell-structured
material with HMUiO-66-NH2 as the core (HM stands for honeycomb-like MOF) and
COF-366-Cu as the shell (constructed by tetra(p-aminophenyl)porphyrin (Cu-TAPP) and
2,5-dihydroxyterephthalaldehyde (DHA)). MCH-X (X = 1–4) (MCH-X, X = 1–4, X: differ-
ent MOFs doses in MCH synthesis) was synthesized by adjusting the different amounts
of HMUiO-66-NH2 in the COF synthesis system. Among them, MCH-3 presented the
best performance with an excellent current density at −398.1 mA cm−2 and superior
CH4 FE as 76.7% at −1.0V vs. RHE. Rich, open channels of the catalysts facilitated the
CO2 adsorption/activation and conversion to CH4 processes. Lan’s group also [119] re-
ported a Cu-based conductive metal organic framework (cMOF) that combines electrical
conductivity with the porosity of MOF. It is composed of highly conjugated graphene
ligands (dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol, 8OH-DBC) and Cu ions. Highly
conjugated organic ligands endow Cu-DBC with unique redox properties and electrical
conductivity (Figure 6A). CH4 FE exhibits up to 80% (Figure 6B,C) accompanied by a
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partial current density of +162.4 mA cm−2 at a low reduction potential of −0.9 V vs. RHE.
The abundant and uniformly distributed Cu–O4 sites greatly contributed to the effective
ERC-to-CH4 process with high selectivity.
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Although many achievements have been made in the research and application of
porous catalysts, the role of the pore size in the catalytic process is still rarely reported. As
the size of the catalysts can affect the mass transfer and density of the activity site, we need
to study the role of pore size further.
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4.1.3. Single-Atom Catalysts

Single-atom catalysts (SACs), in which single metal atoms are anchored to the support,
have recently attracted considerable attention [120–123]. The active sites of SACs are
isolated metals coordinated by pyridine/pyrrole nitrogen atoms, carbon atoms, or other
substrates [124]. The highly isolated active sites of SACs can effectively inhibit the C–C
coupling process. Therefore, it can promote the generation of CH4. Additionally, SACs
provide the economical, efficient utilization of precious-metal catalysts and open up a
broad new field for optimizing the selectivity and activity of various reactions due to their
uniform monoatomic dispersions and clear structures [125]. For example, when using
single-atom Cu substitute Ce on the CeO2(110) surface, three oxygen vacancies around
each Cu site are steadily concentrated, producing efficient carbon dioxide adsorption and
activating catalytic centers [126].

Recently, Zhu et al. [86] reported that Cu-embedded carbon dots (Cu-CDS) prepared
by calcining Na2 [Cu (EDTA)] 2H2O at 250 ◦C (the lowest carbonization temperature)
converts the carbon-containing molecular complex into solid Cu-CDS, which retains the
SAC coordination environment (Figure 7A). The electrocatalytic activity of the catalyst was
tested and the results showed that the FE of methane was as high as 78% at the potential
of 1.14~1.64 V. Among carbon dioxide-reduction products, 99% were CH4 (Figure 7B–G).
The DFT calculations indicate that HER is well-inhibited by CuN2O2 on the catalyst, which
accounts for the high selectivity of CO2RR for CH4 formation. The easy preparation of this
catalyst allows them to have a broader range of application scenarios.

Edward et al. [85] reported a metal–supported monatomic catalytic center. They
prepared gas diffusion electrodes (GDEs) by depositing sputtered Cu on a polytetraflu-
oroethylene (PTFE) substrate and then assembled iron phthalocyanine (FePc) on the Cu
surface. By changing the size of the Fe cluster, they found that the affinity of the Fe atom
for *CO increased when the size of the Fe cluster decreased. When it decreased to a single
site, the affinity for *CO reached the highest point (Figure 8B). As shown in Figure 8C, *CO
is transferred to the Fe atom from Cu near the bridge and top sites. The main product
of Cu supporting the iron monatomic catalyst was CH4. When the current density was
200 mA cm−2, CH4 FE can reach the maximum of 64%, which is much higher than that on
bare Cu catalysts with CH4 FE as low as 2%. It may be that the C–C coupling is unfavorable
to FeSA compared to the surface of bare Cu; therefore, *CO is more readily hydrogenated
to * COH on the Fe site of Cu-FeSA than *CHO when a solvation contribution is present
(Figure 8D,E).

Xin et al. [90] reported the electrocatalysis of single Zn atoms supported on N-doped
carbon (Zn-MNC) (Figure 9A,B), which was demonstrated by normalized X–ray absorption
near-edge structure (XANES) curves, the Fourier transform (FT) k2-weighted extended
X-ray absorption fine-structure (EXAFS) spectrum, X–ray absorption spectroscopy (XAS),
and X-ray photoelectron spectroscopy (XPS) shown in Figure 9C–F. Compared with the
saturated calomel electrode, the catalyst showed a high CH4 FE of 85% with a partial current
density of−31.8 mA cm−2 at a potential of−1.8 V. Zn–MNC presented a significant stability
improvement since no apparent current drop and great FE fluctuation were observed after
35 h of the electrochemical-reduction reaction (Figure 9G–J). The theoretical calculation
shows that a single zinc atom hinders the formation of CO to a large extent, but promotes
the formation of CH4. Although the partial current density was low, this proved the
feasibility of copper-free elements catalyzing CO2 to hydrocarbons.
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Figure 7. (A) Scheme of low-temperature roasting process of Cu–CD catalyst; (B) CV curves for CP
(bare carbon paper), CuPc, Na2[Cu (EDTA)], and Cu–CDs. The dependence of FE and current density
(based on geometric surface area) on the applied potentials of (C) Cu–CDs, (D) CDs + Cu2+, and
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CuPc were studied at different potentials; (G) stability tests for Cu–CDs and CuPc at their highest
ERC FE potentials. Reproduced with permission from Ref. [86].

To achieve large-scale industrial applications, it is necessary to further improve the
stability. Increasing the conversion rate is also an indispensable technique. In addition,
if a new type of SAC-preparation method can be developed to improve the preparation
process of SACs and simplify their production process, it is also expected to significantly
reduce the production cost of SACs [43].
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Figure 8. (A) Catalytic CH4 activities of pristine Cu vs. various single–atom–anchored Cu catalysts
for CO2 reduction reaction; (B) adsorption energies of *H and *CO are affected by the size of Fe
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(E) hydrogenation energy of methanogenic intermediates on Fe center in Cu–FeSA. Reproduced with
permission from Ref. [85].
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Figure 9. (A) HAADF–STEM image of an SA–Zn/MNC inset: EDS mapping of Zn. (B) Atomic–
resolution HAADF-STEM image with some Zn atoms highlighted by yellow circles. (C) XANES and
(D) FT–EXAFS spectra. (E) FT-EXAFS. (F) XPS. (G) Current density, (H) FE, (I) yield rate, (J) and
adsorbed CO2 quantities on MNC, Zn power, and SA-Zn/MNC, respectively. Reproduced with
permission from Ref. [90].

4.2. Catalyst Component Engineering

In addition to the previously summarized strategies for the structural part of the
catalyst, we observed that there were also numerous works devoted to tuning the catalyst
composition as a way to improve product selectivity. Therefore, this section summarizes
the relevant work in terms of alloy, oxidation-state Cu-containing, and tandem.



Methane 2023, 2 161

4.2.1. Alloy Catalysts

According to the previous literature, Cu is the only metal that can catalyze CO2RR to
efficient amounts of hydrocarbons and oxygenates due to the suitable adsorption strength of
*CO [127,128]. However, it is greatly hindered by poor selectivity and a high overpotential
to eliminate the CO from CHO energy barriers on the pure-Cu crystal surface, which is
unacceptable for industry-scale applications. To tackle this problem, numerous efforts have
been devoted to developing Cu-alloy catalysts [129–131].

Alloying Cu with a foreign metal can improve its electrocatalytic performance, com-
pared to single-metal Cu catalysts, by imparting some unique properties to them, including
electronic (changing the electronic structure of the host metal by adding different met-
als) and geometric (changing the atomic arrangement of actives sites) effect [132–134].
According to the d-band model, the electron effect can change the binding strength of
intermediates adsorbed on the surface [135]. Additionally, geometric effects can adjust the
binding energy of the intermediates and catalysts, hence tuning their catalytic activities [87].
We can also create bifunctional active centers in which neighboring metals play different
catalytic roles, in addition to simply changing the numbers or configurations of specific
atoms in the ensemble. The introduction of foreign metals into Cu also changes its surface
chemistry, thus changing the distribution of the products [136]. These Cu-alloy catalysts
also show significant reactivity behavior to CO2RR for CH4 formation, outperforming pure
metals [130].

Goddard et al. [93] prepared Cu−Bi NPs (Figure 10A–D) through a facile, one-step
method, which presented higher activity and selectivity to CH4. The Cu7Bi1 NPs presented
a CH4 FE as high as 70.6% at −1.2 V vs. RHE, which is almost 25 times that of Cu NPs
(Figure 10E–J). DFT calculations showed that the addition of bismuth significantly reduced
the energy formation of the potential energy-determining step (PDS) for the electrocatalysis
of CO2 to CH4. The highly electropositive bismuth absorbed an electron from Cu, causing
the Cu to be partially oxidized, which is the active center where CO2RR is most likely to be
converted into CH4.
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Figure 10. TEM images of (A) Cu and (B) Cu7Bi1 NPs; (C) HRTEM image and (D) EDX mapping
of Cu7Bi1 NPs. CO2 electroreduction performance of the synthesized NPs: (E) FE of CH4; (F) FE
of C2H4; (G) FE of H2; (H) FE ratio of CH4/C2H4; (I) comparison of present work with previously
reported CH4 selectivity; (J) partial current densities of CH4. Reproduced with permission from
Ref. [93].
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Lee et al. [137] studied a bimetallic Cu/Ag-layered catalyst for eliminating the ge-
ometric effect from the electrocatalytic performance by varying the thickness of the Ag
layer (Figure 11A). The optimized Cu/Ag–layered catalyst exhibited bifunctional catalytic
characteristics that preferentially produced CO (FE = 89.1%) at −0.8 vs. RHE and had a
high-selectivity value of CH4 (FE = 65.3%) at −1.2 vs. RHE (Figure 11 B). The silver atoms
on the surface of Cu reduced the charge density by forming additional bonds with Cu.
With the increase in the thickness of the silver layer, the d–state center gradually shifted
down from the Fermi level, which produced weak CO–binding energy on the surface.
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4.2.2. Oxidation-State Cu-Containing Catalysts

Introducing Cu&+ to the surface of Cu catalysts has been suggested as an active site
for CO2RR [138]. Studies have shown that the stable presence of Cu+ can improve the
activity of CO2RR for CH4 formation [139]. However, in the process of an electrochemical
reaction, Cu+ can be easily reduced to Cu due to its instability. Therefore, the oxidation
state of Cu may be of great significance in improving its catalytic activity. As shown in
Figure 12A, Lan and coworkers [94] synthesized two stable Cu+ coordination polymer
(NNU-32 and NNU-33(S) (S = sulfate radical)) catalysts, which showed high selectivity for
the electrocatalytic conversion of CO2 to CH4. NNU–33(H) created an impressive CH4 FE
amount of 82% at −0.9 V vs. RHE with a partial current of 391 mA cm-2, which was one
of the best-reported Cu-based catalysts for CO2RR to produce CH4 (Figure 12B,C). This
may account for the greatly enhanced coprophilic interaction observed in NNU-33 (H) and
the in situ OH− substitution of SO4

2− inherent in the molecule, which decreased the Gibbs
free energy of PDS (*H2COOH→ *OCH2). The DFT further confirmed this result. The
*CO-adsorption energy of Cu-based catalysts increased monotonously with the increase in
the oxidation state [136]. Therefore, Cu2+ may have a stronger adsorption capacity for *CO.
Qiao et al. [95] incorporated Cu2+ ions into a CeO2 matrix to obtain stabilizing Cu2+ ions.
The appearance of CeO2− was demonstrated by in situ Raman spectroscopy, which showed
a peak at 560 cm−1 originating from the electrochemical reduction of Ce4+ to Ce3+, indirectly
demonstrating the stable presence of Cu+ (Figure 12D,E). The performance was evaluated
in the flow reactor for over 6 h, and the average CH4 FE was about 65% at a constant
potential of −1.4 V vs. RHE (Figure 12F–I). The DFT calculation demonstrated that stable
Cu2+ active sites can significantly improve the initial adsorption of CO and promote the
hydrogenation of *CO to *OCH3. Both of the abovementioned catalysts showed excellent
catalytic performances. It can be seen that maintaining oxidized copper is a good idea for
designing catalysts.
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of Cu–Ce–Ox catalysts corrected by IR compared with that of other reported Cu–based catalysts;
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4.2.3. Tandem Catalysts

Cu is one of the only catalysts that can further reduce CO to a more value-added
hydrocarbon during the CO2RR. Nevertheless, when CO and CHO are both bound to the
same surface, the binding energies follow the liner scaling relationship that limits CO from
being reduced further to CHO [56], leading to the disadvantages of high overpotential and
low CH4 FE on the single-component Cu catalyst. On the other hand, it is a promising
strategy to convert CO2 into CO on more efficient catalysts, such as Au and Ag [140,141],
and then reduce the CO generated on Cu to break the limitation of the linear scaling
relationship of the key intermediates’ adsorption of the abovementioned single Cu catalyst
and obtain CO2RR products with a high selectivity and high yield. Based on this principle,
numerous tandem catalysts have been developed, and the key factor to be considered in
the design of tandem catalysts is how to efficiently transfer CO intermediates from the
catalyst that generates CO to Cu.
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Recently, Bao and coworkers [96] reported a Cu-free tandem catalyst consisting of
cobalt phthalocyanine (CoPc) and zinc–nitrogen–carbon (Zn–N–C) (CoPc@Zn–N–C) that
can effectively and electrochemically reduce CO2 to CH4. CO2 is reduced to CO over CoPc,
and the generated CO diffuses to Zn–N–C to convert further into CH4 (Figure 13A,C).
Compared with CoPc or Zn–N–C alone, the formation-rate ratios of CH4 and CO2 of this
tandem catalyst are over 100 times higher (Figure 13B,D,E).

Methane 2023, 2, FOR PEER REVIEW 17 
 

and low CH4 FE on the single-component Cu catalyst. On the other hand, it is a promising 
strategy to convert CO2 into CO on more efficient catalysts, such as Au and Ag [140,141], 
and then reduce the CO generated on Cu to break the limitation of the linear scaling rela-
tionship of the key intermediates’ adsorption of the abovementioned single Cu catalyst 
and obtain CO2RR products with a high selectivity and high yield. Based on this principle, 
numerous tandem catalysts have been developed, and the key factor to be considered in 
the design of tandem catalysts is how to efficiently transfer CO intermediates from the 
catalyst that generates CO to Cu. 

Recently, Bao and coworkers [96] reported a Cu-free tandem catalyst consisting of 
cobalt phthalocyanine (CoPc) and zinc–nitrogen–carbon (Zn–N–C) (CoPc@Zn–N–C) that 
can effectively and electrochemically reduce CO2 to CH4. CO2 is reduced to CO over CoPc, 
and the generated CO diffuses to Zn–N–C to convert further into CH4 (Figure 13 A,C). 
Compared with CoPc or Zn–N–C alone, the formation-rate ratios of CH4 and CO2 of this 
tandem catalyst are over 100 times higher (Figure 13B,D,E). 

 
Figure 13. (A) The adsorption energy profiles of *CO, *H, and the co-adsorption of *CO and H* on 
CoPc and ZnN4, respectively; (B) CH4/CO production rate ratio over CoPc@Zn–N–C and Zn–N–C, 
respectively; (C) reaction mechanism of CO2RR for CH4 formation over CoPc@Zn–N–C; (D) CH4 FE; 
(E) potential dependence of CH4 partial current density of CO2RR. Reproduced with permission 
from Ref. [96]. 

Figure 13. (A) The adsorption energy profiles of *CO, *H, and the co-adsorption of *CO and H* on
CoPc and ZnN4, respectively; (B) CH4/CO production rate ratio over CoPc@Zn–N–C and Zn–N–C,
respectively; (C) reaction mechanism of CO2RR for CH4 formation over CoPc@Zn–N–C; (D) CH4

FE; (E) potential dependence of CH4 partial current density of CO2RR. Reproduced with permission
from Ref. [96].

Peng et al. [97] constructed a yolk-shell nanocell structure comprising an Ag core
and a Cu2O shell that resembled a tandem nanoreactor (Figure 14A–C). Among them,
Ag@Cu2O-6.4 NCs (6.4 represents the mole ratio of Cu/Ag) exhibited the greatest CH4
selectivity, achieving a maximum FE value of 74 ± 2% and a high partial current density
of 178 ± 5 mA cm−2 at −1.2 V vs. RHE and CH4 FE as 72 ± 3% at −1.3V vs. RHE with
the local current density continuously increased to 214 ± 9 mA cm−2 (Figure 14D–E).
It is worth noting that the performance was almost the best among the most advanced



Methane 2023, 2 165

CO2RR catalysts especially used for CH4 production and met the technical and economic
requirements of any commercially feasible CO2RR catalyst with a current density greater
than 100 mA cm−2. Ag@Cu2O NCs with different Cu2O envelope sizes exhibited different
product distributions. This was because varying CO fluxes per unit area at the shell resulted
in varying CO coverage on the Cu2O surface, further confirmed by both the experiment
and DFT (Figure 14F).
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5. Techno-Economic Analysis and Life Cycle Assessment of Electrochemical CO2
Reduction to Methane System

Within this section, a concise examination of the techno-economic analysis pertaining
to a general process of the conversion of CO2 to CH4 via electrochemical means is presented
encompassing CO2 capture, electrochemical conversion, reactant recycling, and product
separation. All the prices used here were based on the Chinese market, to date (the
exchange rate of USD to CNY is, at present, 6.88, which will fluctuate over time), and
did not take into account the impacts of financial factors, such as carbon taxes or credits.
Additionally, due to the absence of commercially developed analogs, a comprehensive
analysis of a CO2-reduction process was challenging. Nevertheless, utilizing engineering
approximations and making assumptions based on existing technologies can provide
valuable insights [142]. We used the net present value (NPV) approach to evaluate the
feasibility of this technology. The NPV was derived through the aggregation of the present
values of cash inflows and outflows, which were discounted to the present time using an
appropriate discount rate throughout the entire duration of the project or process. If the
NPV was positive, then the project was considered valuable; if the NPV was negative, then
the project was considered unprofitable.

NPV =
i=n

∑
i=1

Ci

(1 + r)i − C0

where C0 is the initial investment, Cn is the n year cash flow, i is the year, and r is the
discount rate.
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Figure 15 provides a comprehensive overview of the CO2 to ethylene conversion
process. The initial step involved the capture of CO2 from a high partial-pressure stream,
such as biogas or industrial flue gas [143–147]. From the information provided by some
companies, such as Carbon Clean, the costs of CO2 capture from industrial flue gas through
membrane, pressure swing adsorption, and scrubbers were comparable for large-scale
processes, ranging between USD 30–$0/ton CO2 [146,148]. However, capturing CO2 from
the air is significantly more expensive, with the cost being 5–10 times more than the
aforementioned range, rendering it an unviable approach for this study. The capital cost of
installing a CO2 capture and storage facility with an annual capacity of 100,000 tons at a
steel plant is approximately USD 27 million.
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Figure 15. A general CO2 electrolysis process.

Here, we coupled carbon capture with electrochemical CO2 convention to cut off the
cost of gas transportation [149]. The subsequent step entailed feeding the captured CO2 into
a high-pressure (10 bar) GDE-based electrolyzer to produce CH4. It is worth mentioning
that the CO2 feed does not necessitate additional pressurization since CO2 derived from
biogas plants is often available at high pressures. However, determining the distribution
of products was challenging, as it was contingent to various factors, such as temperature,
pressure, catalyst type and morphology, cell potential, current density, and pH. Despite the
uncertainties, this study assumed a fixed FE of 90% for CH4 and 10% for H2 at −1.3 V vs.
RHE, respectively.

P = I ×V × t = QV

Q = It =
MCO2 × F× 8
44× FECH4

where P is the power required. The total current, V, is the cell voltage (here, we did
not consider the value of oxygen generated by the anode as a compensation without
considering the anode voltage). Therefore, based on Section 4, we set the voltage to−1.3 V),
FECH4 fixed as 90%. F is the Faraday constant (96,485.334C).

According to the STATE GRID Corporation of China, we knew that the electrovalency
was USD 0.091/(kW·h). Therefore, the capital cost of electric power was USD 4.5 million per
year. In order to approximate the capital expenses associated with an electrolyzer system,
a typical model of an alkaline water electrolyzer stack was utilized. According to several
companies that are involved in alkaline water electrolyzers, such as the China Huadian
Corporation, the capital cost we obtained for the stack component was USD 300/KW.
Therefore, for a capacity of 100,000 tons, the initial stack cost was USD 20 million. Another
important factor was that stability pertains to the gradual deterioration or deactivation of
the electrode catalyst and the overall electrochemical cell. Here, we established that the
electrode material could work for 8000 h per year and the maintenance cost was 2.5%.
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The subsequent step was to separate CH4 (account for 0.473), H2 (account for 0.21),
and unconventional CO2 (account for 0.315) (as the conversion of CO2 was rarely re-
ported, we set the conversion rate as 60%, which can be achieved by a well-designed
electrolyzer). Pressure swing adsorption (PSA), membrane, and low-temperature separa-
tions are usually applied to gas product separation, [150–152] But achieving a purity level
higher than 99% through membrane separation was challenging. Therefore, we opted to
employ pressure swing adsorption (PSA) separation as a means of separating methane
and hydrogen [153–155]. Technical details can be found in the ref. [156]. According to
Augelletti et al. [156], we can obtain a relatively high concentration of methane gas at a
low power cost (270 kJ/kg). The proposed methane fee was intended to specifically target
the natural gas and petroleum industries and would entail a cost of USD 300 per ton of
methane, which is the lowest price for CO2-reduction products (Table 3). A reference cost
of USD 1,990,000 per 1000 m3/h capacity was used [142]. According to the National Energy
Administration, the price of hydrogen was USD 5.09 per kilogram.

Table 3. Market prices of CO2-reduction products. Ref. [142] notice: The data presented in this table
are for 2018.

Product Number of Required
Electrons

Market Price
(USD/kg)

Normalized Price
(USD/electron) × 103

Annual Global
Production (Mtonne)

Carbon monoxide (syngas) 2 0.06 0.8 150
Carbon monoxide 2 0.6 8
Formic acid 2 0.74 16.1 0.6
Methanol 6 0.58 3.1 110
Methane 8 0.18 0.4 250
Ethylene 12 1.3 3 140
Ethanol 12 1 3.8 77
n-Propanol 18 1.43 4.8 0.2

As shown in Table 4, we summarized the capital and operating costs of CO2 elec-
trolyzers. We briefly examined various parameters, including CO2, electricity, and selling
prices of the final product, which significantly impacted the cost analysis. The financial
model does not incorporate the expenses related to sales, labor, and inflation. We observed
that, no matter how we optimized the reaction conditions and reduced the costs, we did
not make a profit, as the market price of CH4 was too low and the electrovalency was
too high. However, this does not mean that this technology is not desirable, because it is
very promising to use methane as an energy-storage medium for when controlled nuclear
fusion is improved or almost all electricity is generated from renewable energy and used as
next-generation rocket fuel; the in situ production of methane as rocket fuel on alien planets,
such as Mars, will become a key technology in human interstellar navigation. Another
interesting point is that the FE of CH4 has a minor impact on profitability, as its byproduct,
hydrogen, is even more expensive.

Table 4. Cash-flow sheet.

Initial Capital Cost (C0) Cash Flow (per Year)

CO2 capture facility −USD 27 million Electricity −USD 64.5 million
Electrolyzer cost −USD 20 million Maintenance −USD 1.49 million

PSA facility −USD 12.7 million Cell compartment replacement
(normalized to each year) −USD 1.28 million

CO2 capture −USD 4 million
sales of CH4 +USD 10.908 million
sales of H2 +USD 10.3 million

total −USD 59.7 million total −USD 50.06 million
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6. Conclusions and Outlook

Electrochemical CO2 reduction has gained considerable attention as an effective means
of mitigating environmental pressure due to its eco-friendliness, operational simplicity, and
economic efficiency. Of particular interest is the potential for enhancing the selectivity of
CH4 production in the catalytic process. In this review, we presented an overview of the
related research on the catalytic mechanisms and catalyst design strategies, providing an
assessment of the state-of-the-art work and techno-economic analysis and life cycle assess-
ment of electrochemical CO2 reduction to methane system, and offering recommendations
for future studies.

We briefly described the electrolyte effect to provide a preliminary understanding of
the system reactions. With the ongoing research and development, a more thorough under-
standing of the reaction mechanisms is expected to yield additional strategies for designing
high-performance CO2RR catalysts. A comprehensive mechanistic study, particularly in
the reaction pathway catalyzing the multi-electron transfer of CO2RR for CH4 formation, is
essential to improve catalyst selectivity for CH4 products.

Moreover, the development of new powerful toolkits, including machine learning,
macrodynamic simulations, and operating conditions/in situ techniques, holds promise
for advancing our mechanistic understanding. These tools have the potential to yield
insights into the underlying processes that govern catalyst performance, facilitating the
development of more efficient and effective catalysts for electrochemical CO2 reductions.
Overall, a continued effort in this area of research is essential to address environmental
challenges and create a sustainable future. The design and development of catalysts are
expected to make significant progress in the future. In this regard, we should make the
following efforts in the future:

(1) Improve in situ techniques and apparatus with higher temporal and spatial reso-
lutions to capture key species not previously found experimentally to better understand
the reaction mechanism [157,158]. For example, Lu et al. [159] made a breakthrough in the
study of the mechanism of the electrocatalytic reduction of CO2/CO by using advanced
techniques, such as electrochemical reaction activity testing and high-pressure in situ spec-
troscopy. By introducing the strategy of probe molecules acting on the target reaction
network, they proposed a new perspective on the surface-coverage level of important inter-
mediates and the CO2/CO-reduction reaction network, which makes up for the cognitive
deficiencies, at present, and provides a new idea for development in this field;

(2) Develop high-throughput syntheses and testing techniques for the rapid and repro-
ducible screening of catalysts. High-throughput approaches are particularly suitable for
problems where the parameter space is too large to be effectively solved using conventional
methods [160–162]. Catalyst synthesis and testing fit this perfectly, and unsurprisingly, it
can help the development of CO2RR electrocatalysts;

(3) Develop accelerated DFT methods and microscopic dynamics for machine learn-
ing modeling. This can help us throughly and accurately explain the mechanisms and
rapidly predict catalyst materials [163]. Singh et al. [164] developed high-accuracy neural
network (NN) ML models for predicting the adsorption energies of COOH*, CO*, and
CHO* [165–168]. This work accelerated the development of catalysts and provided an
effective strategy to circumvent the scaling relation.

Finally, although the low market price of methane makes it impossible to commer-
cialize electrocatalytic CO2RR for CH4 formation, we should consider improving the
performance of catalytic materials, such as electrolysis voltage, current density, energy
efficiency, and stability, as it is very promising to use methane as an energy-storage medium
for when controlled nuclear fusion is improved or almost all electricity is generated from
renewable energy and used as next-generation rocket fuel, where the in situ production
of methane as rocket fuel on alien planets, such as Mars, will become a key technology in
human interstellar navigation. In order to promote the industrialization of electrocatalytic
carbon dioxide, we should pay more attention to studies on upstream and downstream
processing, process design and techno-economic feasibility.
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