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Abstract: In this note, I derive the Chandrasekhar instability of a fluid sphere in (N + 1)-dimensional
Schwarzschild–Tangherlini spacetime and take the homogeneous (uniform energy density) solution
for illustration. Qualitatively, the effect of a positive (negative) cosmological constant tends to
destabilize (stabilize) the sphere. In the absence of a cosmological constant, the privileged position of
(3 + 1)-dimensional spacetime is manifest in its own right. As it is, the marginal dimensionality in which
a monatomic ideal fluid sphere is stable but not too stable to trigger the onset of gravitational collapse.
Furthermore, it is the unique dimensionality that can accommodate stable hydrostatic equilibrium
with a positive cosmological constant. However, given the current cosmological constant observed,
no stable configuration can be larger than 1021 M�. On the other hand, in (2 + 1) dimensions,
it is too stable to collapse either in the context of Newtonian Gravity (NG) or Einstein’s General
Relativity (GR). In GR, the role of negative cosmological constant is crucial not only to guarantee fluid
equilibrium (decreasing monotonicity of pressure) but also to have the Bañados–Teitelboim–Zanelli
(BTZ) black hole solution. Owing to the negativeness of the cosmological constant, there is no
unstable configuration for a homogeneous fluid disk with mass 0 <M≤ 0.5 to collapse into a naked
singularity, which supports the Cosmic Censorship Conjecture. However, the relativistic instability
can be triggered for a homogeneous disk with mass 0.5 < M . 0.518 under causal limit, which
implies that BTZ holes of massMBTZ > 0 could emerge from collapsing fluid disks under proper
conditions. The implicit assumptions and implications are also discussed.

Keywords: spacetime dimensionality; gravitation; hydrodynamics; thermodynamics; black holes;
cosmological constant; anthropic considerations

1. introduction

Dimensionality of spacetime is a question with a long history [1–8]. Starting from
Ehrenfest [1,2], who argued based on the “stability postulate” of the two-body problem,
the fundamental laws of physics favor (3 + 1) dimensions. His approach is still valid in the
framework of general relativity (GR) as well as hydrogen atoms, as was shown by Tangher-
lini [4]; however, see Ref. [7] for an alternative procedure and references therein. Tegmark [8]
argued that the existence of only one temporal dimension by requiring hyperbolic equations
of motion, and hence predictability, leaves the question why three (macroscopic) spatial di-
mensions are favorable. Various arguments were proposed for the reasoning [9–15], although
the dimensionality could be dynamical and scale-dependent, as a physical observable [16].

Presumably, the “non-compact” (3 + 1) dimensions might be just an illusion due to
our human perception. However, constraint from gravitational waves indicates that we
certainly live in a universe of non-compact (3 + 1) dimensions [17], as described by GR.
On the other hand, although it was usually cited that structures in (2 + 1) are not complex
enough to accommodate life, as opposed to the common view, life that could exist in (2 + 1)
was discussed more recently [18].

Stellar equilibrium in different dimensions has also been explored previously [19–21].
One important feature on stellar stability in GR is the Buchdahl stability bound [22]. It states
that the mass of a spherical compact object must exceed the 9/4 of its gravitational radius in
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(3 + 1) dimensions. Otherwise, there is no stable stellar equilibrium, and it would definitely
collapse into a black hole. Buchdahl bound in higher dimensions [19] with cosmological
constant [21] and its universality in other gravity theories [23–25] were also investigated
previously. Nonetheless, the dynamical instability of a star might have set in well before
the Buchdahl bound.

The dynamical instability of a self-gravitating sphere in the context of GR has been
explored long ago by Chandrasekhar (1964) [26,27] and Zel’dovich and Podurets (1966) [28],
via the study of a pulsation equation and binding energy, respectively. It was found that
the turning point of fractional binding energy [29,30] is very close to the result using the
pulsation equation [31]. Chandrasekhar’s criterion [26,27] provides a sufficient condition
triggering the black hole formation. In hydrostatic equilibrium, the pressure of a star
balances its self-gravity. As a gravitationally bound system, a star behaves as if it has
negative specific heat: The more energy it loses, the hotter it becomes [32,33]. Therefore,
it undergoes the gravothermal evolution due to the heat dissipations. At each evolution
stage, the instability might set in depending on the fluid’s stiffness, which is characterized
by its adiabatic index [31]. For example, the adiabatic index of a (3 + 1) monatomic
ideal fluid transitions from 5/3 (stiff) toward 4/3 (soft) when the particles become more
relativistic through the conversion of gravitational energy. This method has also been
extended to address the stellar instability in (3 + 1) spacetime with a non-zero cosmological
constant [34,35], the extra dimension influence [36] on the strange quark stars, the stability
of supermassive stars [37], and the self-interacting dark halo core collapse [31,38]. However,
see also the gravothermal instabilities from energy consideration in [39–41].

In (2 + 1) spacetime, a negative cosmological constant is to guarantee not only hy-
drostatic equilibrium [42] (the pressure is monotonically decreasing) but also permit a
black hole solution of Bañados–Teitelboim–Zanelli (BTZ) [43]. The dynamical process of
dust collapse [44], critical collapse of scalar field [45–47], and ultra-relativistic fluid [48,49]
into a BTZ hole have been shown to be possible. Nevertheless, in this note, we are more
interested in the condition triggering the dynamical instability of a monatomic fluid disk in
the hydrodynamic limit. The pressure in a fluid can not be ignored because it could prevent
the fluid from further collapse. On the other hand, as the random motion of the particles
in the fluid influences the gravitational potential in the macroscopic picture through the
pressure effect, (2 + 1) static stars of perfect fluid qualitatively differ in their behavior from
that of dust [50]. As a result, rather than counteract the gravitational attraction, it could
further destabilize the fluid disk at some point, just as the cases of (3 + 1). However, the neg-
ative cosmological constant introduced tends to stabilize the fluid. Thus, the competition
between the pressure (relativistic) effect and the cosmological constant is crucial to trigger
the black hole formation.

In this work, we examine the space dimensionality N from the viewpoint of the Chan-
drasekhar instability of an ideal monatomic fluid sphere in (N + 1) dimensions. The paper
is organized as follows: We first derive the (N + 1) pulsation equation of a perfect fluid
sphere with and without cosmological constant and the corresponding Chandrasekhar’s
criterion in Section 2. As an illustration, we then present the (N + 1) homogeneous (uniform
energy density) solution in Section 3 and numerically determine the condition at the onset
of instabilities in Section 4. We briefly summarize the results with the implicit assumptions,
and discuss the physical implications in Section 5. In particular, we assume that GR equa-
tions hold, the fluid sphere is homogeneous and monatomic. Geometric unit (GN = c = 1)
is used throughout the text, where GN is the Newton’s constant in (N + 1) dimensions.

2. (N + 1)-Dimensional Spacetime of Spherical Symmetry

We consider a spherically symmetric spacetime in (N + 1) dimensions,

ds2 = −e2Φ(t,r)dt2 + e2Λ(t,r)dr2 + r2dΩ2
N−1, (1)
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where

dΩ2
N−1 = dθ2

1 + sin2 θ1dθ2
2 + . . . +

N−2

∏
j=1

sin2 θjdθ2
N−1. (2)

After the standard calculations, the field equations Gµ
ν = κNTµ

ν give

− (N − 1)Λ′

r
e−2Λ − (N − 1)(N − 2)

2r2

[
1− e−2Λ

]
= κNTt

t, (3a)

(N − 1)Φ′

r
e−2Λ − (N − 1)(N − 2)

2r2

[
1− e−2Λ

]
= κNTr

r, (3b)

N − 1
r

Λ̇e−2Λ = κNTr
t, (3c)

[
Φ′′ + Φ′2 −Φ′Λ′ +

(N − 2)
r

(Φ′ −Λ′)

]
e−2Λ

− (N − 2)(N − 3)
2r2

[
1− e−2Λ

]
− (Λ̈ + Λ̇2 − Φ̇Λ̇)e−2Φ = κNTθ1

θ1 ,

(3d)

where the “prime” and “dot” denote the “radial” and “time” derivatives, respectively,
and Tθ1

θ1 = Tθ2
θ2 = . . . = TθN−1

θN−1 ≡ p because of spherical symmetry. On the other
hand, combining Equation (3a) and (3b), we obtain

(N − 1)
r

(Φ′ + Λ′)e−2Λ = κN(Tr
r − Tt

t). (4)

The conservation of energy–momentum tensor ∇µTµ
ν = 0 leads to

∂tTt
t + ∂rTr

t + (Tt
t − Tr

r)Λ̇ + Tr
t

(
Φ′ + Λ′ +

N − 1
r

)
= 0 (5a)

and
∂tTt

r + ∂rTr
r + Tt

r(Φ̇ + Λ̇) + (Tr
r − Tt

t)Φ′ +
N − 1

r
(Tr

r − p) = 0. (5b)

If we define the Schwarzschild mass function M(r) through

1− e−2Λ ≡ 2M/rN−2, (6)

then Gt
t = κNTt

t = −κNρ leads to M′(r) = [κN/(N − 1)]ρrN−1. Accordingly, the mass
function

M(r) = ωN

∫ r

0
ρr̄N−1dr̄, (7)

where

ωN =
2πN/2

Γ(N/2)
=

κN
N − 1

(8)

is the area of the unit sphere in N-dimensional space. Therefore, by construction, the
Einstein coupling constant κN = (N − 1)ωN automatically imposes the vacuum identity
Gµ

ν = 0 of Einsteinian gravity in (1 + 1) dimensions.
Now, we consider isotropic pressure (Tr

r = p) in static situation, Equation (5b) leads
to p′ = −(ρ + p)Φ′, and Φ′ can be replaced via Equation (3b), resulting in the Tolman–
Oppenheimer–Volkoff (TOV) equation in (N + 1) dimensions:(

1− 2M
rN−2

)
p′ = −(ρ + p)

(
(N − 2)M

rN−1 +
κN

N − 1
pr

)
. (9)
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Equation-of-state (EoS) p = p(ρ) and boundary conditions M(0) = 0, p(R) = 0 must
be imposed in order to determine the total fluid massM≡ M(R).

2.1. Linear Radial Perturbation and the Adiabatic Index

The perfect fluid description Tµ
ν = (ρ + p)uµuν + pδµ

ν implies Tr
t = 0 in the static

case. However, under the linear radial perturbation ∂tξ = ξ̇ ≡ dr/dt,

Tr
t = −(ρ + p)ξ̇, (10)

where uµ is the 4-velocity of the fluid element, and we have introduced the “Lagrangian
displacement” ξ as well as ut = −eΦ, ur = e−Φ ξ̇.

Now, we denote all the variables X’s in equilibrium by X0(r), which is independent
of time. After perturbation X(t, r) = X0(r) + δX(t, r), only the perturbed quantities have
the time dependence, where δ denotes the “Eulerian change” of the perturbation. Keeping
only the terms of first-order corrections from Equations (3a), (3b), (3c), (5a) and (5b), we have
the linearized equations governing the perturbation[

rN−2e−2Λ02δΛ
]′

=
2κN

N − 1
rN−1δρ, (11a)

N − 1
r

e−2Λ0(δΦ′ − 2Φ0
′δΛ)− (N − 1)(N − 2)

r2 e−2Λ0 δΛ = κNδp, (11b)

N − 1
r

e−2Λ0 δΛ̇ = −κN(ρ0 + p0)ξ̇ = −N − 1
r

e−2Λ0(Φ0
′ + Λ0

′)ξ̇, (11c)

δρ̇ +
[
(ρ0 + p0)ξ̇

]′
+ (ρ0 + p0)

[
δΛ̇ + ξ̇

(
Φ′0 + Λ′0 +

N − 1
r

)]
= 0, (11d)

e2(Λ0−Φ0)(ρ0 + p0)ξ̈ + δp′ + (ρ0 + p0)δΦ′ + (δρ + δp)Φ0
′ = 0, (11e)

respectively. In addition, Equation (11c) also leads to

δΛ = −ξ(Φ0
′ + Λ0

′), (12)

thus Equations (11a) and (11d) (after performing time integration) identically lead to

δρ = − 1
rN−1

[
rN−1(ρ0 + p0)ξ

]′
= −ξ

dρ0

dr
− ξ

dp0

dr
− (ρ0 + p0)

1
rN−1

(
rN−1ξ

)′
(13a)

or with the substitution p′0 = −(ρ0 + p0)Φ0
′, we obtain

∆ρ = δρ + ξ
dρ0

dr
= −(ρ0 + p0)

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
, (13b)

where ∆ = δ + ξ∂r denotes the “Lagrangian change” of the perturbation. To express δp in
terms of ξ, we assume the conservation of the baryon number ∇α(nuα) = 0, that is,

∂t(ne−Φ) + ∂r(nξ̇e−Φ) + ne−Φ(Φ̇ + Λ̇) + ne−Φ ξ̇

(
Φ′ + Λ′ +

N − 1
r

)
= 0. (14)

Keeping only the first-order terms of perturbation, one obtains

e−Φ0 δṅ +
1

rN−1

(
n0rN−1ξ̇e−Φ0

)′
+ n0e−Φ0 δΛ̇ + n0e−Φ0 ξ̇(Φ0

′ + Λ0
′) = 0. (15)
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After integration over time and using Equation (12), reduce to

δn = − eΦ0

rN−1

(
n0rN−1ξe−Φ0

)′
= −ξ

dn0

dr
− n0

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
(16a)

or

∆n ≡ δn + ξ
dn0

dr
= −n0

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
. (16b)

The adiabatic perturbation of the pressure is related to that of the number density
through adiabatic index; if the EoS n = n(ρ, p) is given, then

δn =

(
∂n
∂ρ

)
p

δρ +

(
∂n
∂p

)
ρ

δp

together with Equations (13) and (16) lead to

−ξ
dn0

dr
− n0

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
=

(
∂n
∂ρ

)
p

[
−ξ

dρ0

dr
− (ρ0 + p0)

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′]
+

(
∂n
∂p

)
ρ

δp.

After the substitution

dn0

dr
=

(
∂n
∂ρ

)
p

dρ0

dr
+

(
∂n
∂p

)
ρ

dp0

dr
,

one finds

δp = −ξ
dp0

dr
− γp0

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
(17a)

or

∆p ≡ δp + ξ
dp0

dr
= −γp0

eΦ0

rN−1

(
rN−1e−Φ0 ξ

)′
, (17b)

and the adiabatic index γ of the fluid is defined by

γ ≡ 1
p0
(
∂n/∂p

)
ρ

n0 − (ρ0 + p0)

(
∂n
∂ρ

)
p

 =
ρ0 + p0

p0

(
∂p
∂ρ

)
s

=
n0

p0

(
∂p
∂n

)
s
, (18a)

where Equations (A2) and (A3) in Appendix A have been used to reach the last equal-
ity, and the subscript s denotes that the change is adiabatic. This also implies that the
Lagrangian change is equivalent to the adiabatic change in view of Equations (13), (16)
and (17), and one can write

γ =

(
∂ ln p
∂ ln n

)
s
≡ ∆ ln p

∆ ln n
, (18b)

which is the generic definition and can be determined given an EoS. In the literature,
the symbol of adiabatic index is conventionally denoted as Γ1 and γ ≡ cp/cn, where cp,
cn denote isobaric, isochoric specific heat capacities, respectively. The two indices are
related by Γ1 = χTγ, where χT ≡

(
∂ ln p/∂ ln n

)
T is evaluated at constant temperature T.

However, for an ideal gas without radiation pressure, χT = 1 and so Γ1 = γ [51].

2.2. The Adiabatic Index of an Ideal Monatomic Fluid

For an ideal monatomic fluid, the adiabatic index depends on the degrees of freedom
of spatial dimensions. Given a distribution function f (x, p) of monatomic particles with
phase space measure dNx dNp, the EoS can be determined by

n(x) =
∫

f (x, p) dNp, (19a)
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ρ(x) =
∫

E f (x, p) dNp, (19b)

p(x) =
1
N

∫
p · ∂E

∂p
f (x, p) dNp =

1
N

∫ p2

E
f (x, p) dNp, (19c)

where E =
√

p2 + m2 the energy of the particle with rest mass m, and N in the denominator
of the pressure expression is due to equipartition theorem.

The EoS can be prescribed by the γ-law form p = K(mn)γ [52], which satisfies the
definition of adiabatic index provided that K, γ are not explicit functions of n under adia-
batic perturbation. The first law of thermodynamics d(internal energy) = −p d(volume),
under adiabatic change and particle number conservation, results in

d
(

u
n

)
= −p d

(
1
n

)
=

p
n2 dn = Kmγnγ−2dn.

Direct integration gives u/n = Kmγ(γ− 1)−1nγ−1; thus, the internal energy density

u ≡ ρ−mn = (γ− 1)−1 p. (20)

It turns out that the adiabatic index

γ = 1 +
p

ρ−mn
(21)

depends on the spatial dimensions N and the relativistic extent of the particles, specifically,
in non-relativistic limit|p| � m, γ→ 1+ 2/N; ultra-relativistic limit|p| � m, γ→ 1+ 1/N.
Regardless of the distribution f (x, p) classical or quantum, the variation of γ actually
depends the velocity dispersion

v ≡
√

Np
ρ

(22)

via (see Appendix B for an explicit example)

γ(v) = 1 +
1 +
√

1− v2

N
. (23)

As an aside, we note that this applies only for ideal (classical or quantum) fluids. If the
microscopic interaction between particles is significant, the internal energy density u will
contain interacting energy between particles, and K, γ might depend explicitly on n.

2.3. The Pulsation Equation and the Critical Adiabatic Index

Using Equations (11b), (11c) and (12), one can derive

(ρ0 + p0)δΦ′ =

[
δp− (ρ0 + p0)

(
2Φ0

′ +
N − 2

r

)
ξ

]
(Φ0

′ + Λ0
′).

Substitution of δΦ′ for Equation (11e) and assuming all the perturbed quantities have
the time-dependence of the form eiωt with the eigenfrequency ω, one can show that

ω2e2(Λ−Φ)(ρ + p)ξ = δp′ + δp(2Φ′ + Λ′) + δρΦ′ − (ρ + p)
(

2Φ′ +
N − 2

r

)
(Φ′ + Λ′)ξ,

in which we drop the subscript “zero” for simplicity hereafter.
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Now, we can further simplify the result by replacing the perturbed quantities (except ξ)
with the unperturbed ones in equilibrium. With the proper substitutions via Equations (3d),
(9), (13), and (17), one can derive the “pulsation equation”

ω2e2(Λ−Φ)(ρ + p)ξ =
2(N − 1)

r
dp
dr

ξ − e−(2Φ+Λ)

[
e3Φ+Λ γp

rN−1

(
rN−1e−Φξ

)′]′
+

2κN
N − 1

e2Λ p(ρ + p)ξ − 1
ρ + p

(
dp
dr

)2
ξ, (24)

governing the linear instability at the first-order with boundary conditions ξ = 0 at r = 0
and δp = 0 at r = R (radius of the sphere). Clearly, N = 3 reduces to the result derived by
Chandrasekhar (1964) [26,27].

Before we proceed further, we observe that, in the Newtonian limit (p � ρ and
Φ, Λ� 1), it reduces to

ω2ρξ =
2(N − 1)

r
dp
dr

ξ −
[

γp
rN−1

(
rN−1ξ

)′]′
, (25)

which is actually the pulsation equation (when N = 3) in Ref. [53] by perturbing the
Euler’s equation in Newtonian Gravity (NG). This implies the critical adiabatic index (see
Appendix C for derivation)

γcr = 2
(

1− 1
N

)
. (26)

To have a stable configuration, the perturbation cannot grow without bound, meaning
the eigenfrequency ω must be real, in other words, ω2 > 0. It follows from Appendix C
that the pressure-averaged 〈γ〉 > γcr. For relativistic (non-relativistic) ideal fluids, this
implies that the spatial dimensions must be N < 3 (N < 4) in order to have a stable
sphere. From this viewpoint, the privilege of (3 + 1) dimensions is manifest because the
fluid sphere is stable but not too stable. However, in (2 + 1) dimensions, it is too stable
because γcr = 1 < 1.5 (2) = γ as always for an ultra-relativistic (non-relativistic) fluid.
Nevertheless, the “pressure effect” is crucial in GR because the whole energy–momentum
should be taken as a single entity, not only the energy density but also the pressure is sourcing
gravity.

To determine the critical adiabatic index in the full relativistic context, we perform the
integration over r with ξ over the sphere with proper measure rN−1eΦ+Λ, and integration
by parts for the term with γ in the integrand, resulting in

ω2
∫

e3Λ−Φ(ρ + p)rN−1ξ2dr = 2(N − 1)
∫

eΦ+ΛrN−2 dp
dr

ξ2dr

+
∫

e3Φ+Λ γp
rN−1

[
(rN−1e−Φξ)′

]2
dr−

∫
eΦ+Λ

(
dp
dr

)2 rN−1ξ2

ρ + p
dr (27)

+
2κN

N − 1

∫
e3Λ+Φ p(ρ + p)rN−1ξ2dr.

By the Rayleigh–Ritz principle (see Appendix D), ω2 ≤ 0 signals the instability of the
given configuration, and thus determines the critical adiabatic index γcr at ω2 = 0. To see
the relativistic corrections to NG, on the RHS of Equation (27), we perform (i) integration
by parts for the first term and with Equation (4) to replace Φ′ + Λ′; (ii) replacement of p′ by
Equation (9) in the third term; and (iii) use of Equation (3b) to replace Φ′ after choosing the
trial function ξ(r) = reΦ [27]. After arranging all the terms with care and setting RHS of
Equation (27) equal to zero, one obtains
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γcr ≡ 2
(

1− 1
N

)
+

∫
e3Φ+Λ[8(N − 1)p + (N − 2)(e2Λ − 1)(ρ + p)](N − 2)(e2Λ − 1)rN−1dr

4N2
∫

e3Φ+Λ prN−1dr

+
κN
∫

e3(Φ+Λ)[4(N − 1)p + (N − 2)(e2Λ + 1)(ρ + p)]prN+1dr
N2(N − 1)

∫
e3Φ+Λ prN−1dr

+
κ2

N
∫

e3Φ+5Λ(ρ + p)p2rN+3dr
N2(N − 1)2

∫
e3Φ+Λ prN−1dr

, (28)

and

〈γ〉 ≡
∫

e3Φ+ΛγprN−1dr∫
e3Φ+Λ prN−1dr

(29)

the “effective” (pressure-averaged) adiabatic index of the fluid sphere.

2.4. The Effect of Cosmological Constant

Furthermore, if the cosmological constant λ ∝ ρλ = −pλ is included in the previous
derivation, it turns out to be the Schwarzschild–Tangherlini spacetime [4], and the pulsation
equation becomes

ω2e2(Λ−Φ)(ρ + p)ξ =
2(N − 1)

r
dp
dr

ξ − e−(2Φ+Λ)

[
e3Φ+Λ γp

rN−1

(
rN−1e−Φξ

)′]′
+

2κN
N − 1

e2Λ(p + pλ)(ρ + p)ξ − 1
ρ + p

(
dp
dr

)2
ξ. (30)

As we will see, the extra term pλ from the cosmological constant is significant to the
stability condition. In addition, we follow the same procedure to obtain

γcr ≡ 2
(

1− 1
N

)
+

∫
e3Φ+Λ[8(N − 1)p + (N − 2)(e2Λ − 1)(ρ + p)](N − 2)(e2Λ − 1)rN−1dr

4N2
∫

e3Φ+Λ prN−1dr

+
κN
∫

e3(Φ+Λ)
{
[4(N − 1)p + (N − 2)(e2Λ + 1)(ρ + p)](p + pλ)− 2(N − 1)pλ(ρ + p)

}
rN+1dr

N2(N − 1)
∫

e3Φ+Λ prN−1dr

+
κ2

N
∫

e3Φ+5Λ(ρ + p)(p + pλ)
2rN+3dr

N2(N − 1)2
∫

e3Φ+Λ prN−1dr
, (31)

and 〈γ〉 is also given by Equation (29). The second term on RHS of Equation (31) tends to
destabilize the fluid sphere due the “pressure effect” of the fluid; while the third and fourth
terms depend on its competition with cosmological constant λ. Qualitatively, λ < 0 tends to
stabilize the sphere; and λ > 0 does the opposite. In particular, we note that the impact
of cosmological constant on the Chandrasekhar instability is opposite to the Antonov
instability (gravothermal catastrophe) [54]. The expression is fully relativistic in its own
right, though it would be indicative to see the post-Newtonian expansion in a particular
model. Therefore, we apply this result to the homogeneous model in the next section.

3. Homogeneous Fluid Solutions

The total fluid mass of homogeneous density is

M =
κN

N(N − 1)
ρRN , (32)

thus we can write

κNρ =
N(N − 1)M

RN . (33)

On the other hand, the definition of cosmological constant is ambiguous up to some
factor depending on the space dimensionality. We adopt the convention based on Rλµνρ =
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λ(gλνgµρ − gλρgµν) for a space of constant curvature to define the cosmological constant in

(N + 1) dimensions from the vacuum Einstein equations Gµν = −N(N−1)
2 λgµν, thus

κNρλ =
N(N − 1)

2
λ = −κN pλ, (34)

where λ = ±1/`2, with ` the curvature of radius, depends on the positiveness of the scalar
curvature. Then, the TOV equation Equation (9) can be solved analytically:

p(r)
ρ

=
[(N − 2)(M/RN−2)− λR2]

[
e−Λ(r) − e−Λ(R)

]
N(M/RN−2) e−Λ(R) − [(N − 2)(M/RN−2)− λR2]e−Λ(r)

(35a)

and

eΦ(r) =
N(M/RN−2) e−Λ(R) − [(N − 2)(M/RN−2)− λR2]e−Λ(r)

2M/RN−2 + λR2 , (35b)

where

e−Λ(r) =

√
1−

(
2M

RN−2 + λR2
)

r2

R2 . (35c)

The solution is parameterized by the compactness parameter CN ≡M/RN−2, the curva-
ture parameter λR2 and the space dimensionality N ≥ 2. The parametrization makes sense
only if ρ 6= 0 or the compactnessM/RN−2 6= 0. In addition, (N− 2)(M/RN−2)−λR2 > 0
is required to have p(r) > 0. Even though the homogeneous model is not so realistic, it
captures the essence of some underlying physics. For example, the Buchdahl stability
bound can be shown simply by demanding p(0) < ∞ and eΦ(0) > 0:

N − 1
N2

1−

√
1− N2

(N − 1)2 λR2

 <
M

RN−2 <
N − 1

N2

1 +

√
1− N2

(N − 1)2 λR2

. (36)

Clearly, for N = 3, λ = 0, it reduces to the familiar Buchdahl bound 0 < 9M/4 < R
in (3 + 1) dimensions without cosmological constant. We also note that the lower bound is
larger than zero if λ > 0. For more realistic models, assuming the decreasing monotonicity
of density is sufficient to prove the Buchdahl bound; see Appendix E for a rigorous proof.
Nonetheless, when it comes to real stellar equilibrium, the instability might already trigger
well before the Buchdahl bound.

In the post-Newtonian expansion with background curvature, Equation (31) leads to

γcr =
λR2

(N − 2)M/RN−2 − λR2 + ∑
j,k=0,1,...

f (N)
jk

(
M

RN−2

)j(
λR2

)k
, (37a)

where the second terms on the RHS are post-Newtonian corrections with coefficients
f (N)
jk depending on the density distribution and spatial dimensions N, except that f (N)

00 =

2(1− 1/N), the exact Newtonian result; the first term is a stabilizer/destabilizer characterizing
the competition between the compactness and the background curvature, and it can be
expanded as

λR2

(N − 2)M/RN−2 − λR2 =


∑∞

n=1

(
λR2

(N−2)M/RN−2

)n
if
∣∣∣λR2

∣∣∣ < (N − 2)M/RN−2

−1−∑∞
n=1

(
(N−2)M/RN−2

λR2

)n
if
∣∣∣λR2

∣∣∣ > (N − 2)M/RN−2.
(37b)

We note that this term is always −1 for N = 2 if λ 6= 0, and the two limits (λ→ 0⇔
N → 2) do not commute

0 = lim
N→2

lim
λ→0

λR2

(N − 2)M/RN−2 − λR2 6= lim
λ→0

lim
N→2

λR2

(N − 2)M/RN−2 − λR2 = −1
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reflecting the fact that GR has no Newtonian limit in (2 + 1) dimensions. Therefore,
Einsteinian stars are even stabler than Newtonian stars in (2 + 1) as the critical adiabatic index is
reduced by one unit in GR compared to NG.

4. Numerical Results

The effect of cosmological constant cannot be neglected when it comes to stability, as it
could stabilize the fluid sphere in higher dimensions (N > 3) with λ < 0 or destabilize
it in lower dimensions (N < 3) with λ > 0. However, GR in lower dimensions, (1 + 1)
has no dynamics (vacuum), and (2 + 1) has no Newtonian limit. In particular, λ < 0 is
required to have the Bañados–Teitelboim–Zanelli (BTZ) black hole solution [43] and stellar
equilibrium [42], it would then be interesting to see if the instability condition can be
triggered in (2 + 1) dimensions. In this section, we numerically solve the marginal stable
configurations and determine the critical compactness of homogeneous spheres in (N + 1)
dimensions. We first discuss (3 + 1) and higher and then (2 + 1) dimensions, respectively.

4.1. Fluid Spheres in (3 + 1) and Higher-Dimensional Spacetime

Without cosmological constant, a (3 + 1)-dimensional homogeneous ideal fluid be-
comes unstable as γcr = 〈γ〉 = 1.6219, and the critical central velocity dispersion
vc ≡ v(0) = 0.681433 with the critical compactness C3 = M/R = 0.189, see Figure 1
(top). A positive cosmological constant tends to destabilize the sphere owing to the extra
energy density and reduced pressure. Interestingly, in Figure 1 (middle), there are two
critical points as λ > 0 is turned on. In reality, if the configuration is not sufficiently compact,
the fluid is unstable, and it tends to further contract until it transitions into a stable configu-
ration [55]. However, the stable region shrinks as λR2 increases, and it could directly form
a black hole if the stable region vanishes, see Table 1.

The stable configurations are bounded by the two critical points up to λR2 = 0.01786,
above which there is no stable configuration, see Figure 1 (bottom). At this degenerate critical
point, C3 = M/R = 0.1164, we can eliminate the dependence of R to obtain M

√
λ =

0.01556, or M = 0.01556`c2/G3 with G3 and c restored. Now, given the cosmological
constant observed [56–58], ` ∼ 1061`Pl, where `Pl is the Planck length in (3 + 1) dimensions,
there is no stable stellar equilibrium for M & 0.01556`c2/G3 ∼ 1021 M�. Therefore,
a virialized mass sphere should be much smaller 1021 M� in order to have long-lived
hydrostatic equilibrium before it can trigger the black hole formation. Curiously, this
number is two orders of magnitude larger to the maximal Jeans mass (the threshold that a
gas cloud can clump into gravitationally bound states) just prior to the recombination of

hydrogen MJ ' 1.2× 1016
(

Ωb,0h2
)−2

M� ' 1019 M� with the current baryon abundance

Ωb,0h2 ' 0.0224 [57,59]. As the horizon mass of hydrogen is always less than the Jeans
mass before recombination, structures can form only after recombination [60]. Therefore,
the stable upper bound 1021 M� seems delicately protected in our universe.

On the other hand, a negative cosmological constant tends to stabilize the sphere
due to the extra pressure and reduced energy density. Compared to zero and positive
cosmological constant, the critical compactness becomes larger in order to trigger the
collapse. There is only one critical point for a given compactness down to λR2 = −0.094853,
below which there is no physical solution due to causality (vc ≤ 1). At this critical point,
C3 = 0.248; see Figure 2.
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Figure 1. N = 3: Pressure-averaged and critical adiabatic indices vs. compactness C3 given λ ≥ 0.
The configurations are unstable if 〈γ〉 < γcr, and the instabilities will set in at critical points 〈γ〉 = γcr.
In the case of zero cosmological constant λR2 = 0 (top), the arrows on the lines of adiabatic indices
exhibit the directions when the fluid sphere is being compressed while keepingM fixed. There is
only one critical point for the instability to be triggered at C3 = 0.189. On the other hand, if λ > 0 is
turned on (no matter how small it is), two critical points will present. It is shown that, for λR2 = 0.01
(middle), the stable region is bounded between C3 = 0.0449 and 0.1685 and shrinks as λR2 increases
until λR2 = 0.01786 (bottom), at which C3 = 0.1164, the two critical points, become degenerate.
In Table 1, we list the corresponding compactness C3 and central velocity dispersion vc of stable
regions with various λR2 ≥ 0.

For N > 3, the fluid is genuinely unstable in NG. In GR, however, the fluid becomes
stabilized if λ < 0 is turned on. For N = 4, 5, 6 and 7, we also identify the lower bound of
λR2 in Table 2 that the fluid can still collapse into a black hole under the causal limit vc = 1.
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Figure 2. N = 3: Pressure-averaged & critical adiabatic indices (top panels), and central velocity
dispersion vc (bottom panels) vs. compactness C3 given λ < 0. The configurations are unstable if
〈γ〉 < γcr, and the instabilities will set in at critical points 〈γ〉 = γcr. There is only one critical point
for λ < 0. For λR2 = −0.01 (left), the instability is to be triggered at C3 = 0.202 with vc = 0.737;
however, for λR2 = −0.02 (middle), it occurs at C3 = 0.212 with vc = 0.782. Compared to λR2 = 0
in Figure 1 (top), it becomes harder to trigger the instabilities as higher C3 (thus vc) is required if λ

is more negative until λR2 = −0.094853 (right), at which C3 = 0.248 with the causal limit vc = 1.
Beyond this point, no physical configuration can trigger the instability on the grounds of causality.
In Table 2, we list the critical points at causal limits for N = 3, 4, 5, 6 and 7.

Table 1. N = 3: Stable regions 〈γ〉 ≥ γcr with various λR2 > 0. There is no stable configuration for
λR2 & 0.01786.

λR2 C3 = M/R vc = v(0) 〈γ〉

0 0–0.189057 0–0.681433 1.66667–1.62190

0.010 0.044912–0.16846 0.240284–0.604073 1.66116–1.63163
0.015 0.075802–0.149753 0.328969–0.541498 1.65634–1.63857
0.016 0.084228–0.14377 0.352167–0.522649 1.65483–1.64051
0.017 0.09501–0.13543 0.3818–0.497134 1.65275–1.64302
0.0175 0.10278–0.12889 0.403279–0.47766 1.65113–1.64485
0.0176 0.10485–0.12705 0.409033–0.472255 1.65069–1.64534
0.0177 0.10738–0.12475 0.416092–0.465544 1.65013–1.64594
0.0178 0.1109–0.1215 0.425964–0.456132 1.64933–1.64678
0.01785 0.1142–0.1183 0.435279–0.446946 1.64856–1.64757

0.01786 0.1164 0.441523 1.64804

Table 2. Critical points for N = 3, 4, 5, 6, and 7 with λ < 0 at causal limit vc = 1.

N CN λR2 〈γ〉 = γcr

3 0.248179 −0.094853 1.56387
4 0.117505 −0.134605 1.43352
5 0.062846 −0.151149 1.35328
6 0.037099 −0.154395 1.29861
7 0.023595 −0.151406 1.25884

4.2. Fluid Disks in (2 + 1)-Dimensional Spacetime

It is well known that (2 + 1) GR has no local degrees of freedom (locally flat), thus
no gravitational wave (or graviton) can propagate. This means that particles do not
gravitate if they are static in the (2 + 1)-dimensional spacetime [50,61,62]. On the other
hand, the collective behavior of particles demands the fluid description under the influ-
ence of gravity [50]. To have hydrostatic equilibrium, a negative cosmological constant
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λ = −1/`2 is to guarantee not only hydrostatic equilibrium [42] (the pressure is monoton-
ically decreasing) but also permit a black hole solution (BTZ) in (2 + 1) dimensions. The
metric interior to the fluid disk turns out to be

ds2
disk = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dφ2 with e−2Λ(r) = 1− 2M(r) +

r2

`2 . (38)

Note that, in (2 + 1) dimensions, the integration constant in e−2Λ(r) is arbitrary, but it can
always be normalized to “unity” by adjusting the natural mass scale G2. On the other hand,
the non-rotating BTZ metric reads

ds2
BTZ = − f (r)dt2 +

dr2

f (r)
+ r2dφ2 with f (r) = −MBTZ +

r2

`2 . (39)

To match spacetime of the fluid interior to the BTZ exterior, the junction condition at
the fluid radius R leads to the relation of the BTZ mass and the fluid mass

MBTZ = 2M− 1. (40)

We note that the ADM mass in (2 + 1) is the BTZ mass [63–65], rather than the
fluid mass. The phase diagrams of homogeneous fluid configurations with 0 < M ≤
0.5 and M > 0.5 are shown in Figure 3a,b, respectively. The absence of fluid M = 0
corresponds to the BTZ bound state (anti-de Sitter space)MBTZ = −1, which is separated
from the mass spectrum. The fluid mass M = 0.5 is the BTZ ground (vacuum) state
MBTZ = 0. For 0 <M < 0.5, they are a sequence of states of naked conical singularity [63],
−1 <MBTZ < 0, if the fluid were to collapse. Furthermore, the threshold to have BTZ
excited state MBTZ > 0 is M > 0.5. It is interesting to note that the central velocity
dispersion vc is always monotonically increasing in

∣∣∣λR2
∣∣∣ for 0 <M≤ 0.5, while there are

minima of vc 6= 0 forM > 0.5, and no causal solution ifM & 0.5208. This manifests that
the two-phase diagrams are separated by the phase boundaryM = 0.5 (orMBTZ = 0).
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Figure 3. vc − λR2 phase diagrams of homogeneous fluid disks in (2 + 1) dimensions with the total
fluid mass (a) 0 <M ≤ 0.5; and (b)M > 0.5. The BTZ bound state (AdS spacetime)MBTZ = −1
(M = 0 only if R = 0 as ρ 6= 0) is separated from the mass spectrum. The fluid solution for
M & 0.5208 is forbidden regarding causality. In Appendix F, we list the corresponding λR2 at causal
limit vc = 1 for various 0 <M≤ 0.5 in Table A1 andM > 0.5 in Table A2, respectively. The minima
of vc for M > 0.5 are shown in Table A3. (a) 0 < M ≤ 0.5 (−1 < MBTZ ≤ 0); (b) M > 0.5
(MBTZ > 0).

By Chandrasekhar’s criterion at the critical point 〈γ〉 = γcr, we can examine if the BTZ
excited states and the BTZ bound states (naked singularities) can result from a collapsing
fluid. For a homogeneous disk, the critical adiabatic index, Equation (37), reduces to
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γcr = −1 + ∑
j,k=0,1,...

f (2)jk M
j
(

λR2
)k

=

(
−1

3

(
λR2

)
− 11

72

(
λR2

)2
− 37

432

(
λR2

)3
+ . . .

)

+

(
−3

4

(
λR2

)
− 3

4

(
λR2

)2
− 125

192

(
λR2

)3
+ . . .

)
M (41)

+

(
−19

12

(
λR2

)
− 733

288

(
λR2

)2
− 439

144

(
λR2

)3
+ . . .

)
M2

+

(
−157

48

(
λR2

)
− 133

18

(
λR2

)2
− 821

72

(
λR2

)3
+ . . .

)
M3 +O

(
M4

)
.

It ostensibly starts from “zero” rather than “one” in NG as λR2 → 0. However,
Equation (41) is not necessarily convergent to zero as λR2 → 0, and the convergence really
relies on the fluid massM. In fact, γcr → 0 as λR2 → 0 only if M≤ 0.5 when the fluid is
being compressed. Thus, the presence of the negative cosmological constant makes the
relativistic instability hardly be triggered forM≤ 0.5. In Figure 4 (left), we takeM = 0.4,
for example, and it is always γcr < 〈γ〉, thus stable, under causal region vc ≤ 1. On the
other hand, the instability could set in if the fluid disk exceeds, no matter how tiny amount,
the thresholdM = 0.5 (orMBTZ = 0). Nevertheless, some external agent must compress
the fluid to make it unstable if λ is fixed. In Figure 4 (middle), forM = 0.508, the instability
can set in at λR2 = −0.0247 with central velocity dispersion vc = 0.799. For higherM, both∣∣∣λR2

∣∣∣ and vc increase at the critical point of instability untilM = 0.518 at λR2 = −0.0609
with vc = 1. Beyond this mass, there is no unstable configuration under causal range
vc ≤ 1. In Appendix F, we also list the critical points (λR2, vc) of instability for various
masses 0.5 <M . 0.518 in Table A4.
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Figure 4. N = 2: Pressure-averaged and critical adiabatic indices (top panels), and central velocity
dispersion vc (bottom panels) vs. curvature parameter λR2. The configurations are unstable if
〈γ〉 < γcr, and the instabilities will set in at critical points 〈γ〉 = γcr. The arrows on the lines of
adiabatic indices exhibit the directions when the fluid sphere is being compressed while keeping
C2 = M and λ fixed. For M ≤ 0.5, there is no crossing of the two indices, thus no instability
will be triggered. For example, forM = 0.4 (left), γcr (〈γ〉) is maximal (minimal) at vc = 1 and
decreases down (increases up) to zero (one) as R decreases and the two indices never cross. On the
contrary, instabilities can occur forM > 0.5. ForM = 0.508 (middle), the instability can set in at
λR2 = −0.0247 with vc = 0.799; however, forM = 0.518 (right), it is at λR2 = −0.0609 with vc = 1;
no instability can be triggered ifM & 0.518 regarding causality.

5. Discussions and Implications

We have derived Chandrasekhar’s criterion in (N + 1) spacetime with and without
cosmological constant. As an illustration, we take the homogeneous solution to determine
the instability provided that the sphere is composed of an ideal monatomic fluid.
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In (3 + 1) spacetime, the privileged position is manifest as it is the marginal dimension-
ality in which the fluid sphere is stable but not too stable to trigger the onset of gravitational
collapse. In particular, it is the unique dimensionality that allows a stable hydrostatic equilib-
rium with a positive cosmological constant. For higher spatial dimensions, the fluid sphere
is genuinely unstable either in the context of NG or GR. However, a negative cosmological
constant can stabilize it.

In (2 + 1) spacetime, the effect of negative cosmological constant wins the relativistic
effect so that it is too stable for a fluid disk of mass 0 <M≤ 0.5 to collapse into a naked
singularity. This somewhat supports the Cosmic Censorship Conjecture [66]. However,
the BTZ hole emergence is possible from a collapsing fluid under proper conditions. This
is reasonable because, if it were not the case, the anti-de Sitter spaceMBTZ = −1 (bound
state) could be deformed continuously into a BTZ black hole of massMBTZ ≥ 0 (vacuum or
excited state) by growing the mass of the fluid disk fromM = 0 toM≥ 0.5.

We now summarize the assumptions made implicitly in the results and the implica-
tions:

Assumptions:

• First law of thermodynamics and equipartition theorem hold;
• Mass–energy dispersion relation E =

√
p2 + m2 is valid;

• Einstein equations hold in (N + 1) dimensions.

The particles in a fluid sphere (or disk) are well thermalized at each local point in
the spacetime such that the equipartition theorem holds; thus, the pressure is isotropic
macroscopically. Microscopically, every particle in the fluid follows the mass–energy
relation if the Lorentz symmetry is locally preserved. This is based on the assumption
that particle states can be described by vectors in some irreducible representation of the
Poincaré group; however, Lorentz symmetry is not necessary if the vectors describing
particles can be generated from a vacuum vector with the help of local field operators [67].
In the fluid description, its adiabatic index can vary from 1+ 2/N to 1+ 1/N as particles go
from non-relativistic to ultra-relativistic regimes as more and more gravitational energy is
converted into the fluid. On the gravity side, we restrict to only “one time dimension” since
the hyperbolicity of field equations (in this note GR or its Newtonian limit) determines the
causal structure [8], hence the “predictivity” allows physicists to do theoretical physics.
Moreover, in view of the Ostrogradsky theorem [68], the field equations are at most second
derivative because equations of motion with higher-order derivatives are in principle
unstable or non-local. Both GR and NG are free of Ostrogradsky instability.

Although the gravitational attraction of a fluid is becoming weaker as space dimension
N increases, its pressure is even weaker when being compressed because the randomly
moving particles inside the fluid will have more directions to go, and thus be easier to
collapse. This is the reason why an ideal monatomic fluid is genuinely unstable in higher
dimensions:

Implications:

• Baby universe emerges from collapsing matter in a black hole;
• Spacetime dimensionality reshuffles in the reign of quantum gravity.

We can reexamine the idea that the observable universe is the interior of a black
hole [69–74] existing as one of possibly many inside a larger parent universe, or multiverse.
Since singularity is generic [75–79] in GR, some limiting curvature must exist [80,81] to
avoid the singularity formation and transition to a baby universe. Several mechanisms,
including extended GR with torsion [82], invoking stringy Hagedorn matter [24,83] to
produce a bouncing solution [84,85], braneworld scenario [86,87], or transition through an
S-brane [88], have been introduced to realize the idea.

Suppose the space dimension reshuffling is a random process as collapsing matter
into a black hole in a universe of arbitrary space dimension N. When the collapsing matter
is squeezed down to the Planck scale (near the classical black hole singularity), it would
emerge to a new universe with different space dimensions. The change of spacetime
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dimensions through phase transition near the Planck scale might require some unknown
theory of quantum gravity or string theory [11,12]. Some inflation models that predict
parts of exponentially large size having different dimensionalities [89] might provide
an alternative mechanism. This process will repeat again and again until the new-born
universe is just (3 + 1)-dimensional, which is stable but not too stable for the pristine gas
in it to form complicated structures, including both black holes and stars. In any higher
dimensions N > 3, it is too easy for matter to collapse into black holes; in (2 + 1), and there
is no way to form black holes from self-gravitating fluid without external agents—Both are
too barren to have complex structures.

The above discussion reverberates the anthropic principle [5,6,90–92] in one way or
another, though it only relies on the assumptions regardless of the anthropic reasoning.
However, it tells more than that because gravitationally bound states of monatomic fluid
are genuinely unstable and bound to black holes immediately in space dimensions higher
than three. Although a negative cosmological constant could stabilize the fluid spheres, it
decelerates the expansion of the whole universe on a large scale. This leads to another issue
on the anthropic bound of cosmological constant [6,92,93], even though the falsifiability
has been criticized [94,95]. In (3 + 1), the anthropic bound on the positive cosmological
constant [96] argues that it could not be very large, or the universe would expand too fast
for galaxies or stars (or us) to form. While once these local structures are detached from the
background expansion, its smallness also prevents the gravitationally bound state (typically
of mass much less than 1021 M�) from forming a black hole immediately given the current
cosmological constant observed.

Why N = 3? Perhaps the more sensible question is not what makes (3 + 1) the
preferred dimensionality [9–12], but, rather, why the physical principles (thermodynamics,
Lorentz symmetry, GR,. . . ) allow fecund universes to exist only in (3 + 1), which is the unique
dimensionality that permits stable hydrostatic equilibrium with a positive cosmological constant.
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Appendix A. Thermodynamic Identity

Assuming the EoS n = n(ρ, p), we have(
∂n
∂ρ

)
s

=

(
∂n
∂ρ

)
p

+

(
∂n
∂p

)
ρ

(
∂p
∂ρ

)
s

(A1)

and the first law of thermodynamics under adiabatic process leads to(
∂n
∂ρ

)
s

=
n0

ρ0 + p0
. (A2)
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Combining the above results, we obtain(
∂n
∂ρ

)
p

=
n0

ρ0 + p0
−
(

∂n
∂p

)
ρ

(
∂p
∂ρ

)
s

(A3)

where the subscript s denotes an isentropic (adiabatic) process.

Appendix B. Ideal Monatomic Fluid in N-Dimensional Space

If we assume a fluid element of volume V , and composed of N structureless point
particles with the same mass m in N-dimensional space, then

n(x) =
N
∑
i=1

δ(N)(x− xi) =
N
V , (A4)

ρ(x) =
N
∑
i=1

Eiδ
(N)(x− xi), (A5)

p(x) =
1
N

N
∑
i=1

p2
i

Ei
δ(N)(x− xi), (A6)

with the velocity of the i−th particle being vi = pi/Ei. We have

pi =
mvi√
1− v2

i

, (A7)

Ei =
|pi|
|vi|

=
m√

1− v2
i

. (A8)

Given a distribution of these particles, we may take the root-mean-square speed as
velocity dispersion by

v ≡ vrms =

√√√√ V
N
N
∑

i
v2

i δ(N)(x− xi). (A9)

First, we express (root-mean-square speed averaged) energy density ρ = ρ(p), by

p =
1
N

N
∑

i

p2
i

Ei
δ(N)(x− xi) =

1
N

N
∑

i
Eiv2

i δ(N)(x− xi) =
1
N

ρv2, thus ρ =
Np
v2 (A10)

Second, we express mn = mn(p) by

p =
1
N

N
∑

i

(
mvi√
1− v2

i

)2
√

1− v2
i

m
δ(N)(x− xi) =

1
N

N
∑

i

v2
i√

1− v2
i

mδ(N)(x− xi) =
1
N

v2
√

1− ṽ2
mn, (A11)

whence we can identify

1√
1− ṽ2

mn = ρ, thus mn =
N
√

1− ṽ2

v2 p. (A12)

The internal energy density

u ≡ ρ−mn =
N(1−

√
1− ṽ2)

v2 p ≡ (γ− 1)−1 p, (A13)
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and, as ṽ ' v, we find

γ(v) = 1 +
v2/N

1−
√

1− v2
= 1 +

1 +
√

1− v2

N
. (A14)

As expected, in a nonrelativistic limit (v→ 0), γ→ 1 + 2/N; in extremely relativistic
limit (v→ 1), γ→ 1 + 1/N.

Appendix C. The Critical Adiabatic Index in Newtonian Gravity

Starting from the pulsation equation in NG

ω2ρξ =
2(N − 1)

r
dp
dr

ξ −
[

γp
rN−1

(
rN−1ξ

)′]′
, (A15)

we perform the integration over r with ξ over the sphere with proper measure rN−1 (see
Appendix D in the Newtonian limit p� ρ and Φ, Λ� 1), and after integration by parts,
one obtains

ω2
∫

ρξ2rN−1dr =
∫

γp
rN−1

(
rN−1ξ

)′2
dr− 2(N − 1)

∫
p
(

rN−2ξ2
)′

dr.

Once the trial function ξ = r is chosen, we obtain

ω2
∫

ρrN+1dr =
∫ [

N2γ− 2N(N − 1)
]

prN−1dr.

By the Rayleigh–Ritz principle, this implies that the critical adiabatic index

γcr = 2
(

1− 1
N

)
(A16)

with the pressure-averaged adiabatic index

〈γ〉 =
∫

γprN−1dr∫
prN−1dr

. (A17)

As a result, 〈γ〉 > 2(1− 1/N) corresponds to stable oscillations (ω2 > 0); 〈γ〉 <
2(1− 1/N) corresponds to unstable collapse or explosion (ω2 < 0); and 〈γ〉 = 2(1− 1/N)
is marginal stable (ω2 = 0). We note that this result is genuine and can be derived also by
mode expansion of the trial function ξ in [36].

Appendix D. The Orthogonality Relation and Rayleigh–Ritz Principle

The orthogonality relation:∫
e2(Λ−Φ)(ρ + p)ξ(i)ξ(j)√−gdr =

∫
e3Λ−Φ(ρ + p)rN−1ξ(i)ξ(j)dr = 0 (i 6= j), (A18)

where ξ(i) and ξ(j) are the proper (eigen)solutions belonging to different characteristic
values of ω2. Equation (24) can be written as

−∂2ξ

∂t2 = ω2ξ = Aξ, (A19)

where A is a linear differential operator which is self-adjoint, i.e.,

〈ξ(i), Aξ(j)〉 = 〈Aξ(i), ξ(j)〉, (A20)
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with the inner product 〈·, ·〉 taken with a weight factor, e3Λ−Φ(ρ + p)rN−1 in our case.
By the Rayleigh–Ritz principle, we have

ω2 ≤ 〈ξ, Aξ〉
〈ξ, ξ〉 , (A21)

for some chosen “trial function” ξ (which need not be an eigensolution). Thus, if 〈ξ, Aξ〉 =
0, we obtain ω2 ≤ 0; then, ξ grows without bounds, and the perturbation is unstable.
Therefore, a “sufficient” condition for the onset of dynamical instability is that the RHS of
Equation (27) vanishes for the chosen ξ, which satisfies the required boundary conditions.

Appendix E. A Rigorous Proof on the Buchdahl Bound

The basic assumptions in the Buchdahl stability bound are:

• The energy density ρ is finite and monotonically non-increasing, i.e., dρ/dr ≤ 0;
• e2Φ and e2Λ are positive definite, thus no horizon is present inside the fluid sphere.

Including the cosmological constant λ, ρλ and pλ is given by κNρλ = N(N−1)
2 λ = −κN pλ,

and the TOV equation Equation (9) along with the conservation law p′ = −(ρ + p)Φ′

becomes

κN
N − 1

p = −(N − 2)
M
rN + λ +

1
r

(
1− 2M

rN−2 − λr2
)

dΦ
dr

, with M(r) =
κN

N − 1

∫ r

0
ρ(r̄)r̄N−1dr̄.

Now, we consider taking a derivative with respect to r of the above equation,

κN
N − 1

dp
dr

= −(N − 2)
d
dr

(
M
rN

)
+

d
dr

[
1
r

(
1− 2M

rN−2 − λr2
)

dΦ
dr

]
. (A22)

In addition, note that, if dρ/dr ≤ 0, the first term on the RHS of Equation (A22)

d
dr

(
M
rN

)
=

(
dM
dr

)
1

rN −
NM
rN+1 =

κN
(N − 1)r

(
ρ− ρ̄

)
< 0, (A23)

where ρ̄ is defined through the mean value theorem for 0 ≤ r0 ≤ r,

M(r) =
κN

N(N − 1)
ρ(r0)rN ≡ κN

N(N − 1)
ρ̄(r)rN

and ρ̄(r) ≥ ρ(r) if dρ/dr ≤ 0. Furthermore, the second term on the RHS of Equation (A22)
can be written as

d
dr

(Φ′

r
eΦ

√
1− 2M

rN−2 − λr2

)(
e−Φ

√
1− 2M

rN−2 − λr2

) =
d
dr

(Φ′

r
eΦe−Λ

)(
e−Φe−Λ

)
= e−Φe−Λ d

dr

(
Φ′

r
eΦe−Λ

)
+

Φ′

r
eΦe−Λ d

dr

(
e−Φe−Λ

)
with e2Λ =

[
1− 2M

rN−2 − λr2
]−1

(A24)

and
d
dr

(
e−Λ

)
= −eΛ

[
d
dr

(
M

rN−2

)
+ λr

]
.

Therefore,

e−Λ d
dr

(
e−Φe−Λ

)
= e−Λ

−e−ΦeΛ

(
d
dr

(
M

rN−2

)
+ λr

)
− e−ΦΦ′e−Λ

 = −e−Φ


[

d
dr

(
M

rN−2

)
+ λr

]
+ Φ′e−2Λ
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= −e−Φ


( κNρ

N − 1
− (N − 2)M

rN + λ

)
r

+ Φ′e−2Λ

 = −e−Φ

[
κN(ρ + p)

N − 1

]
r, (A25)

where we have used the TOV equation in the last equality

− (N − 2)M
rN + λ =

κN
N − 1

p− 1
r

e−2ΛΦ′.

Combining Equations (A22)–(A25), and the conservation law p′ = −(ρ + p)Φ′, it
turns out

(N − 2)eΦ+Λ d
dr

(
M
rN

)
=

d
dr

(
Φ′

r
eΦe−Λ

)
≤ 0. (A26)

Integration of Equation (A26) from r to R gives

Φ′(R)
R

eΦ(R)−Λ(R) − Φ′(r)
r

eΦ(r)−Λ(r) ≤ 0,

and also note that, in vacuum,

eΦ(r) =

√
1− 2M

rN−2 − λr2 = e−Λ(r) for r ≥ R,

so

Φ′(R)eΦ(R) =
d
dr

(
eΦ(r)

)∣∣∣∣∣
r=R

=
(N − 2) MRN−1 − λR√

1− 2M
RN−2 − λR2

=

[
(N − 2)

M
RN−1 − λR

]
eΛ(R)

⇒ Φ′(R)
R

eΦ(R)−Λ(R) =

[
(N − 2)

(
M
RN

)
− λ

]
⇒ Φ′(r)

r
eΦ(r)−Λ(r) ≥

[
(N − 2)

(
M
RN

)
− λ

]
or

Φ′(r)eΦ(r) ≥ reΛ(r)

[
(N − 2)

(
M
RN

)
− λ

]
. (A27)

Integration of Equation (A27) from 0 to R yields

eΦ(R) > eΦ(R) − eΦ(0) ≥
[
(N − 2)

(
M
RN

)
− λ

] ∫ R

0

rdr√
1− 2M(r)

rN−2 − λr2
(A28)

and the non-increasing monotonicity of ρ leads to the inequality

M(r) =
κN

N(N − 1)
rN ρ̄(r) =

(
r
R

)N κN
N(N − 1)

RN ρ̄(r) ≥
(

r
R

)N κN
N(N − 1)

RN ρ̄(R) =
(

r
R

)N
M,

hence

∫ R

0

rdr√
1− 2M(r)

rN−2 − λr2
≥
∫ R

0

rdr√
1− 2M

RN r2 − λr2
=

[
1−
√

1− 2M/RN−2 − λR2

2M/RN + λ

]
> 0 (A29)

either for 2M/RN + λ > 0 or < 0 if there is no horizon inside the sphere. Consequently,
Equations (A28) and (A29) give rise to√

1− 2M
RN−2 − λR2 = eΦ(R) >

[(
N − 2

2

)(
2M

RN−2

)
− λR2

][
1−
√

1− 2M/RN−2 − λR2

2M/RN−2 + λR2

]
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or √
1− 2CN − a >

[
(N − 2)CN − a

][1−
√

1− 2CN − a
2CN + a

]
(A30)

with CN ≡M/RN−2 > 0 and a ≡ λR2. Note that if 2CN + a = 0, we have 1 > NCN × 1
2 →

2CN = 2M/RN−2 = −λR2 = −a < 4/N. However, if 2CN + a 6= 0, one obtains

NCN
√

1− 2CN − a ≷
[
(N − 2)CN − a

]
if 2CN + a ≷ 0.

Both lead to the same inequality:

C2
N −

2
N

(
N − 1

N

)
CN +

a
N2 < 0 (A31)

and hence

N − 1
N2

1−

√
1− N2a

(N − 1)2

 < CN <
N − 1

N2

1 +

√
1− N2a

(N − 1)2

. (A32)

Appendix F. Various Tables for N = 2

Table A1. End points of λR2 for N = 2 with various fluid mass 0 < C2 =M ≤ 0.5 at causal limit
vc = 1.

C2 = M λR2 〈γ〉 γcr

0.1 −1.08681 1.81892 0.289458
0.2 −0.91554 1.81892 0.312447
0.3 −0.73198 1.81892 0.347248
0.4 −0.52604 1.81893 0.410982
0.5 −0.25 1.81893 0.636364

Table A2. The lower and upper causal limits (vc = 1) of λR2 with various fluid mass C2 =M > 0.5.
The two causal limits become degenerate atM = 0.52083̄.

C2 = M λR2 (Lower/Upper) 〈γ〉 (Lower/Upper) γcr (Lower/Upper)

0.501 −0.245968/−0.0020368908 1.81892/1.81893 0.643072/44.9933
0.504 −0.233361/−0.00863897 1.81893/1.81892 0.665408/10.8801
0.508 −0.215107/−0.0188929 1.81892/1.81892 0.702112/5.16155
0.512 −0.194394/−0.0316059 1.81893/1.81893 0.751605/3.21809
0.516 −0.169208/−0.048792 1.81893/1.81893 0.827182/2.19555
0.520 −0.13/−0.08 1.81893/1.81893 1.00000/1.45455
0.5208 −0.1092/−0.0992 1.81893/1.81893 1.13986/1.22727

0.52083̄ −0.10416̄ 1.81893 1.18182
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Table A3. The minimal vc and the corresponding λR2 with various fluid mass C2 = M > 0.5.
M' 0.5208 is the upper bound without violation of the causal limit vc = 1.

C2 = M λR2 vc = v(0) 〈γ〉 γcr

0.50001 −0.0000401797 0.134047 1.99701 1.00447
0.5001 −0.000405737 0.239529 1.99045 1.01407
0.501 −0.00418706 0.432509 1.96890 1.04396
0.504 −0.0175648 0.625459 1.93483 1.08603
0.508 −0.0365920 0.757625 1.90366 1.11908
0.512 −0.0566768 0.850335 1.87713 1.14315
0.516 −0.0776784 0.924608 1.85193 1.16248
0.520 −0.0995169 0.987848 1.82538 1.17873
0.5208 −0.10398 0.999520 1.81921 1.18170

0.52083̄ −0.10416̄ 1 1.81893 1.18182

Table A4. The critical λR2 with various fluid mass C2 = M > 0.5 under causal range vc ≤ 1.
M' 0.518 is the upper bound at which the instability can be triggered without violation of causal
limit vc = 1.

C2 = M λR2 vc = v(0) 〈γ〉 = γcr

0.501 −0.0027978 0.461740 1.96455
0.504 −0.0117926 0.663440 1.92657
0.508 −0.0247187 0.799338 1.89227
0.512 −0.0385385 0.893364 1.86307
0.516 −0.0532156 0.967696 1.83468
0.518 −0.0609066 0.999979 1.81894

0.5180013 −0.0609116 1 1.81893

References
1. Ehrenfest, P. In what way does it become manifest in the fundamental laws of physics that space has three dimensions? Proc.

Amst. Acad. 1918, 20, 200–209.
2. Ehrenfest, P. Welche Rolle spielt die Dreidimensionalität des Raumes in den Grundgesetzen der Physik? Ann. Phys. 1920,

366, 440–446. https://doi.org/10.1002/andp.19203660503.
3. Whitrow, G.J. Why Physical Space Has Three Dimensions. Br. J. Philos. Sci. 1955, 6, 13–31. https://doi.org/10.1093/bjps/vi.21.13.
4. Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 1963, 27, 636–651.

https://doi.org/10.1007/BF02784569.
5. Barrow, J.D. Dimensionality. Philos. Trans. R. Soc. Lond. A 1983, 310, 337–346. https://doi.org/10.1098/rsta.1983.0095.
6. Barrow, J.D.; Tipler, F.J. The Anthropic Cosmological Principle; Oxford University Press: Oxford, UK, 1988.
7. Caruso, F.; Moreira Xavier, R. On the Physical Problem of Spatial Dimensions: An Alternative Procedure to Stability Arguments.

Fund. Sci. 1987, 8, 73–91.
8. Tegmark, M. On the dimensionality of space-time. Class. Quant. Grav. 1997, 14, L69–L75. https://doi.org/10.1088/0264-

9381/14/4/002.
9. Momen, A.; Rahman, R. Spacetime Dimensionality from de Sitter Entropy. TSPU Bull. 2014, 12, 186–191.
10. Gonzalez-Ayala, J.; Cordero, R.; Angulo-Brown, F. Is the (3 + 1)-d nature of the universe a thermodynamic necessity? EPL 2016,

113, 40006. https://doi.org/10.1209/0295-5075/113/40006.
11. Brandenberger, R.H.; Vafa, C. Superstrings in the Early Universe. Nucl. Phys. B 1989, 316, 391–410. https://doi.org/10.1016/0550-

3213(89)90037-0.
12. Greene, B.; Kabat, D.; Marnerides, S. On three dimensions as the preferred dimensionality of space via the Brandenberger-Vafa

mechanism. Phys. Rev. D 2013, 88, 043527. https://doi.org/10.1103/PhysRevD.88.043527.
13. Durrer, R.; Kunz, M.; Sakellariadou, M. Why do we live in 3 + 1 dimensions? Phys. Lett. B 2005, 614, 125–130.

https://doi.org/10.1016/j.physletb.2005.04.023.
14. Nielsen, H.B.; Rugh, S.E. Why do we live in (3 + 1)-dimensions? In Proceedings of the 26th International Ahrenshoop Symposium

on the Theory of Elementary Particles, Buckow, Germany, 27–31 August 1993.
15. Deser, S. Why does D = 4, rather than more (or less)? An Orwellian explanation. Proc. R. Soc. Lond. A 2020, 476, 20190632.

https://doi.org/10.1098/rspa.2019.0632.
16. Carlip, S. Dimension and Dimensional Reduction in Quantum Gravity. Class. Quant. Grav. 2017, 34, 193001.

https://doi.org/10.1088/1361-6382/aa8535.



Astronomy 2023, 2 44

17. Pardo, K.; Fishbach, M.; Holz, D.E.; Spergel, D.N. Limits on the number of spacetime dimensions from GW170817. JCAP 2018,
7, 48. https://doi.org/10.1088/1475-7516/2018/07/048.

18. Scargill, J.H.C. Can Life Exist in 2 + 1 Dimensions? Phys. Rev. Res. 2020, 2, 013217. https://doi.org/10.1103/PhysRevResearch.
2.013217.

19. Ponce de Leon, J.; Cruz, N. Hydrostatic equilibrium of a perfect fluid sphere with exterior higher dimensional Schwarzschild
space-time. Gen. Rel. Grav. 2000, 32, 1207–1216. https://doi.org/10.1023/A:1001982402392.

20. Paul, B.C. Relativistic star solutions in higher dimensions. Int. J. Mod. Phys. D 2004, 13, 229–238. https://doi.org/10.1142/
S021827180400444X.

21. Zarro, C.A.D. Buchdahl limit for d-dimensional spherical solutions with a cosmological constant. Gen. Rel. Grav. 2009, 41, 453–468.
https://doi.org/10.1007/s10714-008-0675-8.

22. Buchdahl, H.A. General Relativistic Fluid Spheres. Phys. Rev. 1959, 116, 1027. https://doi.org/10.1103/PhysRev.116.1027.
23. Goswami, R.; Maharaj, S.D.; Nzioki, A.M. Buchdahl-Bondi limit in modified gravity: Packing extra effective mass in relativistic

compact stars. Phys. Rev. D 2015, 92, 064002. https://doi.org/10.1103/PhysRevD.92.064002.
24. Feng, W.X.; Geng, C.Q.; Luo, L.W. The Buchdahl stability bound in Eddington-inspired Born-Infeld gravity. Chin. Phys. C 2019,

43, 083107. https://doi.org/10.1088/1674-1137/43/8/083107.
25. Chakraborty, S.; Dadhich, N. Universality of the Buchdahl sphere. arXiv 2022, arXiv2204.10734.
26. Chandrasekhar, S. Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. Phys.

Rev. Lett. 1964, 12, 114–116. https://doi.org/10.1103/PhysRevLett.12.114.
27. Chandrasekhar, S. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity.

Astrophys. J. 1964, 140, 417–433. Erratum in: Astrophys. J. 1964, 140, 1342. https://doi.org/10.1086/147938.
28. Zel’dovich, Y.B.; Podurets, M.A. The Evolution of a System of Gravitationally Interacting Point Masses. Sov. Astron. 1966, 9, 742.
29. Ipser, J.R. A binding-energy criterion for the dynamical stability of spherical stellar systems in general relativity. Astrophys. J.

1980, 238, 1101. https://doi.org/10.1086/158076.
30. Günther, S.; Straub, C.; Rein, G. Collisionless equilibria in general relativity: Stable configurations beyond the first binding energy

maximum. Astrophys. J. 2021, 918, 48, https://doi.org/10.3847/1538-4357/ac0eef.
31. Feng, W.X.; Yu, H.B.; Zhong, Y.M. Dynamical Instability of Collapsed Dark Matter Halos. JCAP 2022, 5, 36, https://doi.org/10.1088/

1475-7516/2022/05/036.
32. Lynden-Bell, D.; Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar

systems. Mon. Not. R. Astron. Soc. 1968, 138, 495. https://doi.org/10.1093/mnras/138.4.495.
33. Spitzer, L. Dynamical Evolution of Globular Clusters; Princeton University Press: Princeton, NJ, USA, 1987.
34. Boehmer, C.G.; Harko, T. Dynamical instability of fluid spheres in the presence of a cosmological constant. Phys. Rev. D 2005,

71, 084026. https://doi.org/10.1103/PhysRevD.71.084026.
35. Posada, C.; Hladík, J.; Stuchlík, Z. Dynamical instability of polytropic spheres in spacetimes with a cosmological constant. Phys.

Rev. D 2020, 102, 024056. https://doi.org/10.1103/PhysRevD.102.024056.
36. Arbañil, J.D.V.; Carvalho, G.A.; Lobato, R.V.; Marinho, R.M.; Malheiro, M. Extra dimensions’ influence on the equilibrium and

radial stability of strange quark stars. Phys. Rev. D 2019, 100, 024035. https://doi.org/10.1103/PhysRevD.100.024035.
37. Haemmerlé, L. General-relativistic instability in hylotropic supermassive stars. Astron. Astrophys. 2020, 644, A154.

https://doi.org/10.1051/0004-6361/202039828.
38. Feng, W.X.; Yu, H.B.; Zhong, Y.M. Seeding Supermassive Black Holes with Self-Interacting Dark Matter: A Unified Scenario with

Baryons. Astrophys. J. Lett. 2021, 914, L26. https://doi.org/10.3847/2041-8213/ac04b0.
39. Roupas, Z. Relativistic Gravothermal Instabilities. Class. Quant. Grav. 2015, 32, 135023. https://doi.org/10.1088/0264-

9381/32/13/135023.
40. Roupas, Z.; Chavanis, P.H. Relativistic Gravitational Phase Transitions and Instabilities of the Fermi Gas. Class. Quant. Grav.

2019, 36, 065001. https://doi.org/10.1088/1361-6382/ab04e5.
41. Roupas, Z. Relativistic Gravitational Collapse by Thermal Mass. Commun. Theor. Phys. 2021, 73, 015401. https://doi.org/10.1088/

1572-9494/abc3ae.
42. Cruz, N.; Zanelli, J. Stellar equilibrium in (2 + 1)-dimensions. Class. Quant. Grav. 1995, 12, 975–982. https://doi.org/10.1088/0264-

9381/12/4/008.
43. Banados, M.; Teitelboim, C.; Zanelli, J. The Black hole in three-dimensional space-time. Phys. Rev. Lett. 1992, 69, 1849–1851.

https://doi.org/10.1103/PhysRevLett.69.1849.
44. Ross, S.F.; Mann, R.B. Gravitationally collapsing dust in (2 + 1)-dimensions. Phys. Rev. D 1993, 47, 3319–3322.

https://doi.org/10.1103/PhysRevD.47.3319.
45. Pretorius, F.; Choptuik, M.W. Gravitational collapse in (2 + 1)-dimensional AdS space-time. Phys. Rev. D 2000, 62, 124012.

https://doi.org/10.1103/PhysRevD.62.124012.
46. Husain, V.; Olivier, M. Scalar field collapse in three-dimensional AdS space-time. Class. Quant. Grav. 2001, 18, L1–L10.

https://doi.org/10.1088/0264-9381/18/2/101.
47. Jałmużna, J.; Gundlach, C.; Chmaj, T. Scalar field critical collapse in 2 + 1 dimensions. Phys. Rev. D 2015, 92, 124044.

https://doi.org/10.1103/PhysRevD.92.124044.



Astronomy 2023, 2 45

48. Bourg, P.; Gundlach, C. Critical collapse of a spherically symmetric ultrarelativistic fluid in 2 + 1 dimensions. Phys. Rev. D 2021,
103, 124055. https://doi.org/10.1103/PhysRevD.103.124055.

49. Bourg, P.; Gundlach, C. Critical collapse of an axisymmetric ultrarelativistic fluid in 2 + 1 dimensions. Phys. Rev. D 2021,
104, 104017. https://doi.org/10.1103/PhysRevD.104.104017.

50. Giddings, S.; Abbott, J.; Kuchar, K. Einstein’s theory in a three-dimensional space-time. Gen. Rel. Grav. 1984, 16, 751–775.
https://doi.org/10.1007/BF00762914.

51. Ogilvie, G.I. Astrophysical fluid dynamics. J. Plasma Phys. 2016, 82, 205820301. https://doi.org/10.1017/s0022377816000489.
52. Tooper, R.F. Adiabatic Fluid Spheres in General Relativity. Astrophys. J. 1965, 142, 1541. https://doi.org/10.1086/148435.
53. Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley and Sons:

Hoboken, NJ, USA, 1983.
54. Axenides, M.; Georgiou, G.; Roupas, Z. Gravothermal Catastrophe with a Cosmological Constant. Phys. Rev. D 2012, 86, 104005.

https://doi.org/10.1103/PhysRevD.86.104005.
55. Feng, W.X. Gravothermal phase transition, black holes and space dimensionality. Phys. Rev. D 2022, 106, L041501.

https://doi.org/10.1103/PhysRevD.106.L041501.
56. Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo,

N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. https://doi.org/10.1051/0004-
6361/201525830.

57. Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak,
S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. Erratum: Astron.Astrophys. 2021, 652,
C4. https://doi.org/10.1051/0004-6361/201833910.

58. Prat, J.; Hogan, C.; Chang, C.; Frieman, J. Vacuum energy density measured from cosmological data. JCAP 2022, 6, 15.
https://doi.org/10.1088/1475-7516/2022/06/015.

59. Mo, H.; van den Bosch, F.; White, S. Galaxy Formation and Evolution; Cambridge University Press: Cambridge, MA, USA, 2010.
60. Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley Publishing: Boston, MA, USA, 1990; Volume 69.
61. Deser, S.; Jackiw, R.; ’t Hooft, G. Three-Dimensional Einstein Gravity: Dynamics of Flat Space. Ann. Phys. 1984, 152, 220.

https://doi.org/10.1016/0003-4916(84)90085-X.
62. Deser, S.; Jackiw, R. Three-Dimensional Cosmological Gravity: Dynamics of Constant Curvature. Ann. Phys. 1984, 153, 405–416.

https://doi.org/10.1016/0003-4916(84)90025-3.
63. Banados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J. Geometry of the (2 + 1) black hole. Phys. Rev. D 1993, 48, 1506–1525.

Erratum: Phys. Rev. D 2013, 88, 069902. https://doi.org/10.1103/PhysRevD.48.1506.
64. Brown, J.D.; Henneaux, M. Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from

Three-Dimensional Gravity. Commun. Math. Phys. 1986, 104, 207–226. https://doi.org/10.1007/BF01211590.
65. Brown, J.D.; Creighton, J.; Mann, R.B. Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes. Phys.

Rev. D 1994, 50, 6394–6403. https://doi.org/10.1103/PhysRevD.50.6394.
66. Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo Cim. 1969, 1, 252–276. https://doi.org/10.1023/

A:1016578408204.
67. Borchers, H.J.; Buchholz, D. The Energy Momentum Spectrum in Local Field Theories With Broken Lorentz Symmetry. Commun.

Math. Phys. 1985, 97, 169. https://doi.org/10.1007/BF01206185.
68. Woodard, R.P. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 2015, 10, 32243. https://doi.org/10.4249/

scholarpedia.32243.
69. Pathria, R.K. The Universe as a Black Hole. Nature 1972, 240, 298–299. https://doi.org/10.1038/240298a0.
70. Good, I.J. Chinese universes. Phys. Today 1972, 25, 15. https://doi.org/10.1063/1.3070923.
71. Easson, D.A.; Brandenberger, R.H. Universe generation from black hole interiors. JHEP 2001, 6, 24. https://doi.org/10.1088/1126-

6708/2001/06/024.
72. Gaztanaga, E.; Fosalba, P. A Peek Outside Our Universe. Symmetry 2022, 14, 285. https://doi.org/10.3390/sym14020285.
73. Gaztanaga, E. How the Big Bang Ends Up Inside a Black Hole. Universe 2022, 8, 257. https://doi.org/10.3390/universe8050257.
74. Roupas, Z. Detectable universes inside regular black holes. Eur. Phys. J. C 2022, 82, 255. https://doi.org/10.1140/epjc/s10052-

022-10202-6.
75. Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. https://doi.org/10.1103/

PhysRevLett.14.57.
76. Hawking, S. Occurrence of singularities in open universes. Phys. Rev. Lett. 1965, 15, 689–690. https://doi.org/10.1103/

PhysRevLett.15.689.
77. Geroch, R.P. Singularities in closed universes. Phys. Rev. Lett. 1966, 17, 445–447. https://doi.org/10.1103/PhysRevLett.17.445.
78. Ellis, G.F.R.; Hawking, S. The Cosmic black body radiation and the existence of singularities in our universe. Astrophys. J. 1968,

152, 25. https://doi.org/10.1086/149520.
79. Garfinkle, D. Numerical simulations of generic singularities. Phys. Rev. Lett. 2004, 93, 161101. https://doi.org/10.1103/

PhysRevLett.93.161101.
80. Frolov, V.P.; Markov, M.A.; Mukhanov, V.F. Black Holes as Possible Sources of Closed and Semiclosed Worlds. Phys. Rev. D 1990,

41, 383. https://doi.org/10.1103/PhysRevD.41.383.



Astronomy 2023, 2 46

81. Frolov, V.P.; Markov, M.A.; Mukhanov, V.F. Through a black hole into a New Universe? Phys. Lett. B 1989, 216, 272–276.
https://doi.org/10.1016/0370-2693(89)91114-3.

82. Popławski, N.J. Cosmology with torsion: An alternative to cosmic inflation. Phys. Lett. B 2010, 694, 181–185. Erratum in Phys.
Lett. B 2011, 701, 672–672. https://doi.org/10.1016/j.physletb.2010.09.056.

83. Dubovsky, S.; Flauger, R.; Gorbenko, V. Solving the Simplest Theory of Quantum Gravity. JHEP 2012, 9, 133. https://doi.org/
10.1007/JHEP09(2012)133.

84. Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. JCAP 2006, 3, 9. https://doi.org/10.1088/1475-
7516/2006/03/009.

85. Biswas, T.; Brandenberger, R.; Mazumdar, A.; Siegel, W. Non-perturbative Gravity, Hagedorn Bounce & CMB. JCAP 2007, 12, 11.
https://doi.org/10.1088/1475-7516/2007/12/011.

86. Dvali, G.R.; Gabadadze, G.; Porrati, M. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 2000, 485, 208–214.
https://doi.org/10.1016/S0370-2693(00)00669-9.

87. Pourhasan, R.; Afshordi, N.; Mann, R.B. Out of the White Hole: A Holographic Origin for the Big Bang. JCAP 2014, 4, 5.
https://doi.org/10.1088/1475-7516/2014/04/005.

88. Brandenberger, R.; Heisenberg, L.; Robnik, J. Non-singular black holes with a zero-shear S-brane. JHEP 2021, 5, 90.
https://doi.org/10.1007/JHEP05(2021)090.

89. Linde, A.D.; Zelnikov, M.I. Inflationary Universe With Fluctuating Dimension. Phys. Lett. B 1988, 215, 59–63.
https://doi.org/10.1016/0370-2693(88)91070-2.

90. Smolin, L. The Life of the Cosmos; Oxford University Press: Oxford, UK, 1999.
91. Susskind, L. The Anthropic landscape of string theory. arXiv 2003, arXiv:hep-th/0302219.
92. Linde, A.D. Inflation, quantum cosmology and the anthropic principle. arXiv 2002, arXiv:hep-th/0211048.
93. Bousso, R.; Polchinski, J. The string theory landscape. Sci. Am. 2004, 291, 78–87. https://doi.org/10.1038/scientificamerican0904-

78.
94. Ball, P. Mysterious cosmos. Nature 2004. https://doi.org/10.1038/news040802-21.
95. Smolin, L. Scientific alternatives to the anthropic principle. arXiv 2004, arXiv:hep-th/0407213.
96. Weinberg, S. Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett. 1987, 59, 2607. https://doi.org/10.1103/

PhysRevLett.59.2607.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	introduction
	(N + 1)-Dimensional Spacetime of Spherical Symmetry
	Linear Radial Perturbation and the Adiabatic Index
	The Adiabatic Index of an Ideal Monatomic Fluid
	The Pulsation Equation and the Critical Adiabatic Index
	 The Effect of Cosmological Constant

	Homogeneous Fluid Solutions
	Numerical Results
	Fluid Spheres in (3 + 1) and Higher-Dimensional Spacetime
	Fluid Disks in (2 + 1)-Dimensional Spacetime

	Discussions and Implications
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Various Tables for N=2
	References

