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Abstract: The search for alternatives for converting methane into value-added products has been of
great interest to scientific, technological, and industrial society. An alternative to this could be the use
of copper-doped palladium catalysts with different proportions supported on metal oxides, such as
Sb2O5.SnO2 (ATO) catalysts. These combinations were employed to convert the methane-to-methanol
in mild condition using a fuel cell polymer electrolyte reactor. The catalysts prepared presents Pd,
CuO, and Sb2O5.SnO2 phases with a mean particle size of about 9 nm. In activity experiments,
the Pd80Cu20/ATO indicated maximum power density and maximum rate reaction for methanol
production when compared to other PdCu/ATO materials. The use of ATO as a support favored
the production of methanol from methane, while PdCu with high copper content demonstrated the
production of more oxidized compounds, such as carbonate and formate.

Keywords: methane to products; polymer electrolyte reactor; fuel cell reactor

1. Introduction

Within the growing concern about greenhouse gas emissions, methane has an ambigu-
ous role; if released into the atmosphere it is a more dangerous greenhouse gas than CO2,
but it can be used as an alternative to petroleum because it burns more efficiently than
petroleum derivatives, although it emits CO2 [1–4].

However, transforming the most stable of hydrocarbons due to their difficulty in
polarizability and high binding energy, into other chemical species, such as methanol,
formaldehyde, formic acid, and ethane, among others, all of them having industrial ap-
plications, can be an interesting method [5–7]. The primary route currently adopted is
by thermal processes such as Fischer–Tropsch, which has problems with high power con-
sumption, energy dissipation to the environment, and low yield [8–12]. In recent times,
other technologies for conversion have been studied, such as photochemical [13–16] and
electrochemical pathways, which can lead to partial oxidation of this gas in mild conditions.

The electrochemical route can be a good technological option for being able to select the
desired product by the amount of energy to which the system is submitted [17], which can
be performed in a faradaic manner and depends on the direct injection of energy to break
the C-H bonds of methane [18]. Conversely, the energy required is higher than the process
occurring indirectly, which depends on the activation of water to obtain reactive oxygenated
species such as the •OH, which reacts with the hydrocarbon [19], as in Equations (1)–(4):

CH4(gas) + M(ads) →M-CH4(ads) (1)

H2O(liq) + M→MOH + H+ (2)

MOH→M + OH- or •OH (3)

•OH + CH4(gas) → CH3OH (4)
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The electrochemical method still allows the co-generation of electrical energy along
with the conversion of methane into methanol; if the process is performed in fuel cell
reactors [19], these systems present the advantage of operating at mild conditions and
in continuous flux. De Souza et al. [20] demonstrated that the catalyst that obtained the
highest conversion of methane to methanol was based on Pd and Cu with rate reaction
for methanol production of ~13 mol L−1 h−1 at room temperature, with cogeneration of
potassium formate and electricity. Godoi [21] explained that the effect was due to the
affinity of methane for PdO and copper oxides activating water for the generation of
reactive oxygenated species, such as the •OH radical.

The association of Pd with ATO favors the formation of reactive oxygen species,
according to Sun and coauthors [20], due to the synergistic effect of the adsorption of
hydrogen from water at Pd sites. With the ease of tin and antimony oxides in breaking the
H-OH bond, ATO also has good electrical conduction and corrosion resistance [21]. These
characteristics make SnO2.Sb2O5 is a great option for catalyst support for this reaction,
Furthermore, it is added that carbon, usually used as catalyst support in this type of reactor,
suffers from wear due to the same species generated by the activation of water, thus having
its useful life shortened [22,23].

In this context, the application of the ATO becomes even more advantageous due
to its synergic effect on the catalytic activity. In this work, the conversion of methane to
methanol on metallic compound of the Pd and Cu catalysts in different proportions (Pd:Cu)
supported on ATO was studied in a fuel cell polymer electrolyte reactor. The methanol
formed was quantified by the HPLC (high-pressure liquid chromatograph) technique, and
consequently, the reaction rate can be determined to portray the most active catalyst for
converting methane to methanol in the fuel cell reactor.

2. Results

X-ray diffraction patterns of palladium and copper-based materials supported on ATO
are presented in Figure 1. In this figure, it is possible to clearly observe the peaks in 2θ at
~26◦, 33◦, 38◦, 51◦, 54◦, 62◦ and 64◦, which corresponds to the support of the electrocatalysts
Sn2O.Sb2O5 [24]. The Scherer equation used to calculate the average crystallite size and
these results indicated that larger crystals have narrower and more intense peaks, exactly
the behavior observed for the crystallographic faces of the ATO that is predominant in
all diffractograms.
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Figure 1. (a) X ray diffractogram pattern of the Pd and Cu catalysts supported on ATO; (b) catalysts 
doped with Cu X ray diffractogram pattern with the intensities normalized by the logarithmic 
function. 

It is possible to observe well-widened Pd-related peaks at 2 θ ~ 40°, 46°, 67°, and 82° 
associated with the crystalline planes (111), (200), (220), (311), and (222), according to 
(JCPDS# 89-4897). It is noted that these peaks practically disappear in the Pd20Cu80/ATO 
composition. However, the observation of copper-related peaks cannot be done due to the 
low crystallinity of the oxides of this metal. To observe the peaks related to copper, in 
Figure 1b, the logarithms of the intensities of the same diffractograms are presented, 
where it is possible to observe the peaks at 2 θ ~ 36°, 38°, and 53°, referring to CuO (JCPDS# 
45-0937).  

The morphology of the nanoparticles was observed by transmission electrons 
microscopy, and Figure 2 portrays the micrographs and their respective particle size 
histograms. The average particle size measured was 9.81, 9.32, 9.27, 8.36, and 10.25 nm, 
respectively, for Pd/ATO, Pd80Cu20/ATO Pd50Cu50/ATO, Pd20Cu80/ATO, and Cu/ATO, 
which are higher than those reported for PdCu materials obtained by the same method 
supported on carbon [25], indicating that the support may have favored agglomeration 
and, in turn, the particle size. 

Figure 1. (a) X ray diffractogram pattern of the Pd and Cu catalysts supported on ATO; (b) catalysts
doped with Cu X ray diffractogram pattern with the intensities normalized by the logarithmic function.
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It is possible to observe well-widened Pd-related peaks at 2 θ ~ 40◦, 46◦, 67◦, and 82◦

associated with the crystalline planes (111), (200), (220), (311), and (222), according to (JCPDS#
89-4897). It is noted that these peaks practically disappear in the Pd20Cu80/ATO composition.
However, the observation of copper-related peaks cannot be done due to the low crystallinity
of the oxides of this metal. To observe the peaks related to copper, in Figure 1b, the logarithms
of the intensities of the same diffractograms are presented, where it is possible to observe the
peaks at 2 θ ~ 36◦, 38◦, and 53◦, referring to CuO (JCPDS# 45-0937).

The morphology of the nanoparticles was observed by transmission electrons mi-
croscopy, and Figure 2 portrays the micrographs and their respective particle size his-
tograms. The average particle size measured was 9.81, 9.32, 9.27, 8.36, and 10.25 nm,
respectively, for Pd/ATO, Pd80Cu20/ATO Pd50Cu50/ATO, Pd20Cu80/ATO, and Cu/ATO,
which are higher than those reported for PdCu materials obtained by the same method
supported on carbon [25], indicating that the support may have favored agglomeration
and, in turn, the particle size.
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Figure 2. TEM micrograph and histograms of the particle size distribution to Pd and Cu catalysts
supported on ATO.

It is observable that the catalytic nanoparticles are agglomerated in some regions
of the oxide-based support, and this type of morphology was also observed for other
nanoparticles supported on metallic oxides, such as ATO and TiO2 [21,26,27]. Additionally,
the nanoparticles composed of Pd and Cu had a high degree of crystallinity. It is possible
to observe planes with distances of 0.438, 0.312–0.340, and 0.220–0.250 nm, characteristic of
nanoparticles of metallic alloys supported on ATO, similar to that reported by Qu et al. [21].

Figure 3a portrays the cyclic voltammograms of the Pd:Cu catalysts, and it is possible
to see the characteristic adsorption peaks of hydrogen desorption on palladium in the
region from −0.85 to −0.6 V for Pd/ATO [25]; this process loses much definition with the
addition of copper in the material, likely through a synergistic process of the oxides present
that inhibit the presence of hydrogen on the palladium surface or covered the palladium
nanoparticles [21]. Also, the addition of copper in the catalyst composition caused anodic
peaks at −0.5 and −0.2 V, linked to the oxidation process of Cu2O/Cu(OH)2 [28,29] and
Cu/Cu2O [28], respectively.

To obtain more details of the processes that occur in the interaction of the catalyst with
water in 1.0 mol L−1 NaOH aqueous solution, an important step for the partial oxidation
of methane, in situ Raman-assisted electrochemical measurements, were performed as
portrayed in Figure 3b–f. Where it is possible to observe the bands at 794, 974, and
1166 cm−1 corresponding to ν(C–S), νs(C–O–C), and ν (CF2) from Nafion [30], the bands at
489 related to the Eg of SnO2 and the convolved band with centers at 785 and ~831 cm−1,
related to the ATO [31,32]; all these bands present a behavior constantly.

The increase in the band centered at 639 cm−1 corresponds to the bending of the
PdO-H bond [33], indicating the oxidation of Pd as a function of potential, in the Pd/ATO
catalyst. However, in the other materials this band was much less intense, corroborating
what was observed in cyclic voltammetry, where the Pd profile is suppressed, likely due to
the noble metal being covered by the less noble metal oxides.
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In materials containing copper it was possible to observe a band at ~343 cm−1 cor-
responding to CuO [34], without the appearance of bands related to Cu2O, which is in
agreement with the phase observed in the XRD, Figure 1b. This band becomes more evident
in materials with higher copper content. The increase in the copper content in the catalyst
also shifts the potential for the CuO band to provide more negative potentials.
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To obtain more details of the processes that occur in the interaction of the catalyst 
with water in 1.0 mol L−1 NaOH aqueous solution, an important step for the partial 
oxidation of methane, in situ Raman-assisted electrochemical measurements, were 
performed as portrayed in Figure 3b–f. Where it is possible to observe the bands at 794, 
974, and 1166 cm−1 corresponding to ν(C–S), νs(C–O–C), and ν (CF2) from Nafion [30], the 
bands at 489 related to the Eg of SnO2 and the convolved band with centers at 785 and ~831 
cm−1, related to the ATO [31,32]; all these bands present a behavior constantly. 

The increase in the band centered at 639 cm−1 corresponds to the bending of the PdO-
H bond [33], indicating the oxidation of Pd as a function of potential, in the Pd/ATO 
catalyst. However, in the other materials this band was much less intense, corroborating 
what was observed in cyclic voltammetry, where the Pd profile is suppressed, likely due 
to the noble metal being covered by the less noble metal oxides. 

In materials containing copper it was possible to observe a band at ~343 cm−1 
corresponding to CuO [34], without the appearance of bands related to Cu2O, which is in 
agreement with the phase observed in the XRD, Figure 1b. This band becomes more 
evident in materials with higher copper content. The increase in the copper content in the 
catalyst also shifts the potential for the CuO band to provide more negative potentials. 

The methane to methanol conversion reaction was performed in a polymeric 
electrolyte reactor—type fuel cell with co-generation of energy (Figure 4), and it was 
observed that the all materials present an open circuit value (OCV) very close to 0.45 V, 
indicating that ATO support demonstrates a predominant influence in this aspect. The 
OCV measured was about 50 mV higher than reported for similar reactors in the literature 
[35]. 

Figure 3. (a) Cyclic voltammetry curves of the PdCu electrodes in different proportions (scan rate
v = 10 mV s−1) in 1 mol L−1 NaOH aqueous solution; (b–f) in-situ Raman spectra collected in same
conditions collected at 100 mV.

The methane to methanol conversion reaction was performed in a polymeric electrolyte
reactor—type fuel cell with co-generation of energy (Figure 4), and it was observed that
the all materials present an open circuit value (OCV) very close to 0.45 V, indicating that
ATO support demonstrates a predominant influence in this aspect. The OCV measured
was about 50 mV higher than reported for similar reactors in the literature [35].
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Figure 4. The polarization curves and the power density of a PdCu/ATO catalysts anode (5 mg cm−2

catalysts loading) and Pt/C Basf or the cathode in all experiments (1.0 mg Pt cm−2 catalyst loading
with 20 wt% Pt loading on carbon), Nafion 117 membrane KOH treatment; NaOH 1.0 mol L−1 + CH4

50 mL min−1, and O2 flux of 200 mL min−1.



Methane 2022, 1 224

For Pd80Cu20/ATO (0.07 mW cm−2) the maximum power density is about 26 % higher
than Pd/ATO (0.05 mW cm−2), the second material more active. For Pd50Cu50/ATO,
Pd20Cu80/ATO, and Cu/ATO, the maximum power density obtained was, respectively
0.04, 0.038, and 0.04 mW cm−2. Aliquots were collected from the reactor effluent every
100 mV for 5 min. The products were identified using infrared spectroscopy (Figure 5),
where it was possible to observe bands referring to methanol at 1075 and 1032 cm−1 [36,37],
and they were visible when using the Pd/ATO, Pd80Cu20/ATO, and Cu/ATO materials,
and for Cu/ATO it has a decreasing profile along with the potential.
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For the materials Pd50Cu50/ATO and Pd20Cu80/ATO, it was possible to see the band
referring to carbonate ions at 1375 cm−1 [38,39], indicating that the association of Pd with
high amounts of copper can promote more oxidized species. This feature was also marked
by the wide band centered at 1140 cm−1, indicating large proportions of sodium formate,
confirmed by the narrow band at 1345 cm−1 [40] which was also well distinguishable in
other materials.

The methanol produced was quantified by liquid chromatography and reported as a
rate reaction according to Equation (5) and the result is provided in Figure 6, where it is
observable that the Pd80Cu20/ATO composition is the most active for the conversion of
methane into methanol at all potentials.

r =
Methanolamount

Volume × Time
(5)
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The use of ATO as a support favored the production of methanol from methane
in Cu/ATO, which is practically not observed for Cu/C by Godoi et al. [25]. However,
mixtures of Pd and Cu with high copper content seem to direct the production of more
oxidized compounds, such as carbonate and formate.

3. Materials and Methods

The ATO-supported Pd, Cu-based materials were prepared by the NaBH4 reduction
method. This methodology consists of a mixture of ultrapure water with isopropanol
50/50 (v/v) with appropriate amount of ATO (Sb2O5.SnO2—Aldrich St. Louis, MI, USA)
and metallic precursors of Pd(NO3)2.2H2O (Aldrich) and CuCl2.2H2O (Aldrich) to obtain a
load of 20% by mass of these metals in relation to the ATO support. In this medium, NaBH4
(Aldrich) was added in an aqueous solution with an excess of 5:1 in relation to the metals,
and stirring was maintained for 30 min, after which time the material obtained was washed
with ultrapure water and filtered [41].

The materials were characterized by X-ray diffraction, using a Rigaku X-ray diffractometer—
Miniflex II, with a Cukα radiation source of 0.15406Å. The diffractograms were obtained from 20◦

to 90◦, with a scan speed of 2◦ min−1. The morphology was observed by transmission electron
microscopy performed by a transmission electron microscope JEOL JEM-2100, operated at 200 KeV.
For the construction of the histogram and the calculation of the average size, 300 nanoparticles of
each catalyst were digitally mediated from microscopy.

The catalysts were characterized by cyclic voltammetry performed in a three-electrode
cell in a PGStat 302N Autolab potentiostat. The working electrode built on a glassy carbon
support covered with an ultra-thin porous layer, produced from a paint made with 8 mg of
catalyst, 600 µL of ultrapure water, 400 µL of isopropanol, and 15 µL of Nafion® (D-520)
mixed in ultrasound. The Ag/AgCl 3.0 mol L−1 electrode was used as a reference electrode
and a 2 cm2 Pt electrode was used as a counter-electrode. This same potentiostat and
electrodes were used in conjunction with a Raman Macroram spectrometer—Horiba, with a
785 nm laser and an electrochemical cell suitable for performing the electrochemical assays
assisted by in situ Raman spectroscopy.

The conversion of methane to methanol was performed in a polymeric electrolyte
reactor—fuel cell type, with electrodes constructed with 1.0 mg of Pd + Cu per cm2 at the
anode, a membrane of Nafion 117 treated with KOH as electrolyte and 1.0 mg of Pt/C—Basf
(20% w/w) as cathode. All electrodes were prepared by depositing the ink containing the
catalyst with 30% by mass of a solution of Nafion D-520 (Aldrich) and isopropanol applied
by brushing on a carbon cloth treated with PTFE. The reactor is based on a typical fuel cell
coil plate design made in 316 L steel, fed with a mixture of methane 100 mL min−1 and
NaOH 1 mL min−1, the ambient temperature at the anode, while the cathode is supplied
with humidified O2 in a bottle at a temperature of 85 ◦C with a flow rate of 400 mL min−1

at the cathode.
Aliquots of the reactor effluent are collected every 100 mV for 300 s from the open

circuit potential to 0V and analyzed by infrared spectroscopy performed on a Nicolett®

6700 with ATR Miracle (Pike) accessory and diamond/ZnSe crystal and a detector of
MCT, and high-performance liquid chromatography (YL9100) with UV/Vis detector with
detection made at 205 nm, with flow of 0.8 mL min−1 of 50% water and 50% acetonitrile in
an isocratic run on a C18 column (Phenomenex Luna 5 µm, 250 × 4.6 mm). The calibration
curve presents the following linear equation: peaks area = 59.916 + 238.59 [methanol], and
presenting r2 = 0.9981.

4. Conclusions

The use of ATO as a catalyst support demonstrated promise in the partial oxidation
reaction of methane to methanol, despite favoring the formation of nanoparticles larger than
those supported on carbon. The TEM images portray the well-defined planes corresponded
to the metal nanoparticles supported on the ATO surface. It is possible that the use of
SnO2.Sb2O5 as a support also inhibits the formation of Cu2O in the catalyst, a very common
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phase, and this mixture of oxides alters the properties of Pd in hydrogen adsorption.
However, this fact does not decrease the activity to produce methanol from methane, as
observed for Pd80Cu20/ATO.
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