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Abstract: The incompressibility of both nuclear matter and finite nuclei is estimated by the monopole
compression modes in nuclei in the framework of a nonrelativistic Hartree–Fock–Bogoliyubov
method and the coherent density fluctuation model. The monopole states originate from vibrations
of the nuclear density. The calculations in the model for the incompressibility in finite nuclei are
based on the Brueckner energy–density functional for nuclear matter. Results for the energies of
the breathing vibrational states and finite nuclei incompressibilities are obtained for various nuclei
and their values are compared with recent experimental data. The evolution of the isoscalar giant
monopole resonance (ISGMR) along Ni, Sn, and Pb isotopic chains is discussed. This approach can
be applied to analyses of neutron stars properties, such as incompressibility, symmetry energy, slope
parameter, and other astrophysical quantities, as well as for modelling dynamical behaviors within
stellar environments.

Keywords: nuclear matter; finite nuclei; incompressibility; equation of state; symmetry energy;
energy-density functional; nuclear monopole excitations

1. Introduction

In recent years, experimental and theoretical studies of giant resonances have be-
come a rich source of information on the collective response of the nucleus to its density
fluctuations [1,2]. In particular, the isoscalar giant monopole resonance (ISGMR) plays an
important role in constraining the nuclear equation of state (EOS) [2–7]. An important
issue is that the energy of this resonance is closely related to the nuclear incompressibility.
The latter can be connected to the incompressibility of the infinite nuclear matter, which
represents an important ingredient of the nuclear matter EOS. It is well known that the EOS
plays a crucial role in the description of astrophysical quantities, such as radii and masses
of neutron stars, the collapse of the heavy stars in super novae explosions, as well as in
modeling of heavy-ion collision. The 20% uncertainty of the currently accepted value of the
incompressibility of nuclear matter is largely driven by the poor determination of the EOS
isospin asymmetry term. Therefore, to make this term more precise, recent experimental
measurements of isoscalar monopole modes are being extended in isotopic chains from the
nuclei on the valley of stability towards exotic nuclei with larger proton–neutron asymmetry.

The isoscalar resonances are excited through low-momentum transfer reactions in
inverse kinematics, that require special detection devices. At present, promising results
have been obtained using active targets. Different measurements have been conducted
on Ni isotopes far from stability, namely 56Ni [8,9] and 68Ni [10,11]. In particular, the 68Ni
experiment is the first measurement of the isoscalar monopole response in a short-lived
neutron-rich nucleus using inelastic alpha-particle scattering. The peak of the ISGMR was
found to be fragmented, indicating a possibility for a soft monopole resonance.

The discussion on how to extract the incompressibility of nuclear matter ∆KNM

from the ISGMR dates back to the years 1980s [12] (see also more recent review [13]).
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The measurement of the centroid energy of the ISGMR [14–20] provides a very sen-
sitive method to determine the value of ∆KNM. Theoretical investigations in various
models [21–27] with grouped values of the nuclear matter incompressibility ∆KNM predict
different ISGMR energies. In comparison with the experimental data, one could give the
constraint on the nuclear matter incompressibility.

In the present work, the incompressibility and the centroid energy of ISGMR are
investigated for three isotopic chains on the basis of the Brueckner energy-density func-
tional for nuclear matter [28,29] and using the coherent density fluctuation model (CDFM)
(e.g., Refs. [30–37]). This method is a natural extension of the Fermi gas model based on the
delta-function limit of the generator coordinate method [36–38] and includes long-range
correlations of collective type. During the years the CDFM has been successfully applied
to calculations of nuclear structure and nuclear reactions characteristics. Among them we
would like to note the calculated energies, density distributions and rms radii of the ground
state in 4He, 16O, and 40Ca nuclei [39]. Here, we mention particularly the calculations
within the CDFM of the energies of breathing monopole states in 16O, 40Ca, 90Zr, 116Sn, and
208Pb performed in Ref. [40] and presented also in Chapter 8 of Ref. [37]. In the latter are also
given references for experimental data and other theoretical results available until the early
1990s. Concerning the reaction properties, the CDFM has been employed in Refs. [41,42]
to calculate the scaling function in nuclei using the relativistic Fermi gas scaling function,
which has been applied to lepton scattering processes [41–47]. In addition, information
about the role of the nucleon momentum and density distributions for the explanation
of superscaling in lepton–nucleus scattering has been obtained [42,43], also in studies of
cross sections for several reactions: inclusive electron scattering in the quasielastic and ∆
regions [44,45] and neutrino (antineutrino) scattering both for charge-changing [45,47] and
for neutral-current [46,47] processes. Furthermore, the CDFM was applied to study the
scaling function and its connection with the spectral function and the nucleon momentum
distribution [48].

The efficiency of CDFM to be applied as a “bridge” for a transition from the prop-
erties of nuclear matter to the properties of finite nuclei studying the nuclear symmetry
energy (NSE), the neutron pressure, and the asymmetric compressibility in finite nuclei
was demonstrated in our previous works [49–56]. Although there is enough collected
information for the mentioned EOS quantities, the volume and surface symmetry energies
have been poorly investigated till now. In Ref. [57] we proposed a new alternative approach
to calculate the ratio of the surface to volume components of the NSE in the framework of
the CDFM. We have demonstrated that the new scheme provides more realistic values, in a
better agreement with the empirical data, and exhibits correct conceptual advantages.

In this work, we perform calculations and give results for the excitation energies of
ISGMR for Ni, Sn, and Pb isotopes. Our main task is to validate the CDFM for studies
of collective vibrational modes by using as a main theoretical ground the self-consistent
Hartree–Fock (HF)+BCS method with Skyrme interactions. The mentioned above model
gives a link between nuclear matter and finite nuclei in studying of their properties, such
as binding energies and rms radii of light, medium, and heavy nuclei. As an example, for
nuclear matter we adopt the energy-density functional (EDF) of Brueckner et al. [28,29].
Obviously, more realistic functionals should be employed in the future studies which would
lead to values of the excitation energies of ISGMR that are in better agreement with the
experimental ones. More details on this point are given in the last section of the work,
where specific future improvements are pointed out. We present and discuss the values
of the centroid energies in Sn isotopic chain (A = 112–124) studying its isotopic sensitivity.
The main reason to select these chains of spherical nuclei is partly supported by their recent
intensive ISGMR measurements so that we focus too on the comparison with the available
experimental data for Ni [58], Sn [59], and Pb [60,61] isotopes.

In the next Section 2 we give definitions of the excitation energy of ISGMR and EOS
parameters of nuclear matter that characterize its density dependence around normal
nuclear matter density, as well as a brief description of the CDFM formalism that provides
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a way to calculate the finite nuclei quantities. The numerical results are presented and
discussed in Section 3. The main conclusions of the study are summarized in Section 4.

2. Theoretical Formalism
2.1. Excitation Energy of the ISGMR

The centroid energy of ISGMR, EISGMR is generally related to a finite nucleus incom-
pressibility ∆K(N, Z) for a nucleus with Z protons and N neutrons (A = Z + N is the mass
number). Among the various definitions of EISGMR we will mention the one from, e.g.,
Ref. [21]):

EISGMR =
h̄

r0 A1/3

√
∆K(N, Z)

m
, (1)

where r0 is deduced from the equilibrium density and m is the nucleon mass. The excitation
energy of the ISGMR is also expressed in the scaling model [62] as (in Refs. [15,16], for
instance)

EISGMR = h̄

√
∆K(N, Z)
m < r2 >

, (2)

where < r2 > denotes the mean square mass radius of the nucleus in the ground state.
Depending on the adopted model, the value of EISGMR is associated with different mo-
ment ratios of the ISGMR strength distribution. Its extraction is the main focus of the
experiments, which aim to constrain the incompressibility of the infinite nuclear matter
and, as a consequence, the EOS [13]. Particularly, it should be noticed that definition (2) is
usable under the assumption that the strength distribution of a given multipolarity of the
resonance is contained within a single collective peak [18].

2.2. The Key EOS Parameters in Nuclear Matter

The symmetry energy S(ρ) is defined by the energy per particle for nuclear matter
(NM) E(ρ, δ) in terms of the isospin asymmetry δ = (ρn − ρp)/ρ

S(ρ) =
1
2

∂2E(ρ, δ)

∂δ2

∣∣∣∣
δ=0

, (3)

where
E(ρ, δ) = E(ρ, 0) + S(ρ)δ2 + O(δ4) + · · · (4)

and ρ = ρn + ρp is the baryon density with ρn and ρp denoting the neutron and proton
densities, respectively (see, e.g., [57,63,64]).

The incompressibility (the curvature) of the symmetry energy ∆KNM is given by

∆KNM = 9ρ2
0

∂2S
∂ρ2

∣∣∣∣
ρ=ρ0

, (5)

where ρ0 is the density at equilibrium.

2.3. The EOS Parameters of Finite Nuclei in the Coherent Density Fluctuation Model

The CDFM was suggested and developed in Refs. [30–37] (see also our recent
papers [50,54,57]). In it the one-body density matrix (OBDM) of the nucleus ρ(r, r′)

ρ(r, r′) =
∫ ∞

0
dx|F(x)|2ρx(r, r′) (6)

is expressed by OBDM’s of spherical “pieces” of nuclear matter (“fluctons”) with radius x
of all A nucleons uniformly distributed in it:

ρx(r, r′) = 3ρ0(x)
j1(kF(x)|r− r′|)
(kF(x)|r− r′|) Θ

(
x− |r + r′|

2

)
. (7)
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In Equation (7) j1 is the first-order spherical Bessel function and

kF(x) =
(

3π2

2
ρ0(x)

)1/3

≡ α

x
(8)

is the Fermi momentum with

α ≡
(

9πA
8

)1/3
' 1.52A1/3. (9)

It can be seen from Equation (6) that the density distribution in the CDFM is:

ρ(r) =
∫ ∞

0
dx|F(x)|2ρ0(x)Θ(x− |r|) (10)

with
ρ0(x) =

3A
4πx3 . (11)

It follows from Equation (10) that the weight function |F(x)|2 of CDFM can be obtained
in the case of monotonically decreasing local densities (i.e., for dρ(r)/dr ≤ 0) by

|F(x)|2 = − 1
ρ0(x)

dρ(r)
dr

∣∣∣∣
r=x

(12)

being normalized as ∫ ∞

0
dx|F(x)|2 = 1. (13)

In the case of the Brueckner method for nuclear matter energy [21,28,29] the symmetry
energy SNM(x) of NM with density ρ0(x) is (see, e.g., Refs. [49,54]):

SNM(x) = 41.7ρ2/3
0 (x) + b4ρ0(x) + b5ρ4/3

0 (x) + b6ρ5/3
0 (x). (14)

Then, correspondingly, the asymmetric incompressibility has the form [49,50]:

∆KNM(x) = −83.4ρ2/3
0 (x) + 4b5ρ4/3

0 (x) + 10b6ρ5/3
0 (x). (15)

The expression for the energy density of the method of Brueckner [28,29] (see
also [49,50,65]), which is used to obtain Equations (14) and (15) from Equations (3) and (5),
correspondingly, contains the following values of the parameters:

b1 = −741.28, b2 = 1179.89, b3 = −467.54,

b4 = 148.26, b5 = 372.84, b6 = −769.57. (16)

According to the CDFM scheme, the symmetry energy and the curvature for finite
nuclei can be expressed in the following forms:

s =
∫ ∞

0
dx|F(x)|2SNM(x), (17)

∆K =
∫ ∞

0
dx|F(x)|2∆KNM(x). (18)

In our calculations we apply self-consistent deformed Hartree–Fock method with
density-dependent Skyrme interactions [66] with pairing correlations. We use the Skyrme
SLy4 [67], Sk3 [68] and SGII [69] parametrizations (see also [49–52,54,70]). In addition, we
probe the SkM parameter set [71], which led to an appropriate description of bulk nuclear
properties. All necessary expressions for the single-particle functions and densities in the
HF+BCS method can be found, e.g., in Ref. [49].
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It is known that the value of the nuclear matter incompressibility ∆KNM plays a key
role in determining the location of the ISGMR centroid energy [59]. The different Skyrme
parameter sets used in the present calculations are chosen since they are characterized by
different values of the nuclear incompressibility, ∆KNM = 230, 217, 215, and 355 MeV for
SLy4, SkM, SGII, and Sk3, respectively, [72].

The mean square radii for protons and neutrons are defined as

< r2
p,n >=

∫
R2ρp,n(~R)d~R∫

ρp,n(~R)d~R
. (19)

The matter mean square radius < r2 > entering Equation (2) can be calculated by

< r2 >=
N
A

< r2
n > +

Z
A

< r2
p > . (20)

As shown in Section 2.1, there exist two ways to calculate the excitation energy of
the giant monopole resonance. In both definitions the finite nuclei incompressibility ∆K
(Equation (18)) is obtained within the CDFM. In the present work, describing the monopole
vibrations in terms of harmonic oscillations of the nuclear size and assuming an A1/3 law
for it, we calculate EISGMR by using Equation (1). In it values of the parameter r0 between
1.07 and 1.2 fm are adopted, which are determined from experiments on particle scattering
off nuclei. If one applies definition (2), then the mean square mass radius (Equation (20))
has to be used.

3. Results and Discussion

Here we present the obtained results for the centroid energies of the ISGMR in finite
nuclei extracted from nuclear matter many-body calculations using the Brueckner EDF. We
show also their isotopic sensitivity for Ni, Sn, and Pb chains.

First, in Figure 1 we overlay, as examples, the density distributions of 56Ni and 208Pb
and the corresponding CDFM weight function |F(x)|2 as a function of x. As mentioned
before, the densities are obtained in a self-consistent Hartree–Fock+BCS calculations with
SLy4 interaction. The function |F(x)|2 which is used in Equation (18) to obtain the incom-
pressibility modulus, which is necessary to calculate the EISGMR, has the form of a bell
with a maximum around x = R1/2 at which the value of the density ρ(x = R1/2) is around
half of the value of the central density equal to ρc [ρ(R1/2)/ρc = 0.5]. It was shown in
Refs. [54,57] that in this region around ρ = ρc/2 the values of ∆KNM(ρ) take a significant
part in the calculations. This fact is of particular importance and is related to the behavior
of SNM(x) (Equation (14)) in the case of the Brueckner EDF showing its isospin instability
(see Figure 1 of Ref. [57]), in contrast with other more realistic energy-density functionals.
Therefore, to fully specify the role of both quantities ∆KNM[ρ0(x)] and |F(x)|2 in the ex-
pression (18) for the finite nuclei incompressibility ∆K and to locate the relevant region of
densities in finite nucleus calculations, we apply the same physical criterion related to the
weight function |F(x)|2, as in [57]. This is the width Γ of the weight function |F(x)|2 at its
half maximum (which is illustrated in Figure 1 on the example of 56Ni and 208Pb nuclei
together with the corresponding distance in the density distribution ρ(r)), which is a good
and acceptable choice. More specifically, we define the lower limit of integration as the
lower value of the radius x, xmin, corresponding to the left point of the half-width Γ (for
more details see the discussion in Refs. [54,57]). One can see also in Figure 1 the part of the
density distribution ρ(r) (at r ≥ xmin) that is involved in the calculations.
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Figure 1. The densities ρ(r) (in fm−3) of 56Ni and 208Pb calculated in the Skyrme HF + BCS method
with SLy4 force (normalized to A = 56 and A = 208, respectively) and the weight function |F(x)|2

(in fm−1) normalized to unity (Equation (13)).

The centroid positions of the monopole mode obtained in this work are compared with
available experimental data in Tables 1–3. The calculated values of EISGMR with SLy4 and
SkM forces for Ni and Pb isotopes are given in Tables 1 and 3, respectively. The values of the
centroid energies for Sn isotopes obtained from calculations with three Skyrme interactions
(SLy4, SGII, Sk3) are listed in Table 2. It can be seen from Table 1 that a very good agreement
with the experimental data for 56,58,60Ni is obtained, while the results with both Skyrme
interactions underestimate the experimental energy of the soft monopole vibrations of
68Ni. The excitation energy of this ISGMR in 68Ni is located unexpectedly at higher energy
(21.1 MeV) for the Ni isotopic chain, having at the same time large error bars. The reason is
due to the large fragmentation of the isoscalar monopole strength in the unstable neutron-
rich 68Ni nucleus, much more than in stable nuclei [10,11]. The obtained values of EISGMR
for Sn isotopes (A = 112–124) exhibit small difference regarding the Skyrme parametrization
(see Table 2). The theoretical results for the centroid energies for the same Sn isotopes
obtained in Ref. [59] by using the SkP (between 14.87 and 15.60 MeV), SkM* (between
15.57 and 16.23 MeV), and SLy5 (between 15.95 and 16.61 MeV) parameter sets are in good
agreement with our results. Almost no dependence on the Skyrme forces used in the
calculations of the centroid energies is found for Ni and Pb isotopes being slightly larger in
the case of SkM interaction than when using the SLy4 one.

Table 1. The values of the centroid energies EISGMR (in MeV) of Ni isotopes obtained from HF+CDFM
calculations in this work using SLy4 and SkM Skyrme forces compared with the experimental data
found in the literature.

Nucleus SLy4 SkM Exp.
56Ni 19.41 19.57 19.1 ± 0.5 [9]

19.3 ± 0.5 [8]
58Ni 18.95 19.18 18.43 ± 0.15 [58]
60Ni 18.62 18.79 18.10(29) [58]
68Ni 17.46 17.70 21.1 ± 1.9 [10,11]
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Table 2. The values of the centroid energies EISGMR (in MeV) of Sn isotopes (A = 112–124) obtained
from HF+CDFM calculations in this work using SLy4, SGII, and Sk3 Skyrme forces. The experimental
data are taken from Table III of Ref. [59].

Nucleus SLy4 SGII Sk3 Exp.
112Sn 15.04 15.30 14.89 16.2 ± 0.1
114Sn 15.03 15.20 14.70 16.1 ± 0.1
116Sn 14.94 15.08 14.56 15.8 ± 0.1
118Sn 14.82 15.13 14.48 15.8 ± 0.1
120Sn 14.69 15.08 14.58 15.7 ± 0.1
122Sn 14.68 15.00 14.61 15.4 ± 0.1
124Sn 14.68 14.96 14.51 15.3 ± 0.1

Table 3. The values of the centroid energies EISGMR (in MeV) of Pb isotopes obtained from HF+CDFM
calculations in this work using SLy4 and SkM Skyrme forces compared with the experimental data
found in the literature.

Nucleus SLy4 SkM Exp. Theory
204Pb 12.16 12.29 13.98 [60]
206Pb 12.12 12.23 13.94 [60]
208Pb 12.10 12.15 13.96 ± 0.2 [61] 14.453 [23]

The collective (bulk) character of the giant resonances and nuclear incompressibility
presumes a quite smooth variation of the properties of the ISGMR with mass, thus not
expecting very strong variations related to the internal nuclear structure. The isotopic
evolution of the centroid energies EISGMR for the Ni, Sn, and Pb isotopes is presented
in Figure 2 in the case when r0 = 1.2 fm is used. In general, as expected, a smooth
decrease in the excitation energies of the ISGMR with the increase in the mass number A is
observed for the three isotopic chains and for all Skyrme forces used in the calculations.
Furthermore, going from Ni to Pb isotopic chain the “gap” between our results and the
corresponding experimental data becomes larger in a way that the obtained values of
EISGMR underestimate the experimentally extracted values. Nevertheless, this difference
does not exceed 1–2 MeV in the case of Sn and Pb isotopes and practically is minimal for
Ni isotopes.

As a test of the role of the half-density radius parameter r0 on the centroid energy
(Equation (1)), we present in Figure 3 the results of EISGMR for the same Ni, Sn, and Pb
isotopic chains in the case of SLy4 force obtained with two more values of r0. In addition
to the results with r0 = 1.2 fm (e.g., in Refs. [73,74]) given in Figure 2, the values of
EISGMR calculated with r0 = 1.07 fm (for instance, in Ref. [75]) and r0 = 1.123 fm [76] are
shown in Figure 3. It is seen from the figure that with the increase of r0 the agreement
with the experimental data becomes better for lighter isotopes. Particularly, the value of
r0 = 1.123 fm leads to fair agreement of the ISGMR energies for Sn isotopes, while for Ni
isotopes the experimental data are reproduced better with r0 = 1.2 fm and for Pb isotopes
with r0 = 1.07 fm. Here we would like to note that the specific choice of the r0 parameter
values adopted to calculate the values of the centroid energies by using expression (1) is
often used in the literature. The values of the measured nuclear radii are deduced from
processes with strongly interacting particles or electron (muon) scattering. It is well known
that the A-dependence of r0 exhibits a smooth decrease with A being 1.07 fm for nuclei
with A > 16 and increasing to 1.2 fm for heavy nuclei. This results on the calculated values
of EISGMR and the corresponding ranges of change in respect to r0 are illustrated in Figure 3
by hatched areas. Thus, we find a sensitivity of the results for centroid energies of ISGMR
to the radial parameter r0 and this fact has to be taken into account when considering
resonances in light, medium, and heavy nuclei.
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Figure 2. The centroid energies EISGMR as a function of the mass number A for Ni, Sn, and Pb
isotopes in the cases of SLy4, SGII, Sk3, and SkM forces and r0 = 1.2 fm (Equation (1)) compared with
the experimental data.
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4. Conclusions and Perspectives

We have performed a systematic study of the isoscalar giant monopole resonance in
Ni, Sn, and Pb isotopes within the microscopic self-consistent Skyrme HF+BCS method
and coherent density fluctuation model. In the present calculations four different Skyrme
parameter sets are used: SLy4, SGII, Sk3, and SkM. They are chosen since they were
employed in our previous works and, more importantly, are characterized by different
values of the nuclear matter incompressibility. The calculations are based on the Brueckner
energy-density functional for nuclear matter.

A very good agreement is achieved between the calculated centroid energies of the
ISGMR and corresponding experimental values for Ni isotopes when r0 = 1.2 fm. Especially
this concerns the exotic double-magic 56Ni nucleus, for which the obtained (with SLy4
Skyrme force) value is 19.41 MeV, in consistency with the centroid position of the ISGMR
found at 19.1± 0.5 MeV. For 68Ni our predictions for EISGMR with both Skyrme interactions
are rather below the experimental result, obviously requiring a larger value of ∆K. The
comparative analysis of the centroid energies in the case of Sn and Pb isotopes shows less
agreement with r0 = 1.2 fm, but still in an acceptable limits. This could be partly due to the
chosen physical criterion that is applied to calculate the finite nucleus incompressibility
(Equation (18)). The latter point will be a subject of future study. The agreement with
the experimental values of EISGMR can be improved also by varying the parameter r0
(Equation (1)) in strong connection with the mass dependence of this parameter and its
effect for the considered isotopes.

In general, the results obtained in the present work demonstrate the relevance of
our theoretical approach to probe the excitation energy of the ISGMR in various nuclei.
Our future goal is to extend this theoretical study by employing more realistic energy-
density functionals for nuclear matter, from one side. For example, the role of microscopic
three-body forces in the proposed approach to study the giant monopole resonances
can be clearly revealed by applying the latest version of the Barcelona–Catania–Paris–
Madrid nuclear EDF ([77] and references therein) and particularly to treat successfully
medium-heavy nuclei. In addition, a good choice could be the microscopic EOS derived
by Sammarruca et al. [78] based on high-precision chiral nucleon-nucleon potentials at
next-to-next-to-next-to-leading order (N3LO) of chiral perturbation theory [79,80]. Thus,
by employing of microscopic input in the energy-density functionals for nuclear matter,
a stronger connection with fundamental nuclear forces can be achieved. From another
side, the important issue will be to expand the nuclear spectrum to lighter and medium
mass nuclei considering also deformed nuclei, in which the breaking of spherical symmetry
would play a role. In addition, to extract the isospin dependence of the incompressibility
coefficient, a key ingredient in astrophysical studies, further theoretical investigations are
needed to carry out calculations of the ISGMR for neutron-rich nuclei and to compare the
results with the available experimental data.
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