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Abstract: A significant portion of global greenhouse gas emissions is attributed to methane (CH4),
the primary greenhouse gas released by dairy animals. Thus, livestock farming has a new challenge
in reducing enteric CH4 for sustainability. In anaerobic microbial ecosystems such as the rumen,
carbohydrates are converted into short-chain, volatile fatty acids that animals use for energy and
protein synthesis. It is, therefore, essential to understand rumen physiology, population dynamics,
and diversity to target methanogens. Thus far, numerous CH4 mitigation strategies have been studied,
including feeding management, nutrition, rumen modification, genetics, and other approaches
for increasing animal production. As new molecular techniques are developed, scientists have
more opportunities to select animals with higher genetic merit through next-generation sequencing.
The amount of CH4 produced per unit of milk or meat can be permanently and cumulatively
reduced through genetic selection. Developing eco-friendly and practical nutrigenomic approaches
to mitigating CH4 and increasing ruminant productivity is possible using next-generation sequencing
techniques. Therefore, this review summarizes current genetic and nutrigenomic approaches to
reducing enteric CH4 production without posing any danger to animals or the environment.
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1. Introduction

In response to the increasing population rate and growing animal protein demand,
the ruminant husbandry or livestock sector is experiencing rapid structural and functional
changes. In particular, consumption of livestock products has increased twofold in the past
few decades, while milk supply and demand have increased by 26% and 2.4% annually,
respectively, and are expected to increase by 25% in the near future [1,2]. In addition
to supporting approximately 1.3 billion producers and retailers, the livestock sector con-
tributes between 40 and 50% of the agricultural gross domestic product [2]. It is necessary
to underscore, however, that livestock, although of great social and economic importance,
is also one of the largest sources of greenhouse gases (GHG) worldwide, particularly enteric
methane (CH4) [3]. Approximately 13% of the world’s GHG emissions come from livestock
farming; CH4 emissions, in particular, are important contributors since their global warm-
ing potential is 28 times higher than carbon dioxide’s [4]. As this carbon cannot be utilized
as an energy source in ruminants, CH4 production has a negative impact on ruminant
efficiency and profitability, as well as on the environment [5].

Ruminants produce CH4 as a natural reaction during the microbial fermentation of its
feed in the rumen [6]. In cattle, for example, enteric CH4 is mostly produced in the rumen
(87–90%) and in the large intestine (10–13%) [7,8]. Various microbial species participate
in the conversion of feed material to CH4 in the rumen; methanogenic archaea perform
the final step [9]. There has been significant evidence that genetic variation of the host
animals impacts bacterial community composition and CH4 production [10]. Furthermore,
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numerous studies have demonstrated that methane production is closely related to the
weight of the animal, the amount of dry matter ingested, and the amount of gross energy
ingested [11,12]. It is recognized that methane production is a hereditable trait, and that
genetic selection for low-emitting ruminants is an effective mitigation option, assuming
feed intake and animal productivity remain unchanged [13,14].

There is little information on how fermentative organisms interact with methanogens,
but it is likely that other functional groups of microbes influence CH4 production in rumens
heavily. In addition to producing substrates necessary for the survival of methanogens,
they also affect their numbers or other microbiota members responsible for producing
methanogenic substrates [15–17]. To achieve a balance between food production and
greenhouse gas emissions, microbiologists and nutritional scientists are investigating the
genomes of the rumen microbiome to understand their function in terms of feed conversion
efficiency, and plant cell wall degradation. Various strategies have been developed to
mitigate enteric CH4 emissions, such as alternate electron receptors [18], ionophore [19],
enzymes [20], probiotic cultures [21], plant secondary metabolites [22]. Providing rumi-
nants with forages that are more digestible or increasing their consumption of energy-dense
feed is another effective CH4 strategy [3]. Mitigating enteric CH4 can also be achieved by
improving pasture quality [1] and managing grazing [23], using antibiotics [24], vaccina-
tions [25], or defaunation [26]. In any cases, it should be noted that developing strategies to
reduce ruminant-derived CH4 and alter microbiomes associated with ruminants will be
one of the most significant challenges of the century and deserve a great deal of attention.

Despite the abundance of genetic improvement and nutrigenomic studies on CH4
reduction, articles summarizing these studies are scarce. Hence, given the importance of the
topic and the fast pace of growing knowledge in the area, in this article, the authors have
tried to focus on genetic improvement and nutrigenomic management-based approaches
to reduce enteric CH4 emissions. In the current study, genetic strategies that can affect CH4
production were classified into two major sections: 1–Manipulating ruminants via genetic
selection and 2–Manipulation of the rumen microbiome.

2. Manipulating Ruminants via Genetic Selection

One of the methods, which can be classified in the manipulating the animal section,
is genetically selecting ruminants to produce less CH4. Genetic selection is an attractive
solution, due to its cumulative and permanent nature; however, since selection is carried
out over generations, it requires additive genetic variation and time to take effect [27].
Furthermore, genetic selection involves recording the CH4 of a large number of animals,
which is costly; therefore, to achieve a more accurate genetic evaluation, it is essential to
use phenotypes that are precise and consistent [28].

In ruminants, approximately 98% of the CH4 released is emitted directly from the
rumen, absorbed from the rumen and hindgut into the blood, and exhaled from the lungs,
while the remaining 2% is expelled as flatulence [27] and the rate of CH4 emission varies
with day [29], physiological state (growing, lactating and non-lactating) [30], and during
lactation (early, mid, peak and late) [31], as well as between lactation periods [27]. In
order to understand the implications of selection based on CH4 emissions recorded at a
particular point in time and to optimize selection strategies, it is essential to determine the
relationship between CH4 emissions recorded at various points during an animal’s life and
its phenotypic and genetic characteristics [27].

Identifying genetic correlations between one trait and other traits plays an important
role in evaluating the effectiveness of the current breeding strategy. In order to reduce CH4
emissions, we might select high-yielding animals for two main reasons. The first reason is
that they are more productive, convert feed more efficiently, and require less maintenance.
The second reason is that fewer animals with better productivity will require fewer animals
to achieve a target production level [1]. The advantage of selecting high-yielding animals is
that it allows cumulative and permanent changes; however, it depends on additive genetic
variation and time to be effective since selection takes generations [27].
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A repeatable and highly correlated method should be used with the existing traits in
the selection index. Many researchers have speculated that a novel method of measuring
the concentrations of CH4 released by dairy cows during milking may provide valuable
information regarding the daily emissions of individual dairy cows [32,33]. Moreover,
the measurement of enteric CH4 emissions in dairy cows is more straightforward than
in cattle from another production system [33]. Typically, dairy cows are milked 3 times
daily by standard milking parlors and 6 times daily by automatic milking systems [32].
Consequently, individual enteric CH4 emissions can be monitored on an ongoing basis
without the need for invasive techniques [32]. Thus, a number of researchers recommend
the integration of measuring systems with automatic milking systems to be able to provide
accurate, repeatable information on the amount of CH4 emitted by dairy cows [32,34]. A
number of techniques and devices have been used for this purpose, including respiration
chambers [35], portable accumulation chambers [36], hexafluoride tracer methods [23], laser
CH4 detectors [37], micrometeorological methods [38], and more recently, measurements of
milk in the mid-infrared range [39]. A detailed representation of the methane production
and methane yield results obtained using different methods is given in Table 1.

Table 1. Comparison of techniques used to measure methane emissions from ruminants.

Methods Animal Breed Feed Intake MeP MeY References

RC

Heifers Hereford × Friesian ad libitum (10.9–12.2 kg DM
per day) 265 24.5 [40]

Dairy cows German Holstein (early
lactation)

ad libitum TMR (grass silage,
corn silage, barley straw, hay,
concentrate, corn meal, canola

seed meal, soybean meal,
wheat, soybean oil)

346.4 22.2 [31]

Beef steers
Brahman (Bos indicus) and
Belmont Red (Bos taurus x

African Sanga)

Rhodes grass pasture (Chloris
gayana) grazed 114.3 30.1 [38]

Lambs
Coopworth, Romney,

Perendale, Texel, and compos-
ite breeds

ad libitum pasture allowance 24 16 [36]

PAC Lambs
Coopworth, Romney,

Perendale, Texel, and compos-
ite breeds

ad libitum pasture allowance 7.5 - [36]

SF6

Heifers Hereford × Friesian ad libitum (10.9–12.2 kg DM
per day) 272 22.4 [40]

Cows Angus
fed with 88% DM, 14% CP,

67% DM digestibility, and ME
content of 9 MJ/kg DM

132.6 21.9 [41]

Cows Australian Holstein
fed a diet based on alfalfa

supplemented with around 6
kg of crushed wheat per day

110.5 17.5 [41]

MHC
Heifers Hereford × Friesian ad libitum (10.9–12.2 kg DM

per day) 323 26.8 [40]

Dairy cows German Holstein (early
lactation)

ad libitum TMR (grass silage,
corn silage, barley straw, hay,
concentrate, corn meal, canola

seed meal, soybean meal,
wheat, soybeen oil)

338.2 20.1 [31]

MM Beef steers
Brahman (Bos indicus) and
Belmont Red (Bos taurus x

African Sanga)

Rhodes grass pasture (Chloris
gayana) grazed 136.1 29.7 [38]

MIR Dairy cows Spanish Holstein - 182.5 38.0 [42]

MeP: Methane production (g/d); MeY: methane yield (g/kg DMI (dry matter intake)); RC: respiration chambers;
PAC: portable accumulation chambers; SF6: hexafluoride tracer methods; MHC: mobile head-chamber (also
known as GreenFeed); MM: micrometeorological methods; MIR: mid-infrared range method; TMR: total mixed
ration; DM: dry matter; CP: crude protein; ME: metabolizable energy.
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An accurate and preferably inexpensive phenotype is essential for making genetic
evaluations relevant to the traits of interest. To genetically reduce GHG emissions, methane
production (MeP, g/d), methane intensity (MI, g/kg at weight at test day (WT, kg)), methane
yield (MeY, g/kg dry matter intake (DMI, kg/d)), and residual methane production (RMeP,
g/d) are the most preferred phenotypes [28]. However, it might be challenging to properly
incorporate MI, MeY, and RMeP into the selection index and explain to breeders why these
phenotypes are the least frequently used. Therefore, the most correct way might be to
use MeP in conjunction with its correlation structure with the milk yield, milk contents,
live weight, and feed intake in the selection index [28]. Meanwhile, it should be noted
that various factors may affect the production of CH4 in individual cows, including their
feed intake, dry matter content, feed composition, as well as fermentation rate in the
rumen [43,44].

In contrast to MeP, several researchers have pointed out that RMeP is adjusted for traits
that influence CH4 outputs [28,45]. RMeP is computed as the difference between actual and
predicted CH4 outputs based on a subset of measured phenotypes [41]. As a statistical tool,
RMeP offers advantages because its relationship with phenotypes used in its calculation
is generally uncorrelated and it accurately predicts selection response [45]. Furthermore,
Richardson et al. [45] reported that genetic interactions may still exist even after correcting
RMeP traits for influential traits. A significant negative genetic correlation, for example,
was found between the dry matter intake (DMI)-MeY (−0.60) and the energy-corrected
milk (ECM)-MI (−0.73). A detailed comparison of genetic and phenotypic correlations
between methane emission traits in ruminants is also provided in Table 2.

Table 2. Comparision of genetic and phenotypic correlations between methane emission traits
in ruminants.

Methods Animal Breed GC PC References

RC Lambs
Coopworth, Romney,
Perendale, Texel, and

composite breeds

BW-MeP: 0.83
BW-MeY: 0.02

BW-MeP: 0.61
BW-MeY: 0.003 [36]

RC Cattle Angus - MeP-DMI: 0.65,
MeY-DMI: −0.02 [35]

RC Dairy cows Holstein and Jersey 1
MeP-DMI: 0.70,
BW-MeP:0.54,

ECM-MeP:0.66
- [46]

RC Dairy cows Holstein and Jersey 2
MeP-DMI: 0.49,
BW-MeP:0.24,

ECM-MeP:0.52
- [46]

PAC Lambs
Coopworth, Romney,
Perendale, Texel, and

composite breeds
BW-MeP: 0.59 BW-MeP: 0.31 [36]

MIR Dairy cows Spanish Holstein

MeP-RT: −0.43,
MeP-MY: 0.21,
MeP-PY: 0.31,
MeP-FY: 0.29

MeP-MY: 0.05,
MeP-PY: −0.03,

MeP-FY: 0.00
[4,42]

SF6 Cows Holstein and Angus

MeP: DMI: 0.83,
MeP-BW: 0.80,
MeY-DMI: 0.08,
MeY-BW: 0.05

MeP: DMI: 0.70,
MeP-BW: 0.67,

MeY-DMI: −0.00,
MeY-BW: 0.04

[41]

SF6 Dairy cows - MeP-DMI: 0.42,
MEY-DMI: −0.60

MeP-DMI: 0.49,
MEY-DMI: −0.27 [45]

Calculation Heifers Holstein-Friesian -
MeP-FPCM: 0.26,

MeP-DMI:0.99,
MeP-RFI: 0.72

[9]

1: based on individual-level correlations; 2: based on phenotypic level correlations; GC: genotypic correlation;
PC: Phenotypic correlation; RC: respiration chambers; PAC: portable accumulation chambers; SF6: hexafluoride
tracer methods; MIR: mid-infrared range method; MeP: Methane production (g/d); MeY: methane yield (g/kg
DMI (dry matter intake)); RT: rumination time (min/d); MY: milk yield (kg/d); PY: protein yield (kg/d); FY: fat
yield (kg/d); FPCM: fat- and protein-corrected milk production (kg/d); RFI: residual feed intake (MJ/d).
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A decrease in MeY has been observed with increasing DMI, even with small in-
creases [36], while an increase in CH4/CO2 ratio was observed with increasing DMI [40].
Furthermore, Brask et al. [47] found that lactating dairy cows’ CH4/CO2 ratio is higher at
night than during the day, while it decreases with increasing time off pasture in sheep [48].
According to Robinson et al. [48], sheep’s CH4 emissions declined dramatically with in-
creasing time away from pasture, while their CO2 emissions declined only slightly.

Based on methane production rates, Kitelman et al. [49] identified three distinct ru-
minotypes in sheep: ruminotype Q (low-CH4 production; higher abundances of propionate-
producing e.g., Quinella ovalis), ruminotype S (low-CH4 production; higher abundances of
lactate- and succinate-producing bacteria, e.g., Fibrobacter spp., Kandleria vitulina, Olsenella
spp., Prevotella bryantii, and Sharpea azabuensis), or ruminotype H (high-CH4 produc-
tion; higher abundances of Ruminococcaceae, Lachnospiraceae, Catabacteriaceae, Coprococcus,
Clostridiales, Prevotella, Bacteroidales, and Alphaproteobacteria). Previous research also indi-
cated that sheep selected for lower enteric CH4 emissions have smaller rumens [50], a faster
outflow of rumen liquor, and more VFA absorption gene expression in the rumen wall [51],
which could lead to a reduction of ruminal VFA concentration. The muscle genes were
identified as the best candidates as causal genes affecting CH4 yield by [52]. In their study
of the correlation between genetic parameters and CH4 production, Jonker et al. [36] found
that selectability for reduced CH4 production can also lead to the selection of animals with
a lower CH4 yield due to dry matter intake [53] or animal genetics. It was found that
CH4/DMI did not correlate clearly with fecal matter output [54]. According to Renand
et al. [54], fecal matter output and retention have a weak correlation, while fecal output has
a moderate correlation with CH4/DMI. Moreover, CH4 production is estimated to have a
low genetic correlation with remaining traits [5].

Using genetic selection as a tool can reduce CH4 emissions and improve ruminant
energy efficiency simultaneously without negatively affecting their important economic
traits [45]. Breeding objectives for ruminants should include reducing CH4 emissions while
preserving economic traits that are important to sustainability.

3. Manipulation of the Rumen Microbiome
3.1. Rumen Microbiome

Recently, efforts have been directed toward characterizing the rumen microbiome
and its function in order to implement nutritional and selective breeding strategies to
alter it. Both the host and the ruminal microbiota affect livestock traits such as efficiency
and sustainability, including CH4 production, and are partly controlled by the host geno-
type [55]. The rumen microbiota, however, is highly dependent on the ruminant species,
diet, and geographic location, leading to different rumen microbiome profiles and dietary
nutrient utilization in ruminants from tropical and temperate environments [56]. Although
these factors are present, microbial communities are generally stable due to ecological
redundancy and resilience to external and internal perturbations [7].

In newborn ruminants, gastrointestinal tracts (GITs) are considered sterile upon birth,
but methanogens and fibrolytic bacteria appear within 20 min of birth [57]. A day af-
ter parturition, cellulolytic bacteria, such as Ruminococcus flavefaciens, Ruminococcus albus,
Prevotella species are predominant in the rumen microbiota [58], whereas xylanase and
amylase (carbohydrate degrading enzymes) activity, as well as VFAs production, are evi-
dent within 2 days [59]. Furthermore, anaerobic fungi and methanogens begin to colonize
the neonatal rumen around 8 to 10 days postpartum, but protozoa do not appear until
15 days [24]. Among the microbiomes found in adult’s GITs of ruminants, anaero-
bic bacteria are the most abundant (1010−11/mL), followed by archaea (methanogens;
108−9/mL), protozoa (106/mL), and fungi (106/mL) that digest feed together [60]. Com-
pared to mature animals, pre-ruminant methanogenic archaea produce more CH4 from a
wide range of substrates, possibly because the Methanobacteriaceae dominate the rumen
around 3 months of age [61]. In later stages of life, changing the rumen’s microbial
ecology is more difficult [62]. Thus, several studies have shown that a favorable mi-
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crobiome can be implanted into the rumen microbiome early in life through dietary or
management intervention [24,63].

Several studies have indicated that the seven most abundant bacterial groups (Pre-
votella, Butyrivibrio, and Ruminococcus, Lachnospiraceae (unclassified), Ruminococcaceae, Bac-
teroidales, and Clostridiales) are found in many species of ruminants, accounting for 67.1% of
all sequenced data, and are defined as “core bacterial microbiomes” at the genus or higher
level [64,65]. Except for Butyrivibrio, none of these groups are adequately represented by
characterized cultures, nor are their functions understood [66]. The largest clade of archaea,
Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium, represents 74% of all
archaea. On the other hand, an archaeal community in the rumen was composed of five
dominant methanogen groups, as well as one Methanosphaera spp. and two Methanomassili-
icoccaceae-associated groups, accounting for 89.2%. This implies that rumen archaea have
less diversity than rumen bacteria [65,67].

3.2. Manipulation of the Rumen Microbiome via Nutrigenomic Approaches

Despite the lack of clarity regarding the relationship between fermentative organisms
and methanogens, there are a number of functional groups of microbes that may have a
significant impact on CH4 production in the rumen, either by producing substrates that
promote methanogen survival or by altering the number of methanogens or other microbes
that produce methanogenic substrates [15]. Therefore, changing the dynamics of rumen
fermentation by modifying other microbial groups may be an effective method for reducing
CH4 production.

Rumen hydrogen production is directly influenced by the pattern of fermentation of
volatile fatty acids (VFAs), in other words ruminal VFA profile is an indicator of microbial
activity [68]. As a result of glycolysis and final synthesis of VFA in the rumen, hydrogen
is produced. For instance, 1 mol of acetate yields 2 mol of hydrogen, whereas 1 mol
of propionate yields only 1 mol of hydrogen [69]. It is possible, therefore, to reduce
CH4 emissions via interventions affecting the rumen microbiome’s acetate/propionate
ratio [70], increasing bacteria species that compete for hydrogen (such as sulfate reducers
and acetogens) [71], or inhibiting protozoa, which can cause hydrogen production to be
reduced [72].

As an ionophore (which have antibiotic capacity), monensin is used to prevent
ketosis in dairy cows and to increase production [73]. It alters the rumen microbiota,
leading to increased hepatic gluconeogenesis and, therefore, an increase in the animal’s
energy supply when added to the diet, which results in an increase in propionate pro-
duction [74]. In order to determine the differential effects of monensin and a mixture
of essential oils on rumen microbiota composition in transition dairy cows, an exper-
iment was conducted. Monensin decreased the relative abundance of 23 OTUs from
the phyla Bacteroidetes and Firmicutes, whereas it increased the abundance of 10 OTUs
from the phyla Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes [72]. As a result
of monensin supplementation, the Butyrivibrio genus (which produces butyrate and
acetate) was inhibited and propionate production was increased, whereas Prevotella and
Ruminococcaceae (succinate and propionate producers, respectively) increased in abun-
dance due to the rapid conversion of succinate to propionate by succinate-decarboxylating
bacteria in the rumen [72]. It has previously been demonstrated that Prevotella species
compete with methanogens for hydrogen use, rerouting it to propionic acid production
and reducing methanogen availability [75].

A reserve polysaccharide in plants, inulin influences the proliferation of probiotics,
such as Lactobacillus and Bifidobacteria, and inhibits bacterial pathogens, such as Clostridium
pneumonia, Enterococcus and mold [76]. The effects of inulin on goat rumen fermentation and
microbial growth were investigated by Zhao et al. [77] using rumen simulation technology.
It was determined that inulin treatment decreased acetate concentrations, acetate ratios,
and CH4 production, while it increased butyrate concentrations. Furthermore, inulin inhib-
ited Fibrobacter succinogenes and Ruminococcus flavefaciens growth, indicating that it might
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suppress the growth of rumen bacteria that decompose cellulose. In a study of finishing
Simmental × Luxi crossbred beef steers fed a high or low-concentrate diet supplemented
with 2% inulin (wt/wt), Tian et al. [78] demonstrated similar results regarding rumen fer-
mentation and bacterial microbiota. The addition of inulin to a finishing beef diet resulted
in a shift in the fermentation of acetate to propionate and butyrate, resulting in an increase
in the α-diversity indexes of rumen bacteria, particularly Bacteroides and Firmicutes, which
were significantly more abundant [78]. Furthermore previous reports has also demon-
strated that cellulolytic Ruminococcus species (Ruminococcus flavefaciens and Ruminococcus
albus)—along with Butyrivibrio fibrisolvens—were unable to grow in medium containing
long-chain polyunsaturated fatty acids (such as docosahexaenoic acid or eicosapentaenoic
acid) [79,80]. Additionally, Burdick et al. [81] found that Methanobrevibacter gottschalkii rela-
tive abundance increased while Methanosphaera spp. ISO3-F5 relative abundance decreased,
but the ratio Methanobrevibacter gottschalkii: Methanobrevibacter ruminantium, associated with
lower CH4 emissions [82], did not change in lactating Holstein cows supplemented with
medium-chain fatty acids.

During the course of researching 12 Nordic macroalgae species for anti-methanogenic
properties, Pandey et al. [83] found that polyphenol-rich brown species, such as Fucus vesiculosus
and Ascophyllum nodosum, significantly reduced feed degradability due to suppressed cellu-
lolytic bacteria (Ruminococcus spp., Lacnospiraceae spp., Rikenellaceae RC9). These two macroal-
gae have been shown to reduce CH4 production by 62.6 and 48.2%, respectively, and to
reduce methanogenic archaea in rumens (such as Methanobrevibacter spp.). On the other
hand, the reduction was not directly correlated with polyphenol concentrations overall.

Aside from converting carbohydrates into succinate and acetate, the Succinivibrionaceae
family (Succinivibrio, Ruminobacter, Anaerobiospirillum, and Succinimonas) also produces
hydrogen and acetate, which reduces CH4 emissions [84]. Additionally, previous research
suggests that feed efficiency of beef cattle [85] and milk protein of dairy cows [86] are highly
related to the Succinivibrio spp. population in the rumen due to its function of producing
succinate, the precursor of propionate.

Dairy cow diets are often supplemented with lipids to increase energy content;
however, such lipid sources can change the composition of rumen bacteria and may affect
biohydrogenation processes. For instance, Vargas-Bello-Perez et al. [87] investigated
the effects of two dietary lipids on bacterial populations and fatty acid profiles in non-
lactating Holstein cows’ rumen digesta by utilizing soybean oil (an unsaturated oil
source) and hydrogenated palm oil (a saturated oil source) and they found that dietary
treatments had no effect on Fibrobacter succinogenes, Butyrivibrio proteoclasticus, and
Anaerovibrio lipolytica loads. The same authors noted that with hydrogenated palm oil
supplementation, the load of Prevotella bryantii significantly increased compared with
control. In order to develop effective CH4 mitigation strategies, Gruninger et al. [88]
added 3-nitrooxypropanol (3-NOP), canola oil, and their combination to a high-forage
diet (90% barley silage) of beef cattle. The authors noted that 3-NOP decreased the
abundance of Methanobrevibacter and increased the abundance of Bacteroidetes, whereas
canola oil significantly reduced the abundance of protozoa and fiber-degrading microbes
in rumens, but did not significantly alter the abundance of rumen methanogens [88].
On the other hand, soybean or linseed oil (4% of DM) appeared to be more effective at
decreasing Butyrivibrio fibrisolvens, Ruminococcus albus, and Fibrobacter succinogenes by
18, 42, and 67%, respectively [89]. An increase in the relative abundance of Prevotella
and Dialister bacteria was also observed following the addition of oregano essential oil,
which indicates that it has the potential to manipulate ruminal fermentation and reduce
CH4 emissions [90].
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Research has also shown that fiber digestion and CH4 production are related, particu-
larly in the rumen where fibrolytic bacteria are involved in H2 production (e.g., Ruminococ-
cus, Eubacterium) and consumption (e.g., Bacteroidetes) [91]. Acetic acid production in the
rumen is also closely linked with the production of H2, which increases the substrate avail-
ability for CH4 production [92]. A reduction in fiber content in diet is known to decrease
Bacteroides abundance, as Pitta et al. [93] demonstrated. In addition, Mu et al. [94] reported
that reducing fibrous substrate could be one explanation for Fibrobacter spp. (associated
with cellulose degradation) and Alistipes spp. (associated with oligosaccharide degrada-
tion and butyric acid production [95]) declines in lactating Holstein cows fed high-grain
diets. It is possible that Fibrobacter succinogenes’s cellulolytic activity stimulated Prevotella
ruminicola’s production of propionic acid, since these bacteria consume only released sug-
ars during cellulose digestion [95,96]. The rumen acetate proportion and the growth of
Ruminococcus albus increased when forage concentrations were high in mixed diets [97].
Calves supplemented with Prevotella and cellulolytic bacteria (Ruminococcus flavefaciens
and Ruminococcus albus) also showed similar results [98]. Furthermore, Prevotella may
dominate the rumen in animals fed high-fiber diets, whereas Bacteroidetes may occupy a
greater proportion in hay-supplemented animals, leading to increased rumen size [99,100].

4. Future Perspectives

In line with ruminal methane production reduction efforts, numerous methane mitiga-
tion strategies have been investigated, reported, and suggested by scientists to the livestock
industry. Yet, the majority of studies have solely reported the impact of proposed strategies
on the final product (methane production); the process of methane reduction has often been
ambiguous. Thus, clarifying the process of methane reduction in the rumen is essential.
Despite the positive effects on reducing enteric CH4 emissions, the genetic selection method
leads to decreased rumen volume and increased passage rate. Therefore, it may result
in decreased ruminal fermentation and production of VFA, and finally will reduce the
efficiency of microbial fermentation. Manipulation of the rumen microbiome seems to be a
better method, but it requires further studies to investigate its different aspects.
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