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on a Small Scale?
Jerzy Kijowski

Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland; kijowski@cft.edu.pl

Abstract: The notion of a local inertial reference frame is thoroughly analyzed. Dynamics of a
field of such frames is derived from the variational principle. It is shown that the resulting theory
splits naturally into three sectors, one of which is purely gravitational. Field dynamics in this sector,
equivalent to Einstein’s vacuum equations, is obtained unambiguously and admits no ad hoc corrections.
The cosmological constant is an essential element of this construction and cannot be removed. It has
been shown that the second sector of this theory corresponds to electrodynamics, while the last sector
could possibly describe dark matter.
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1. Introduction

Classical, 19th century physics perfectly describes our everyday experience. However,
extrapolating its validity by eight orders of magnitude, down to the atomic scale, is not
correct, as we learned a hundred years ago, and a new paradigm (quantum physics) is
needed. Meanwhile, on the other side of the scale, we try to extrapolate the validity of
General Relativity from our planetary scale (where it works perfectly) by 20 orders of
magnitude, up to the cosmological scale, with the hope that small ad hoc improvements
(like non-linear corrections to the Hilbert Lagrangian density: LHilbert = 1

2k

√
|det g|R)

will suffice completely. However, such small tweaks are unlikely to solve the really big
problems observed on a cosmological scale. These problems are usually referred to as
the “existence of dark matter and dark energy”. However, this nice terminology means
nothing more than that “General relativity, extrapolated by 20 orders of magnitude, does
not correctly describe physical reality”.

At the dawn of Einstein’s theory, a hundred years ago, the problem of Mercury’s orbit
could also have been easily solved with a slight tweak to the existing theory, for example,
changing the behavior of the gravitational potential from 1

r to 1
r1+ϵ . However, Einstein did

not resort to such a correction but proposed a broader context in which the old Newtonian
theory was guaranteed the status of the limit of the new theory in situations where the
velocities of the interacting bodies are very small.

In this article, we present a new formulation of the General Theory of Relativity,
based on a careful analysis of what an “inertial frame” is. The analysis of the concept of
inertia was the starting point of both Newton’s and Einstein’s theories. The advantage
of our formulation over the conventional, metric formulation, proposed by Hilbert, is its
“rigidity”: there is no room here for any ad hoc corrections to vacuum Einstein equations as
far as pure gravity is concerned. Moreover, the cosmological constant is not an optional
element of the theory but its essential and necessary feature. On the other hand, the theory
of pure gravity is only one of the three intrinsic sectors of the whole theory. In Section 7,
we show that the second sector describes properly the electromagnetic field, while the last
sector could possibly describe the observed large-scale effects.
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2. Local Inertiality

When Newton came to the conclusion that the equations of motion of a body under the
force F are of second differential order (and not first, like in Aristotle’s Physica, where the
action of a force caused velocity and not acceleration of the body), he realized that even the
concept of a force vector makes no sense—unless we measure it in a privileged coordinate
system. This is why Newton’s second law is preceded by his first law (underestimated
in many textbooks), stating the existence of such privileged coordinate systems, which
Newton called “inertial”. Indeed, the first-order equation

ẏα = Fα (1)

is invariant with respect to nonlinear transformations of coordinates because both of its
sides behave like vectors (a “dot” is always used here to denote the derivative with respect
to an independent time parameter “s”, e.g., the biological proper time of an astronaut in a
spacecraft traveling between stars). However, the second-order equation

ÿα = Fα , (2)

with the same force vector Fα, makes a priori no sense, because the force can acquire an
arbitrary value F̃, when rewritten in a new coordinate system (xµ) (below, the Einstein
summation convention will always be used) as follows:

ẏα =
∂yα

∂xµ ẋµ (3)

ÿα =
∂2yα

∂xν∂xµ ẋν ẋµ +
∂yα

∂xµ ẍµ (4)

Fλ := ÿα ∂xλ

∂yα
=

∂xλ

∂yα

∂2yα

∂xν∂xµ ẋν ẋµ + ẍλ . (5)

Denoting by Γλ
µν the table of derivatives between old and new coordinates:

Γλ
µν :=

∂xλ

∂yα

∂2yα

∂xµ∂xν
= Γλ

νµ , (6)

We obtain the value of the new force F̃, acting in the new coordinate system:

ẍλ = Fλ − Γλ
µν ẋµ ẋν =: F̃λ , (7)

which differs from the original vector Fλ. If the coordinates (yα) are inertial and the force
F vanishes, that is, our spacecraft is free falling, ÿα = 0, then the coordinates (xµ) are

also inertial if and only if the second derivatives between them vanish, i.e., ∂2yα

∂xµ∂xν = 0.
However, the “inertial reference frame” cannot be identified with just one coordinate
system, because if coordinates (yα) are “inertial”, then any linear transformation of them
gives us an equally good, inertial coordinate system, defining exactly the same reference
frame. The answer of a pure mathematician would be that the “inertial frame of reference”
is an affine (linear) structure of spacetime, and only linear coordinates should be used if we
want to avoid paradoxes such as (7), i.e., if the force vector is to be uniquely determined.
However, unlike a pure mathematician, whose task is not to solve equations but to prove
the existence (or non-existence) of solutions, we physicists are obliged to solve equations,
and for this purpose, we need coordinates and not only linear ones. Therefore, we propose
the following description of the concept of an inertial frame. Let us declare two coordinate
systems (yα) and (xµ) to be equivalent, if the following second derivatives vanish:

{
(yα) ∼

(
xλ
)}

⇐⇒ ∂2yα

∂xµ∂xν
= 0 . (8)
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Equivalence relations provide a standard tool to construct new mathematical objects
from the already known ones. The crucial example being the construction of rational
numbers from the natural numbers. The rational number a “half” cannot be identified with
just one fraction 1

2 , because other fractions, like 2
4 or 3

6 , represent exactly the same “half”.
Hence a rational number has to be identified with the class of equivalent fractions. To work
properly, the relation must be (1) symmetric (if A ∼ B then also B ∼ A), (2) reflexive
(every A is equivalent with itself: A ∼ A) and (3) transitive (A ∼ B and B ∼ C imply
A ∼ C). Any set of mathematical objects equipped with such a relation splits naturally to
disjoint classes of mutually equivalent objects. It is easy to convince oneself that the relation
(8) is symmetric, reflexive and transitive, and hence, it is a genuine equivalence relation.
Consequently, the set of all spacetime coordinate systems splits into disjoint classes of
mutually equivalent systems, each of them being called “a reference frame”. However, only
one of them has been chosen by Nature as a privileged one and will be called “an inertial
frame”. Any coordinate system belonging to this privileged class will be called “an inertial
coordinate system”. This definition is obviously equivalent to the pure mathematician’s
approach on one side and to the Newton’s physical intuition on the other.

Hence, Newton’s first law can be formulated as follows: among all the spacetime
reference frames (i.e., all classes of equivalent coordinate systems), there is a privileged
one, which has been chosen by Nature. We call it the “inertial frame”. The free-falling
bodies move uniformly along a straight line (i.e., satisfy the equation ÿα = 0) only in the
inertial frame. Newton’s second law is valid only when calculated in this frame, whereas
working in a non-inertial frame, we have to take into account the “fictitious forces” Γλ

µν ẋµ ẋν

(centrifugal, Coriolis etc.), see formulaes (5)–(7).
In Newtonian physics, coordinates were supposed to be global. When Einstein was

looking for the relativistically invariant description of gravity, besides for the extremal
properties of ether (cf. [1]), the main difficulty (cf. [2]) was the notion of a reference frame1.
After many failed attempts (e.g., “the frame of reference is determined by distant stars”),
he understood that the correct description of any physical phenomenon must be local and
tried to avoid global objects. Unfortunately, the mathematical tools which properly describe
the notion of a local reference frame appeared in modern differential geometry much later
(cf. [3]). We propose here the most natural description, namely the local version of Newton’s
first law. For this purpose, we define the local version “∼m” of the equivalence relation
(8) between local coordinate systems, at each spacetime point m ∈ M separately, where
by M, we denote the spacetime. Two local coordinate systems (yα) and (xµ), defined in a
neighborhood of m ∈ M, are declared to be “equivalent at m” if and only if their second
derivatives vanish at this point:

{
(yα) ∼m

(
xλ
)}

⇐⇒ ∂2yα

∂xµ∂xν
(m) = 0 . (9)

Even if xµ and yα appear here in a non-symmetric way, it may be easily proven that,
indeed, this is a genuine equivalence relation (symmetric, reflexive and transitive). The local
inertial frame at m ∈ M can be identified with an entire class of equivalent local coordinate
systems. In this way, Newton’s first law (global) can be replaced by the Einstein first law
(local): at each spacetime point m, there is a privileged reference frame, chosen by Nature,
which we call the “local inertial frame”. Free-falling bodies satisfy, at this point, the simple
equation of motion

ÿα(m) = 0 (10)

when described in any coordinate system (yα) which is inertial at m, i.e., it belongs to the
privileged class r = [(yα)]. Using formulaes (5)–(7), we also know its equation of motion
in any coordinate system.

Hence, knowing the inertial frame at each spacetime point m ∈ M, i.e., knowing the
field of inertial frames, we already know the motion of all gravitating test bodies, i.e., we
know the active properties of the gravitational field (how the gravitational field acts on
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massive bodies), i.e., we know the gravitational field. The goal of this paper is to show
that also its passive properties (how massive bodies act on gravitational field) can be easily
(and uniquely) derived in this context. This means that also from this point of view, the
gravitational field can be identified with the field of local inertial frames. Unlike in the
Newton’s physics, they are not given a priori but form a dynamical component of the
physical reality. As will be seen in the sequel, the formulation of the theory of gravity based
on this idea is perfectly equivalent to Einstein’s theory, but it has the advantage over the
conventional “metric formulation” that gravity appears as only one particular sector of a
much more general theory in which—perhaps—there is also room for a natural description
of the observed large-scale effects (dark matter, dark energy???), without resorting to ad
hoc corrections to the Hilbert Lagrangian.

3. Field of Inertial Frames: The Coordinate Description

Denote by R(M) all the local reference frames, at all the spacetime points and by
Rm(M) all the reference frames at the point m. Given any coordinate system (xµ), all
abstract geometric objects like vectors, covectors, tensors, etc., acquire a coordinate descrip-
tion (Xµ for vectors, Aµ for covectors, etc.). We are going to construct a similar coordinate
description for reference frames (elements of R(M)) in any coordinates (xµ) we want
to use. For any local reference system [(yα)] = r ∈ Rm(M) at m, consider the table of
numbers (6)

Γλ
µν :=

∂xλ

∂yα

∂2yα

∂xµ∂xν
(m) , (11)

where the coordinate system (yα) was chosen among those belonging to the equivalence
class r. It is easy to observe that this collection of numbers uniquely characterizes the frame
r. For this purpose, one can easily check that (1) the value of Γλ

µν does not depend upon the
choice of a representant (yα) within the class r, and (2) for any choice of a table of numbers
Γλ

µν = Γλ
νµ, there is a single class of coordinate systems r ∈ Rm(M) corresponding to the

right-hand side of (11), namely the one which contains the following representant:

yλ := xλ +
1
2

Γλ
µνxµxν . (12)

(Without any loss of generality, we have assumed here that coordinates (xµ) are
centered at m, i.e., that coordinates (mµ) of the point m vanish. Otherwise, “xµ” in the above
formula should be replaced by “xµ −mµ”). This way, R(M) becomes a fiber bundle over M
with coordinates (xµ, Γλ

µν), whereas the latter are global coordinates in every fiber Rm(M).
The gravitational field, i.e., the field of reference frames, acquires, therefore, the coordinate
description in terms of 40 functions Γλ

µν(xµ) and, hence, can be identified with the spacetime
symmetric connection2. Due to Formula (12), the values Γλ

µν(m) acquire a simple geometric
interpretation: it is a quadratic correction which is necessary to “upgrade” our working
coordinate system (xµ) to an inertial system at m .

The identification of coefficients Γλ
µν with the connection coefficients is a standard issue

which was discussed in many texbooks. Indeed, to specify the spacetime connection, it is
sufficient to specify at each spacetime point m a coordinate system (yα) in which connection
coefficients vanish (i.e., representing a local inertial frame). Once known, the connection
coefficients in any other coordinate system (xλ) are uniquely given by Formula (11). What
is new in our approach is the physical interpretation of this object as the “field of local
inertial frames” and its identification with the gravitational field. What is probably less
known to non-specialists (but still well known to geometers) is the Formula (12) which
enables the easy transition in an opposite direction: from the connection coefficients Γλ

µν to
the local inertial frame, represented by the coordinate system (yα), in which the free-falling
bodies satisfy the equation of motion (10).

It may happen—by chance—that our working system is inertial at the point m. In such
a case, we can take yµ = xµ, and Formula (11) gives immediately Γλ

µν(m) = 0. We conclude
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that one can always “kill the connection coefficients Γλ
µν” at a single point, by an appropriate

choice of a coordinate system, e.g., the one given by Formula (12).
The practical use of this approach is given by navigational problems. Here, the

“loxodromy”, i.e., the line which satisfies Equation (10) in geographic coordinates, is not the
“true straight line” according to spherical geometry. This observation shows that geographic
coordinates are not “inertial”. (In fact, they are locally inertial at equator points!) To follow
the “orthodrome”, i.e., the great circle, which plays role of a straight line in spherical
geometry, it is sufficient to find the correct “inertial frame” at each point of the sphere,
which is a simple exercise in classical differential geometry.

4. Curvature Tensor

The connection is flat in a neighborhood of m ∈ M if there is a coordinate system (yα),
which is inertial not only at the point m but also in its neighborhood (like Newton’s inertial
coordinates). In other words, it is flat in a neighborhood if we are able to kill Γλ

µν not only at a
single point (which is always possible) but also in its neighbourhood. We already know that
the zero-order corrections (i.e., “(xµ −mν)” if the coordinates are not centered at m instead of
(xµ)) are irrelevant for this purpose because coordinates enter into (11) via their derivatives,
exclusively. Hence, zero-order corrections of coordinates do not change the value of
Γλ

µν(m). Furthermore, first-order corrections (i.e., linear transformations of coordinates:
yα = Aα

µxµ) are irrelevant, because they cause the linear (tensorial) transformation of
connection coefficients Γλ

µν(m). Hence, they remain non-zero after such a transformation,
if they were non-zero before. The second-order correction is uniquely given, if we want
to kill Γλ

µν(m). Hence, the only corrections which could carry out the task (to kill Γ’s in a
neighbourhood of m) are 3rd and higher-order corrections:

yλ := xλ +
1
2

Γλ
µν(m)xµxν +

1
6

Wλ
µνκxµxνxκ +

1
24

Uλ
µνκσxµxνxκxσ + · · · . (13)

(Again, without any loss of generality, we have assumed that (xµ) vanish at m).
Furthermore, we can assume that the tables of coefficients W and U of a 3rd and 4th
order polynomials are totally symmetric. They have no influence on the value of the
new connection coefficients Γ̃λ

µν(m), calculated in the corrected coordinate system (yλ),
because after being differentiated twice, they still vanish at m = (0, . . . , 0). However, W
changes the value of derivatives of Γ’s at m, which we denote by

Γλ
µνκ :=

∂

∂xκ
Γλ

µν ; Γ̃λ
µνκ :=

∂

∂yκ
Γ̃λ

µν . (14)

It may be easily calculated that, after correction (13), we obtain

Γ̃λ
µν(m) = 0 ; Γ̃λ

µνκ(m) = Γλ
µνκ(m) + Wλ

µνκ . (15)

(On the other hand, the 4th order corrections U, and possible higher-order corrections,
are irrelevant here, because after being differentiated 3 times, they vanish at m). One
could conclude erroneously that by choosing appropriately the 3rd order correction W, we
are able to kill derivatives of Γ at m. However, because of the total symmetry of W, we
are able to kill only their totally symmetric part Γ̃λ

(µνκ)
. We conclude, that the remaining

part, namely
Kλ

µνκ := Γλ
µνκ − Γλ

(µνκ) , (16)

calculated in an inertial frame, cannot be killed and remains as an indelible “obstruction”
to the possibility of killing Γ in the vicinity of m, i.e., as a measure of non-flatness. We call
this remaining part a curvature tensor. Hence, the curvature tensor is simply the table of
partial derivatives of connection coefficients, calculated in an inertial frame, with its totally
symmetric (non-tensorial!) part subtracted.
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It is a matter of simple calculations that formula (16), valid in an inertial coordinate
system, implies the following formula:

Kλ
µνκ = Γλ

µνκ − Γλ
(µνκ) +

(
Γλ

σκΓσ
µν − Γλ

σ(κΓσ
µν)

)
(17)

= Γλ
µνκ + Γλ

σκΓσ
µν −

(
Γλ
(µνκ) + Γλ

σ(κΓσ
µν)

)
, (18)

which is valid in arbitrary coordinates. Due to the above definition, the curvature tensor
fulfills ex definitione the following identities:

Kλ
µνκ = Kλ

νµκ ; Kλ
(µνκ) = 0 . (19)

On the other hand, the commonly known Riemann tensor

Rλ
µνκ := Γλ

µκν − Γλ
µνκ + Γλ

σνΓσ
µκ − Γλ

σκΓσ
µν , (20)

fulfills identities
Rλ

µνκ = −Rλ
µκν ; Rλ

[µνκ] = 0 , (21)

where the bracket “[ ]” denotes the complete antisymmetrization of the tensor. In fact, both
the curvature and the Riemann tensors carry the same information because of the following,
obvious, identities:

Rλ
µνκ = −2Kλ

µ[νκ] = Kλ
µκν − Kλ

µνκ ; Kλ
µνκ = −2

3
Rλ
(µν)κ = −1

3

(
Rλ

µνκ + Rλ
νµκ

)
. (22)

As will be seen in the sequel, the use of the tensor K, instead of R, although totally
equivalent, simplifies considerably the variational description of the field dynamics.

5. Field Dynamics—A Variational Approach

Leaving aside all preconceptions (and prejudices), we expect that the dynamics of the
gravitational field Γ follows from a variational principle with the Lagrangian density L
depending upon the field and its derivatives as follows:

L = L
(

Γλ
µν, Γλ

µνκ

)
. (23)

(The above quantity could, in principle, depend also upon additional matter fields and
their derivatives—cf. [4–9]—but we limit ourselves here to the vacuum case, where matter
is absent). To simplify considerably the further analysis of the field dynamics, it is useful
to introduce the following auxiliary quantity Pµνκ

λ , called by physically oriented authors
(cf. [10] or [11]) the momentum canonically conjugate with the field configuration Γλ

µν:

Pµνκ
λ :=

∂L
∂Γλ

µνκ

. (24)

The use of this quantity enables us to write variational equations resulting from
L (Euler–Lagrange equations or, simply, field equations of the theory) in the following,
compact way:

δL
(

Γλ
µν, Γλ

µνκ

)
=

(
∂κ Pµνκ

λ

)
δ Γλ

µν + Pµνκ
λ δ Γλ

µνκ , (25)

where, according to a longstanding tradition going back to Euler and Lagrange, we consider
any one-parameter family of field configurations Γλ

µν(xκ , ϵ) and denote by δ := ∂
∂ϵ the

derivative with respect to the parameter ϵ. Indeed, formula (25) contains both the definition
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of the momentum (24) (second term), and also the Euler–Lagrange equations of the theory
(first term): {

∂κ
∂L

∂Γλ
µνκ

=

}
∂κ Pµνκ

λ =
∂L

∂Γλ
µν

. (26)

However, if we want field equations to be coordinate-invariant, the Lagrangian L
cannot depend upon those variables in an arbitrary way but via the only invariant tensor
which can be manufactured of them, i.e., the curvature tensor (or, equivalently, the Riemann
tensor), exclusively as follows:

L = L
(

Kλ
µνκ

)
. (27)

Choosing here K (instead of R) and using (17), we obtain

∂L
∂Kλ

µνκ

=
∂L

∂Γλ
µνκ

= Pµνκ
λ , (28)

which highly simplifies the derivation of field Equations (cf. [4], where the affine variational
principle was derived for the first time with the use of the Riemann tensor. Derivation was
much longer and much more complicated there because the relation between the canonical
momenta Pµνκ

λ and the derivatives of L with respect to Rλ
µνκ is much more complicated

than just (28)). This formula implies that the canonical momenta P inherit the symmetries
from the symmetries (19) of the curvature tensor K as follows:

Pµνκ
λ = Pνµκ

λ ; P (µνκ)
λ = 0 . (29)

It is a matter of simple calculations that we can rewrite (25) in an equivalent form
as follows:

δL
(

Kλ
µνκ

)
=
(
∇κ Pµνκ

λ

)
δ Γλ

µν + Pµνκ
λ δ Kλ

µνκ . (30)

Indeed, upgrading the partial derivative ∂κ in Formula (25) to the covariant (with
respect to the connection Γ) derivative ∇κ , we have to add extra terms, exactly the same
ones that we must subtract in order to upgrade the partial derivative Γλ

µνκ of the connection
in Formula (25) to the curvature tensor Kλ

µνκ . In the case of the vacuum, density L does not
contain any matter field, i.e., Γ does not appear outside of K (otherwise, it could appear
in the covariant derivatives of matter fields). Hence, Equation (30) implies the universal
field equations:

∇κ Pµνκ
λ = 0 . (31)

To fully analyze the field dynamics, we must know the relation between curvature
Kλ

µνκ and the momentum Pµνκ
λ . For this purpose, we observe (cf. [12]) that the curvature

tensor splits naturally into three irreducible sectors:

Kλ
µνκ = −1

9

(
δλ

µ Kνκ + δλ
ν Kµκ − 2δλ

κ Kµν

)
− 1

5

(
δλ

µ Fνκ + δλ
ν Fνκ

)
+ Uλ

µνκ , (32)

where Kµν and Fµν are, respectively, the symmetric and the antisymmetric part of the
Ricci tensor:

Rµν := Rλ
µλν = Kµν + Fµν ; Kµν = R(µν) =

3
2

Kλ
µνλ ; Fµν = R[µν] = −Kλ

λ[µν] , (33)

whereas U is the remaining, traceless part of the curvature (which reduces to the Weyl
tensor if Γ is the Levi–Civita metric connection). Similarly, also the momentum tensor can
be decomposed (cf. [12]) as a sum of three irreducible terms:

Pµνκ
λ =

(
δκ

λπµν − δ
(µ
λ πν)κ

)
− 1

2

(
δ

µ
λF

νκ + δν
λFµκ

)
+ pµνκ

λ , (34)
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where
πµν =

1
3

Pµνλ
λ ; Fµν = −2

5
Pλ[µν]

λ (35)

and pµνκ
λ is the the remaining, traceless part of Pµνκ

λ . (We stress that (32) and (34) are purely
algebraic, trivial identities).

Plugging these decompositions into the generating formula (30), we obtain

Pµνκ
λ δKλ

µνκ = −1
9

Pµνκ
λ δ

(
δλ

µ Kνκ + δλ
ν Kµκ − 2δλ

κ Kµν

)
− 1

5
Pµνκ

λ δ
(

δλ
µ Fνκ + δλ

ν Fµκ

)
+ Pµνκ

λ δUλ
µνκ

= πµνδKµν +FµνδFµν + pµνκ
λ δUλ

µνκ , (36)

and, hence, the whole field dynamics follows from the following, new version of the
generating Formula (30)

δL
(

Kµν, Fµν, Uλ
µνκ

)
=
(
∇κ Pµνκ

λ

)
δ Γλ

µν + πµνδKµν +FµνδFµν + pµνκ
λ δUλ

µνκ . (37)

We conclude that the complete theory is composed of the three physical sectors, each
of them described by the particular sensitivity of the Lagrangian density L to one of the
three irreducible parts of the curvature: K, F and U, respectively.

6. Gravity as We Know It Today

The first, natural conjecture about the structure of the “World-Lagrangian-density” L
would be its total insensitivity to other parts of the curvature that the symmetric part Kµν

of Ricci , i.e.,

L = L
(
Kµν

)
⇐⇒

{
Fµν =

∂L
∂Fµν

= 0 and pµνκ
λ =

∂L
∂Uλ

µνκ

= 0

}
. (38)

If this is true, we have consequently, due to (34),

Pµνκ
λ =

(
δκ

λπµν − δ
(µ
λ πν)κ

)
where πµν =

∂L
∂Kµν

, (39)

(the last equation being a consequence of (37)) and the universal (in vacuum) field
Equation (31) reduces to

∇κ πµν = 0 . (40)

To solve this equation, let us observe that π is not a tensor but the tensor density
(because L is a scalar density). Denote by gµν, the corresponding contravariant tensor

gµν :=
1
2k

πµν

|det π| ⇐⇒ πµν =
1
2k

√
|det gαβ gµν , (41)

where gαβ is its inverse (covariant) tensor. Already in 1938 V.A. Fock observed in his
famous book [13] that both the Lagrangian and the Hamiltonian descriptions of General
Relativity Theory simplify considerably if we represent metric structure of spacetime by
its contravariant density πµν, instead of the conventional representation by the covariant
tensor gµν. (The constant “k” has been introduced here for dimensional reasons. It encodes
in a proper way the gravitational constant. In the geometric system of units, see “red pages”
in the monograph [14], we have k = 8π). Now, Equation (40) is equivalent to

∇κ gµν = 0 , (42)

and the only solution is the metric connection given by the Christoffel symbols

Γλ
µν =

1
2

gλκ
(
∂µgνκ + ∂νgµκ − ∂κ gµν

)
, (43)
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which implies the vanishing of the antisymmetric part Fµν = 0 of the Ricci tensor as follows:

Kµν = Rµν . (44)

On the other hand, there is not much freedom in “inventing” the value of L in this,
purely gravitational, case because the only scalar density which can be manufactured from
the covariant tensor Kµν is

√
|det K|. Hence, we have unambiguously

L = C ·
√
|det K| , (45)

where the constant C is necessary because of dimensional reasons (L must have the dimen-
sion of the action density, but the actual dimension of C depends upon the system of units
and, moreover, upon the convention concerning the dimensionality of coordinates (xµ)).
Hence, the “momentum” πµν given by (39) equals{

1
2k

√
|det gαβ| gµν =

}
πµν = C · ∂

√
|det K|

∂Kµν
=

C
2

√
|det K|

(
K−1

)µν
, (46)

and consequently, √
|det gαβ|gµν = Ck

√
|det K|

(
K−1

)µν
(47)√

|det gαβ| = (Ck)2
√
|det K| (48)

Ck gµν =
(

K−1
)µν

(49)

1
Ck

gµν = Kµν = Rµν . (50)

Comparing it with the vacuum Einstein equation

Rµν −
1
2

gµνR + Λgµν = 0 ⇐⇒ Rµν = Λgµν = Kµν , (51)

we see that—to be able to interpret this theory as a conventional theory of gravity—the
tensor gµν must be interpreted as the spacetime metric tensor, whereas

Λ =
1

kC
(52)

is the cosmological constant. Consequently, C = 1
kΛ . We see that, unlike in the conventional

metric formulation of General Relativity, the dynamic equations of the theory presented
here follow unambiguously from its geometric structure: the Lagrangian density (45) is
unique here, unlike in the conventional metric formulation, where there is an infinite number
of Lagrangian densities which can be manufactured from the metric tensor and its first and
second derivatives. Moreover, the cosmological constant is necessary here. By imposing
anthropological constraints on the Ricci signature Rµν, we can rule out unwanted, non-
anthropological (i.e., having a non-wanted signature) solutions to the theory; although, they
should probably be treated more seriously than simply “non-existent”.

7. Electromagnetic Sector of the Theory

It is hard to believe that the constraints (38) (i.e., Fµν = 0 and pµνκ
λ = 0) are funda-

mental, but rather, they describe solutions which we meet in everyday life, where the
value of these quantities is very small with respect to the remaining components (39) of
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the momentum. In other words, the solutions of the theory that we encounter on the
anthropomorphic scale are characterized by the following structure of the momentum P :

Pµνκ
λ =

1
2k

√
|det g|

(
δκ

λgµν − δ
(µ
λ gν)κ

)
. (53)

Removing the first of these constraints, we admit Lagrangian densities which can
depend upon the whole Ricci tensor.

In 1918, Hermann Weyl already conjectured (see [15]) that the electrodynamic field
fµν could somehow be related to non-metricity of the connection. As a measure of
the non-metricity, we can use the antisymmetric part Fµν of the Ricci because of the
following identity:

Fµν = ∂µΓλ
νλ − ∂νΓλ

µλ , (54)

which means that the trace Γλ
νλ of the connection coefficients plays a role similar to electrody-

namic f -potential Aν. This observation implies a priori the first pair of Maxwell equations:

∂[λFµν] ≡ 0 . (55)

Moreover, for a metric connection (43), we have

Γλ
λν =

1
2

gλκ(∂λgνκ + ∂νgλκ − ∂κ gλν) =
1
2

gλκ ∂νgλκ = ∂ν

(
ln
√

det g
)

, (56)

and consequently, Fµν = 0 because of (54).
However, F can not be directly identified with the electromagnetic field f because of

dimensional reasons. Weyl was unable to find uniquely this identification and to capture
the second pair of the Maxwell equations as an intrinsic property of their framework. Below,
we prove that this is almost uniquely possible within our framework.

We have, therefore, at our disposal only three scalar densities which can be manufac-
tured out of Rµν, namely (1)

√
|det R|, (2)

√
|det K| and (3)

√
|det F|. Limiting ourselves

to the weak-field region, where gravitational field satisfying vacuum Equation (50) prevails,
we are going to treat Fµν as its 1st order perturbation. For this purpose, we can skip the
quantity number (3) as being a higher-order function of F. Hence, we have at our disposal
the following family of conjectures:

L = A ·
√
|det R|+ B ·

√
|det K| = A ·

√
|det(K + F)|+ B ·

√
|det K| (57)

Treating F as a 1st order correction to K, we see that the zero-order approximation equals

L = (A + B) ·
√
|det K| . (58)

As proved in the previous Section, the zero-order approximation of the theory is,
therefore, the vacuum Einstein theory with a cosmological constant equal to

Λ =
1

k(A + B)
. (59)

Assuming that the gravitational part (50) of the solution prevails, i.e., that we have

det(Kµν + Fµν) ≃ det(Λgµν + Fµν) = Λ4 · det(gµλ) · det
(

δλ
ν +

1
Λ

gλµFµν

)
, (60)

we can use the following algebraic identity (cf. [7]) involving (1) a symmetric—A—and
(2) an antisymmetric—B—matrix in four dimensions, namely

det(I+ A · B) = 1 − 1
2

Tr(A · B)2 +
1
8

(
Tr(A · B)2

)2
− 1

4
Tr(A · B)4 . (61)
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Here, “I” denotes the unit matrix, and “Tr” stands for the “trace” operation. In linear
approximation, i.e., when B = 1

Λ F is much smaller than A = g, we can reject the last two
terms which are of order four in F and leave only the quadratic term:

Tr(A · B)2 =
1

Λ2 gµαFαβgβνFνµ = − 1
Λ2 gµαFµνFαβgνβ . (62)

Hence,

√
|det(Kµν + Fµν)| ≃ Λ2 ·

√
|det gµλ| ·

(
1 +

1
Λ2 gµαFµνFαβgνβ

) 1
2

(63)

≃
√
|det gµλ| ·

(
Λ2 +

1
2

gµαFµνFαβgνβ

)
. (64)

We conclude that given a purely gravitational zero-order approximation (51) of the
complete solution, the first-order approximation follows from the following Lagrangian
density for the field F:

L = A ·
√
|det(K + F)|+ B ·

√
|det K|

=
√
|det gµλ| ·

(
(A + B)Λ2 +

A
2

gµαFµνFαβgνβ

)
=

Λ
k
·
√
|det gµλ| −

1
4

√
|det gµλ|

(
−2AgµαFµνFαβgνβ

)
. (65)

Comparing it with the Lagrangian of electromagnetic field fµν on a given metric
background,

Lel−mag = −1
4

√
|det gµλ|

(
gµα fµν fαβgνβ

)
, (66)

we see that in the weak field region our theory agrees with the Maxwell electrodynamics
provided that (1) the constant A = 1

kΛ − B (see (59)) is negative (−A = |A|) and (2) the
electromagnetic field is defined as

fµν :=
√

2|A| · Fµν =

√
2
∣∣∣∣ 1
kΛ

− B
∣∣∣∣ · Fµν =

√
2
∣∣∣∣Λk − BΛ2

∣∣∣∣ · 1
Λ

Fµν . (67)

For both negative and positive values of the cosmological constant Λ (which is as-
sumed to be known from astronomical observations), it is possible to choose the constant
B in such a way that (1) A is negative and (2) the value of 1

Λ F is much smaller than g,
or equivalently,

1
Λ

· Fµν =

(√
2
∣∣∣∣Λk − BΛ2

∣∣∣∣
)−1

· fµν ≪ gµν , (68)

for electromagnetic fields which we encounter in our anthropomorphic scale.
Note that for slightly stronger fields, when the approximation method (60) cannot

be used, the full Lagrangian
√

det(K + F) leads to Born–Infeld electrodynamics (cf. [16]),
for which Maxwell electrodynamics provides the weak field approximation.

In this approach, electromagnetism is just one sector of a much larger “field of inertial
frames” Γλ

µν, the other sector of which is gravity. The fact that it decouples entirely from
gravity in our anthropomorphic scale is similar to the same phenomenon which occurs
in hydrodynamics: For a barotropic fluid, the pressure p and its density ρ (or its proper
volume v := 1

ρ ) are related by the constitutive equation

dU(v) = −p · dv , (69)
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where U represents the internal energy (per one mole of the liquid). For most engineering
applications, a linear approximation of the constitutive equation

∆U = −(p0 + ∆p)∆v , (70)

resulting from expanding the function U around some equilibrium state (v0, p0) up to
second-order terms, is sufficient:

U(v0 + ∆v) ≃ U(v0) + U′(v0) · ∆v +
1
2

U′′(∆v)2 =⇒
{

−p0 = U′(v0)

−∆p = 1
2 U′′ · ∆v

. (71)

The zero-order term U(v0) in this expansion is irrelevant (in physics we never measure
the absolute value of energy, only work, i.e., the energy difference between two physical
states). The first-order term only confirms that the general physical law (69) (or, equiva-
lently (70)) also holds for the equilibrium state (v0, po). Finally, the second-order term gives
us the relation between ∆v and ∆p in a linear approximation as follows:

−∆p = H∆v ,

where the quantity H := 1
2 U′′(v0) represents the “rigidity”, i.e., the fluid sensitivity to the

changes of its proper volume (i.e., of its density). When this sensitivity becomes enormous,
then the model of an incompressible fluid is more suitable, because ∆v is too small to be
really observed and, consequently, v = v0 remains (almost) unchanged. In this model, the
pressure p decouples from v on the kinematical level and becomes an independent physical
quantity. In our theory, the constant

√
2|A| (very big, of the order of Λ−1, see Formula (67))

plays the role of the “rigidity”, i.e., the “sensitivity of the electromagnetism to non-metricity
of the connection”, the latter being too small to be measured at the anthropomorphic scale.
This is why electromagnetic field decouples from gravity in our everyday life.

The idea to unify gravity and electromagnetism appears very often in Einstein’s
writings. The most mature version of their unification schemes was presented in [17]
(see also the review article [18]). He proposes their unification at the level of the “non-
symmetric metric tensor”, the symmetric part of which would describe gravity, while the
anti-symmetric part would somehow be identified with the Faraday tensor fµν. The uni-
fication proposed by us in the present Section does not occur at the level of the metric
(which is geometrically prohibited), but at the level of the Ricci curvature, whose sym-
metric (gravity) and antisymmetric (electromagnetism) parts have the same footings and
are equally admissible. From this point of view, our construction is similar to Hermann
Weyl’s idea [15], with the difference that we do not assume a priori any particular form of
connection (namely, its compatibility with the conformal structure of spacetime), but we
consequently derive its dynamics from the variational principle. Other proposals have
recently appeared (cf. e.g., [19,20]) which we consider less convincing.

8. Conclusions

To describe the properties of spacetime in the medium scale, the above two sectors,
which properly describe gravity and electromagnetism, are sufficient. The dynamics of the
field in the purely gravitational sector follows unambiguously from the geometric structure
of the field. Furthermore, the electromagnetic sector obtains its dynamics in the weak field
region uniquely from the geometrical structure of the Γ field, while the strong field follows
the non-linear Born–Infeld dynamics. However, of course, the main problem is whether
the last sector of the above theory can be useful for describing physical reality. Unlike in
the conventional metric formulation of gravity, there is not much choice here to construct L
that depends in a non-trivial way on the entire curvature tensor, not just the Ricci tensor.
Indeed, the metric tensor is not available when constructing the Lagrangian density L
but must be reconstructed from Equation (39) once L is already known. Therefore, unlike
the conventional metric formulation, where we may contract the curvature and the metric
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in many non-equivalent ways, here there are very few ways to construct L. We suppose
that this sector would describe the large-scale phenomena, commonly attributed to the
mysterious “dark matter” or “dark energy”.

In any case, it is hard to believe that Nature would neglect the last sector of the theory,
whose two sectors describe gravity and electromagnetism in such a simple way, leaving us
no freedom to choose the Lagrangian density of the field, (i.e., the field dynamics).

A natural assumption is that U in (32) is very small compared to K in our tiny corner
of the Universe in which we live. Moreover, it is likely that this field is practically constant
on our anthropomorphic scale (in both timelike and spatial directions), and this is why we
do not observe it directly. However, due to its “ubiquity”, its impact on the global shape
of spacetime can be significant. In any case, the slowly changing field U can be probably
treated as constant in the description of both gravity and electromagnetism in the middle
scale. However, in the large (cosmological) scale, this field follows its slow dynamics,
causing changes in the values of fundamental physical constants (such as the cosmological
constant Λ), which was already predicted by P. A. M. Dirac long time ago. The analysis
of the possible dynamical effects of the complete theory, based on conjecture (27), is in
progress and will be presented soon.
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Notes
1 Furthermore, he was already aware of the fact that there is no natural splitting of “spacetime” into “space” and “time” and,

whence, equations of motion (2) must always be four-dimensional, like, e.g., in electrodynamics, where we have: Fλ = q · f λκuκ .
2 In this context “generalizations” towards non-symmetric connections is a nonsense, because such a connection is not an irreducible

object. It splits canonically into two disjoint terms: (1) a symmetric connection and (2) a tensor (torsion). The tensor fields appear
in this framework as matter fields, but a field of inertial frames defines uniquely a symmetric connection, which we identify with
gravitational field.
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