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Abstract: After their initial formation, disk galaxies are observed to be rotationally stable over periods
of >6 Gyr, implying that any large velocity disturbances of stars and gas clouds are damped rapidly
on the timescale of their rotation. However, it is also known that despite this damping, there must be
a degree of random local motion to stabilize the orbits against degenerate collapse. A mechanism for
such damping is proposed by a combination of inter-stellar gravitational interactions, and interactions
with the Oort clouds and exo-Oort objects associated with each star. These mechanisms may produce
rapid damping of large perturbations within a time period that is short on the scale of observational
look-back time, but long on the scale of the disk rotational period for stars with small perturbations.
This mechanism may also account for the locally observed mean perturbations in the Milky Way of
8–15 km/s for younger stars and 20–30 km/s for older stars.

Keywords: galaxies: kinematics and dynamics; galaxies: spiral; lognormal density distribution;
galaxies: stability

1. Introduction

General analysis of the gravitational stability of highly flattened, ‘cold’, massive
stellar systems suggests that if they are assumed to be initially in approximate equilibrium
between their self-gravitational and centrifugal forces, with purely circular motions and
no random proper motions, then they are unstable to any density fluctuations [1,2]. Such
disks tend to form massive condensations within their own plane unless their constituents
have a minimum level of random motion as ‘warm’ or ‘hot’ disks in the directions parallel
to the disk plane to stabilize them—the Jeans instability—by migrating from overdense
regions before a collapse can occur [3,4]. Toomre [5] showed that the minimum root mean
square (RMS) velocity dispersion required to suppress these axi-symmetric instabilities was
3.36 Gµ/κ (the Toomre stability criterion), where G is the gravitational constant, and µ and
κ are the local values of the projected stellar density and the epicyclic frequency, respectively.
This minimum was estimated to be∼20–35 km s−1 in the solar neighborhood of our Galaxy,
a range which has since been matched by observations [5–7].

Disk galaxies comprise three major components: a central bulge of stars that harbour a
massive black hole; a halo of dust and stars whose visible content is negligible compared to
the disk; and a thin disk surrounding the bulge, that contains the majority of detectable mass
in the system and contributes the major part of the total light and angular momentum [1,8,9].
These galaxies are thought to be rotationally stable, with only slow changes in overall
brightness over the past 6 Gyr [2,10]. Mutual interactions by neighbouring stars will
occur constantly, perturbing individual motions in complex ways, and may lead to gross
instability unless there is some mechanism for damping. This paper uses numerical analysis
to consider possible damping mechanisms for the fluctuations from stability in a massive
disk galaxy.

Perturbation methods traditionally start with an exact solution to a simplified form of
the original problem, which in gravitational theory is typically a Keplerian ellipse, but the
solution is exactly correct only when there are just two gravitating bodies. The introduction
of a third body, or any non-Newtonian field such as the gravitational interaction using
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formulations from General relativity or the complex field of a galactic disk, does not yield a
simplified form and in these cases numerical analysis may be used to describe perturbations
from a stable state [11,12].

Standard perturbation theory considers the disturbance from a stationary state, with
such perturbations generally kept small to allow first order approximations to be made.
In this paper, we build a density model for the disk of a massive galaxy using M31 as a
model, and use numerical analysis to investigate how large random motions—such as those
arising from close interactions—might be rapidly damped to small random oscillations
about their circular trajectory of ∼20–30 km s−1 within the timescale of orbital rotation,
and these mechanisms may be sufficient to stabilize the orbits against random gravitational
fluctuations while retaining the stability demanded by Toomre [5].

2. Building the Surface Density Model

Modelling the gravitational motion of displacement of an individual disk star when
subject to a perturbation requires a model for the gravitational potential throughout the
disk. The galaxy selected for modelling was the Messier 31 galaxy, as its size and proximity
have enabled many detailed observations of its rotation curve (RC) and the surface density
of its baryonic components [13–15]. Rotational velocities are measured as a bulk average
over many stars in each disk area sampled in the surveys. A fundamental assumption is
that tracers such as HI or Hα in the disk move in circular orbits; non-circular motions due
to collapsing gas clouds in star formation processes, bars, spiral density waves, and warps
in the disk, cause distortions to the RC, but high-resolution data from surveys such as
THINGS enable the effects of random non-circular motions to be minimized with the
construction of a “bulk” velocity field showing the underlying undisturbed rotation [16].

Measuring the variation in Doppler shift across the disk enables its rotational velocity
to be plotted as a function of radius from the galactic centre, allowing a rotational curve to be
constructed. Although many RCs are relatively flat over much of their extent, there is gener-
ally a wider variety of curves than simple flatness, and modelling the mass-distribution to
generate these curves has given rise to a number of models [17–20], many of which invoke
the presence of a dark matter (DM) halo [16]. The observational distribution of surface
brightness and HI density across the galactic disk approximates to an exponential form,
and this has often been taken as representative of the underlying baryonic components of
the disk. Such a distribution however is poorly justified on theoretical grounds, and there
have been a number of attempts to describe better or more accurate models [17–20]. For
example, considering the disk as a relaxed, stable assemblage of particles in an otherwise
isolated system justifies stating that—except for the conserved macroscopic variables of
total mass, energy and angular momentum—such a system has lost all information about
its prior unrelaxed state and may consequently be considered as a system of maximum
entropy with a lognormal (LN) distribution, and it has been shown that the rotation curves
for a wide range of galactic disks are generally well described by a LN density distribution
curve [21,22].

A typical disk has ∼108–1012 stars, and for large N it is usual to consider the average,
statistical properties of the system rather than individual orbits. Although a dynamical
approach to describe the relaxation process is difficult, especially as no exact description
of the initial state is known, the self-similarity and stability of disk galaxies allows them
to be considered as idealized equilibrium systems [23]. Because disks are thin compared
with their radius, most analytical studies assume them to have negligible thickness and
describe them in terms of a pure surface density function, Σ(r). The lognormal surface
density for such a system is described by a distribution with three principle parameters: a
characteristic radial scale length rµ (kpc); the logarithmic standard deviation of the radius
σ; and a characteristic surface density parameter Σ0 (M� kpc−2) [21]. The variety of curves
generated by a LN distribution are consistent with the three broad classes of observational
RCs described by Verheijen [24], with some rising towards their termination, some reaching
a plateau, and others reaching a peak before declining again. The LN model provides a
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curve consistent with the original observations of M31 by Rubin and Ford [13], Carignan
et al. [14], and Corbelli et al. [15], and gives a convenient method of generating Σ(r) for
numerical stability analysis (Figure 1). Furthermore, the general shape of the velocity curve
for M31 is broadly similar to recent curves for the Milky Way Galaxy (Figure 1, [25]).

For the galactic disk, the general mathematical form for a lognormal distribution may
be modified to the more physical form (Equation (1)):

Σ(r) =
Σ0

(r/rµ)σ
√

2π
exp

(
−
[log(r/rµ)]2

2σ2

)
, (1)

where Σ(r) is the disk surface density (M� kpc−2) and r is the radial variable (kpc).
Unlike the exponential distribution, the lognormal distribution matches the expected

probability distribution for disk systems. The radius where the stars orbit must be >0; the
distribution is highly skewed rather than Gaussian; normalization of the function to unity
yields the total probability that an individual star is certain to be somewhere in the disk;
and it is smoothly asymptotic to zero at the core where rotation is unsupported, rather than
peaking to a cusp—characteristics that satisfy the observed mass-density distribution of the
disks of spiral galaxies [26]. For a given density distribution, numerical integration allows
the rotation curve to be derived, and can include a bulge or any boundary conditions at
Rmax.

Although Equation (1) is exact only in the limit r → ∞, in practice Σ(r) → 0 as
r → Rmax, which is the maximum radius for observations (kpc) beyond which gas and
dust at the galactic periphery become undetectable. The fact that Σ(r) → 0 as r → 0 is
also reasonable, reflecting the collapse of the rotation curve where bulge stars predominate
near the galactic center. RMS error-minimization curve-fitting was used to generate a
best-fit output rotation curve for M31 [21]. With Rmax = 36.5 kpc, these parameters
were: Σ0 = 7.21× 109 M� kpc−2; rµ = 4.5 kpc; σ = 1.15 to generate the curve of Figure 1.
Integration of Equation (1) gave the theoretical total mass (stars, gas and dust) of the M31
disk as 2.96× 1011 M�, which lies between an observational stellar mass of 1.03× 1011

M� [27] and more recent observations of 1.3–1.6 × 1012 M�, using the motion of external
satellite galaxies [28]. M31 has a relatively flat curve and the derived LN curve fits the
observations reasonably well.
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Figure 1. The rotational curve for M31. Overlain is the theoretical curve for a lognormal distribution
of surface density with all gravitational mass confined to the disk, Newtonian gravitation, and as-
suming no DM halo. The best-fit for a lognormal density distribution is overlain (red line). Source
data: [13–15].
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The theoretical LN distribution extends to infinite radius which is clearly unphysical,
and in Figure 1 the surface density was stopped abruptly at Rmax, producing a terminal
rise beyond 32 kpc. This is a feature of any RC with an abrupt termination [21], but also
one seen in the data of Corbelli et al. [15]. In practice, the terminal density will fall away
more gradually, but observationally it is difficult to detect this termination because any
observable matter will already be included in the disk, and matter beyond the detectable
disk boundary will by definition be unobserved. Nevertheless, many observers have
reported that their HI observations showed no evidence of stopping at their limit of
detection, and—with the increasing sensitivity of observations—there is now evidence for
some HI and molecular gas components extending beyond the original disk boundaries,
usually described by adding further exponential components to the disk boundary as a
biaxial or triaxial disk [29,30].

3. Stability of the Disk

There are two components to the motion of a galactic star: (a) its velocity of rotation
as part of the “flat rotation curve”, and (b) pseudo-random perturbations from interac-
tions with other stars or massive dust clouds. Peebles [31] conjectured that galactic spins
originated from induced tidal torques from neighbouring structures with in-falling gas
subsequently forming the disk. Although the subsequent history of disk formation is uncer-
tain, it is clear that some mechanism was in place to distribute the initial range of velocities
into the regular quasi-circular orbits now observed. In the absence of external forces, this
mechanism must have involved some form of damping to bring about an approximate
equipartition of velocities in each orbit, and to dampen induced oscillations.

Figure 2 illustrates the motion of a typical star of mass M� orbiting at a radial distance
of 8 kpc from the centre (green circle), with and a radial velocity of 259.2 km s−1 for its
stable circular motion. The orbit was computed assuming the gravitational potential for
M31 is of the form proposed in Section 2. The radial distance markers (red circles) are at
10 kpc intervals, and orbital time markers (red dots) are shown every 100 Myrs.

Figure 2a illustrates the consequent undamped orbit for the star displaced from
its initially circular ‘equilibrium’ state by a massive boost of ×1.5 to the radial velocity,
computed by numerical analysis. Figure 2b shows the same boost, but damped by a factor
ζ0, defined more fully in Section 4.1. The nature of the damping mechanism is unspecified
here, but is given an arbitrary value ζ0 = 0.0001 (km s−1 per Myr per km s−1), and is
assumed to be a function of the volume swept out in a given time interval, and hence of the
relative velocity of the star (v) to the field through which it is moving at any instant.

Although at the time of formation large displacements such as those shown in Figure 2
may have been common, they are probably rare during the mature phase of the galaxy’s
existence when random displacements by encounters with other star systems are likely to
be small on the scale of the radial motion. These large motions are, however, largely in
concurrence with the motions noted by Michtchenko et al. [32], who measured the proper
velocities of 3,105,498 stars from the second data set of the Gaia mission with good distance
estimates within 1 kpc of the Sun, then converting the positions, parallaxes, proper motions
on the sky, and radial velocities of the stars into Cartesian Galactic phase-space positions
and velocities. Their Gaia DR2 measures showed large scale undamped corkscrewing
that appeared to be sustained by resonant features of the spiral arms to maintain the
spiralling motion.

Figure 3 represents a highly magnified view of Figure 2, centred on a star orbiting
at 8 kpc (‘O’ on the green line) from the galactic centre, with the stable position of the
unperturbed star in the centre (red dot). The frame dimensions are only 10 light years per
square, hence at this scale (∼26,000× the scale of Figure 2), the grid lines appear linear
as the curvature of the radial lines is too small to be visualised. The frame is co-rotating
anti-clockwise to the centre as seen from above, i.e., right to left. Any star rotating in a
stable orbit on the green 8 kpc line will not appear to move; stars closer in will appear to
move to the left (overtaking), while stars further out will appear to move to the right (be
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overtaken). The central star is then subjected to a small boost (Figure 3, A) or decrease
(Figure 3, B) in its orbital velocity of ±0.01%, respectively. These are undamped motions,
but in each case the star corkscrews away from its initial position with an increase or
decrease in angular momentum.

b

a

Figure 2. A star of 1 M� orbiting at 8 kpc from the galactic centre with an initial stable orbital
velocity of 259.2 km s−1 (green circle), boosted to ×1.5 its initial velocity. (a) undamped. (b) Damped:
ζ0 = 0.0001 km s−1 Myr−1 per km s−1, with a relaxation time of ∼500 Myr (see text). Times for
5 orbits are shown, marked with red dots every 100 Myr. moving anticlockwise viewed from above.
Red circles = 10 kpc scale markers. The bottom two graphs show the undamped and damped orbital
velocities (km s−1) vs. time.

A

B

O

10 lt yrs

Figure 3. A magnified frame centred on a stable star of 1 M� initially in a stable orbit at 8 kpc
(centre O on green line) from the galactic centre with an initial stable orbital velocity of 259.2 km s−1,
anticlockwise as viewed from above. (A) Boosted by +0.01%. (black curve). (B) As (A), but with the
stable orbital velocity decreased by 0.01% (red curve). Frame grid spacing 10 lt. yrs. Time markers
(red dots) every 100 Myr.
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4. Potential Mechanisms for Damping

Three principle mechanisms are considered: (a) damping by interactions between
the Oort clouds of other stars during the motion of the displaced star; (b) damping from
interstellar dust and gas clouds; and (c) gravitational interactions with other stars as the dis-
placed star moves past them. Perturbations to the equilibrium gravitational potential affect
the averaged velocity distribution of stars [33] through participation in collective motions
of all the particles in the system [5,34]. These collective processes lead to a quasi-chaotic
path through velocity space, in the sense that a change in the initial parameters smaller than
observational uncertainty will lead to a completely different path and set of interactions
within a time-frame that is small compared to the orbital time. In practice, the number of
stars in mutual proximity is highly variable and they move in the gravitational potential of
the whole disk. There are, for example, 12 stars within 10 lt yrs of the Sun, each contributing
to the overall motion of the Sun [35] with interactions also occurring in the z-plane, and the
resultant interactions are therefore immensely more complex.

4.1. Damping by Oort Clouds

The size of a system of mass M without a sharp boundary may be characterised
by its gravitational sphere of influence, or the extent of its Hill sphere, defined here as
the radius, rg, within which small individual masses may orbit without escaping [1].
For a star of stellar mass 1 M� such as the sun, the Oort cloud is thought to extend to
approximately 1.5× 1013 km, and this value is taken to approximate the star’s gravitational
sphere of influence, rg. Such a star system may be expected to sweep out a volume of
∼7.07 × 1026 × vdri f t km3 s−1, where vdri f t km s−1 is the relative difference in motion
between the displaced star and the stable orbital velocity at that radius. The masses of
the Oort clouds surrounding such systems are unknown, and the density and mass of the
background population of exo-Oort cloud objects is also unknown [36], therefore we may
only estimate possible values, extrapolating from the limited information available for the
Oort cloud of the solar system [37]. This may contain 1011–1012 icy bodies, with a total
estimated mass of 1025–1026 kg and a mean density ∼2× 10−15 kg km−3, although in one
estimate it may approach 2% of the solar mass, i.e., ∼4× 1028 kg [38].

We assume a majority of stars to be moving in quasi-stable circular orbits with their
associated Oort clouds, through which a displaced star of mass M moves with an initial
drift velocity v0 km s−1, relative to the locally stable velocity frame of circulation. The
migrating star exchanges mass at a rate ∆m/∆t as it traverses the local star systems, such
that its velocity changes at the rate ∆v/∆t, partitioned between the drifting star system and
its remaining clouds. In contrast to the multiple accumulating impulses of the migrating
star, the interacting orbiting star systems with initially zero velocity relative to the rotational
frame each gains an exchange in mass ∆m as individual impulses, and their individual
changes in velocity are therefore neglected. We assign a mean density and radial extent to
the cloud system of ρg kg km−3 and rg km, respectively, and state:

∆m/∆t = ρg Avs.kg s−1 , (2)

where ∆m/∆t is the incremental time increase in mass M at time t, A = 2πr2
g is the swept

out area, and v is the drift velocity through the cloud. Equation (2) may be rewritten as:

∆m/∆t = 2Mζ0vs. kg s−1 . (3)

Here ζ0 = Ctρg A/2M is defined as the damping coefficient for the Oort cloud,
and Ct = 3.154× 1013 sec/Myr is the dimensionless conversion factor. By conservation of
kinetic energy:

1
2

Mv2 =
1
2
(M + ∆m)(v + ∆v)2 , (4)

or
∆v
v
≈ ∆m

2M
, (5)
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where ∆vs. is the incremental change in initial velocity, v, associated with acquiring the
mass ∆m. Substituting ∆m from Equation (3) in Equation (5) and neglecting terms in ∆v2

and ∆vs.∆t ,
∆v/∆t ≈ ζ0v2 km s−1 Myr−1 . (6)

Then letting ∆v→ dv, ∆t→ dt and integrating with limits v = v0 at t = 0:

v ≈ v0

1 + ζ0v0t
. (7)

Assuming a mean stellar separation of 4× 1013 km (4.2 lt yrs), then the damping
factor for Figure 2b is ζ0 ≈ 0.0001 km s−1 Myr−1 per km s−1 and this value was selected
for these figures to demonstrate the overall effect of smooth damping, irrespective of its
cause. The motion is not that of a simple harmonic oscillator and the decay dv/ dt of
Equation (6) is a power function of the velocity typical of dynamical damping, rather than
an exponential form, with rapid initial decay but much slower late damping. The damping
half-life is t1/2 ∼ (ζ0v0)

−1 from an initial velocity, v0, in contrast to the fixed half-life of an
exponential decay. For high initial relative velocities, the displaced motion rapidly settles to
a new quasi-circular orbit, with a relaxation time t1/2 ∼ 77 Myrs for the high displacement
velocity in this example. However, at long time intervals there remains a residual oscillating
proper motion which is slow to dissipate, with t1/2 ∼ 1 Gyr for a displacement velocity
v0 = ±10 km s−1 and the given value of ζ0. For a star moving slower than the local field, it
may be noted that the same mechanism would cause an increase in velocity towards that
of the field velocity but with the same damping coefficient.

4.2. Interactional Damping by Interstellar Dust and Gas Clouds

The interstellar medium (ISM) is a mixture of gas and dust remaining from: (a) the
formation of the galaxy; (b) ejection by stars; and (c) accretion from outside the galaxy.
Observations of the apex and anti-apex direction of the Sun moving relative to the local
ISM (LISM) confirm that the orientation of the flux direction of interstellar matter into the
solar system as determined by relative velocities is almost parallel to the ecliptic plane [39].

The gas is very diffuse: at its densest in the plane of the Galaxy the particle number
density is 1012 to 1018 atomic nuclei km−3, with some in the form of single neutral atoms,
some in the form of simple molecules, and some existing as ions. Its chemical composition
is about 91% hydrogen, 9% helium. It is observationally important because spectroscopic
emission lines from the gas enable measurements of the mass and dynamics of the gas,
including rotation curves. Mass measurements of HI mass are generally multiplied by a
factor 1.4 to take into account the presence of Helium, but dust and molecular and ionized
gas are not quantified. The mass of atomic hydrogen as 1.67× 10−27 kg, with a total gas
density varying between 10−15 and 2.3× 10−9 kg km−3.

The total density of dust in the ISM is thought to be considerably less than the gas
density, and Draine et al. [40] suggest that Mdust/M(HI+H2) ≈ 0.01. The composition of the
dust particles is highly variable, and grains may vary in size by a factor of 100:1, with the
detection of larger grains supporting collision models for particle growth in the ISM.

The lack of small particles in the measured mass distribution from impact measure-
ments compared to ISM conditions is a result of their depletion by solar mechanisms. Three
methods of decelerating interaction may exist for a migrating star system: repulsion by
the star’s magnetic field deflecting particles with mass m < 10−17 kg within the helio-
sphere; radiation pressure repulsion which is particularly important for particles with
masses 10−17 < m < 10−16 kg, while for larger particles (m > 10−15 kg), gravitational
focusing may aid their capture [41]. The capture area for ISM gas and dust (Equation (2))
may be much lower than that of the Oort cloud if confined to the periheliosphere out
to the heliopause beyond the termination shock, with A ∼ 2× 1011 km2. For this small
area, ζg < 3× 10−15 and is negligible unless we postulate interactions from the area of
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the gravitational radius to bear an influence on ISM damping, but this is not considered
further here.

4.3. Damping by Interstellar Interactions

Although the motions and interactions of individual stars are quasi-chaotic, it is
possible to compute an approximation for possible damping by interstellar interactions.
Consider a star of mass M moving through a star field with a differential velocity v. Let ∆p
be the mean exchange in angular momentum/interaction; the star will then have a mean
number of interactions of v/s per Myr, where s is the mean separation between stars, so
the mean rate of change of momentum per encounter per Myr is:

v∆p
s

=
M v∆v

s
Myr−1. (8)

We may again define an interstellar damping coefficient ξS such that

ξS =
∆v
Ms

km s−1 Myr−1 per km s−1 M−1
� . (9)

For a star of 1 M� and taking a mean stellar separation of 4.2 lt yrs, similar damping
to ξ0 for the Oort clouds may require ξS = 0.000126, or ∆vs. = 0.000126v km s−1 per
encounter (Section 4.1). If the star is moving more slowly than the field, this becomes an
increase in velocity towards the mean field velocity.

Figure 4 illustrates the mutual motion between a reference star of 1 M� and a second
star of mass 2 M� in the same plane, both orbiting at approximately identical radii (8 kpc
and 7.99736 kpc, respectively) and with similar rotational velocities (259.1791 km/s and
259.1777 km/s, respectively). The second star is in a galactic orbit 8.6 light years closer to
the galactic centre than the lighter star, and their relative motion results in the heavier star
‘overtaking’ the lighter star as it moves from right to left in Figure 4. Although initially
moving on adjacent orbits with similar tangential velocities, the ‘stationary’ star gains
angular momentum and after a close encounter begins to spiral in a higher orbit (black
curve) with a boost of +0.018% in a similar manner to the star given a boost in Figure 3.
The gravitational pull is slight, but it is cumulative and sufficient to pull the lighter star
significantly from its orbit before it spirals away. The total time frame for these plots is
∼125 Myrs. The heavier star loses angular momentum and its orbit moves closer towards
the centre in a similar manner to that illustrated in (Figure 3, B). Because of its mass,
the heavier star has approximately twice the AM of the lighter star but after the interaction
the final AM of the overtaking heavier star is reduced and the final AM of the lighter star
is increased by a corresponding amount, with conservation of the total combined AM
throughout the interaction.

4.4. Motion in the z-Plane

A number of recent observations have indicated that some stars have sufficient mo-
mentum to escape the disk completely. The perturbation illustrated in Figure 4 is relatively
small, but an interaction between a massive and a low mass star moving in close proximity
may induce a considerable displacement in the smaller star. Observations within our own
Galaxy suggest there are less than 1 in 10,000 high-speed stars capable of contributing to
the halo in the z-plane [42], and Bromley et al. [42] identified just over 100 high-speed stars
from ∼1.5 million nearby stars (10–15 kpc) in the Gaia DR2 archive with measured parallax,
proper motion, and radial velocity, of which only two are likely to be hyper-runaway
stars rather than just bound outliers, with a nearly 100% chance of being unbound. These
observations, coupled with the quasi-circular orbits for the vast majority of stars in the
disk, lend support to a damping mechanism to preserve the thin disk over the many Gyr of
look-back observations of disks.
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Figure 4. Perturbation of a reference star of 1 M� (black orbit) orbiting the galactic centre at 8 kpc
under mutual gravity from a second star of 2 M� (red orbit) closer to the centre, ‘overtaking’ from
the right with an initial separation of 8.6 lt yrs from the reference star. Frame grid spacing = 10 lt. yrs.
Time markers (red dots) are every 100 Myr. Closest separation is 5.45 light years.

For the majority of stars above the galactic plain, it is postulated that similar mecha-
nisms for damping occur to those described for rotational damping, although the damping
coefficients may be correspondingly smaller because of the low density of stars in the halo
compared with the disk. Several models for the vertical mass distribution in the disk have
been proposed, such as a model of the form proposed by van der Kruit [43]:

$(z) = 2−2/n$esech2/n(nz/2ze) , (10)

where n = 1 corresponds to the isothermal distribution $(z) = ($e/4)sech2(z/2ze), while
n = ∞ corresponds to the exponential model $(z) = $e exp (−z/ze) [43]. Although detailed
motion in the z-plane will differ according to the model, perturbations in the absence of
damping will result in oscillations about the midline of the disk in all these models, with a
corresponding vdri f t in the z-plane.

4.5. Local Perturbations in the Disk

Superimposed on the bulk rotational velocity, individual stars have a peculiar velocity
with a Gaussian distribution along each coordinate in velocity space—the Schwarzschild
distribution—with a low velocity dispersion in the range 8–15 km s−1 [1] for stars with
ages 108–109 yr, and a higher dispersion range of 25–50 km s−1 for older stars, although it
may be noted that this relationship was based in relatively few stars and from older data.
These peculiar velocities arise from mutual collisionless interactions with other stars that
take the complete system toward thermal quasi-equilibrium, with a collective relaxation
timescale of trelax ' 2–3 Gyr locally in the Milky Way [33].

Differences in population numbers as a function of mass may be considered as an
imbalance between the rates of star formation and their lifetimes. The formation rate is
generally approximated by the Initial Mass Distribution Function (IMF), taken to be of the
Salpeter form (Equation (11)):

Φ(m)∆m ∝
(

m
M�

)−α

(11)
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with α = 2.35 to a first approximation, and for a star formation rate < stars/Myr/unit
volume in time ∆t, there will be <VΦ(m)∆m∆t stars born with mass between m and
m + ∆m, with a preponderance of low mass stars. This will be balanced by the the star
extinction rate, a function of the expected lifetime, τM, of any specific star on the main
sequence. Although not accurate for very massive or very light stars due to its use of a
single value mass-luminosity relationship for main sequence stars, to a first approximation
this is an inverse function of the mass m of that star (Equation (12)):

τM
τ�
'
(

m
M�

)−2.5
, (12)

where M� and τ� are the mass and lifetime of the Sun, respectively, [44]. Therefore the
overall number N with mass between m and m + ∆m after time t is of the form:{

N ∝ <V(m/M�)
−2.35∆m t for population τM > t

N ∝ <V(m/M�)
−2.35∆m τM or ∝ <V(m/M�)

−4.85∆m for population τM < t .
(13)

Hence within any given observational volume V, there is an abundance of long-lived
low mass stars, but few short-lived high mass stars, although this may be less apparent
within regions of rapid star formation such as the spiral arms and the immediate stellar
neighbourhood, with a preponderance of younger stars. Although it has been argued that
this gradual increase in peculiar velocity with time is by an unknown process increasing
the velocity dispersion after the birth of the stars [33], we propose that this is a natural
consequence of the inverse variation in the mean age of a star with its mass. Because high
mass stars will be disrupted to a far lesser degree than low mass stars, this lends support to
the observation that stars younger than 1 Gyr will have a lower range of velocity dispersion
than older stars [1].

5. Discussion

Two notable features of many disk galaxies are the general similarity of their structure,
with a well-defined disk of gas and stars rotating in approximately circular orbits about
a massive centre, and the stability of the disks over the period of several Gyrs for which
observations are possible [2,10], with one recent observation confirming an early spiral
galaxy at a redshift of z = 4.2603 [45]. This remarkable stability seems to persist from the
earliest appearance of disk galaxies despite strong interaction perturbations from adjacent
stars and the presence of inhomogeneities such as a bar and spiral arms within the disk.
The instability of local ‘cold’ regions is thought to be sufficient to allow spiral arms to
develop, while the increasing density within these arms may prevent runaway instability
by a process of negative feedback [1]. This suggests that there is some mechanism to damp
out the inherent instabilities and ensure that the bulk motions remain circular and confined
to the narrow disk, rather than degenerating into some form of elliptical galaxy. This paper
considers possible damping mechanisms with the potential to restore these perturbations
asymptotically towards the local field velocity.

Velocity perturbations are defined here as any excess or deficient velocity differen-
tial relative to the local ‘bulk’ velocity of the rotating annuli in the disk. In addition to
short-range Newtonian gravitational interactions between neighbouring stars, there is a
gravitational potential from the whole disk that is responsible for the bulk motions. The
gravitational acceleration from the Milky Way disk at the position of the sun (∼8 kpc from
the centre) is adisk ∼ 2.17× 10−10 m s−2, in contrast to that from a star of 1 solar mass
at a distance of 4 light years from the sun of astar ∼ 9.27× 10−14 m s−2, and this central
acceleration must therefore be included in the numerical analysis of stellar interactions.
This in turn demands a model for the gravitational potential throughout the disk.

There have been many attempts to model the gravitational potential for disk galax-
ies [16–21], including a simple exponential model. Over the relatively short range of
inter-stellar interactions however, the local gravitational potential from the bulk disk will
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not show much variation and the exact model chosen is therefore not critical. The model
selected for the analysis in this paper is the lognormal density distribution model because of
its simplicity and generally good fit to a wide range of galaxies [21]. The galaxy chosen for
analysis is M31, both because of its similarity to the Milky Way and because its proximity
has resulted in many good measurements of the rotational velocity fields [13–15].

The age of the halo of the Milky Way is 13.5 Gyr [46] but that of the disk is only
8.8± 1.7 Gyr [47], suggesting that damping from any disruption at its initial formation and
subsequent internal perturbations occurred within this time scale. The model described
here suggests that damping of fluctuations may occur through mutual perturbations with
other stars, by interactions with the Oort clouds, and exo-Oort cloud objects thought to be
present round most stars. Possible mechanisms for this imply that a damping coefficient of
ζ ≈ 0.0001 km s−1 Myr−1 per km s−1 will damp initial perturbations within ∼0.5–1 Gyr,
equivalent to ∼2–3 orbits for a star at 8kpc from the galactic centre. Density requirements
for damping by interstellar dust and gas suggest that these are unlikely to have any
important contribution to overall damping (Section 4.2), and if such damping came only
from Oort clouds it would require a total cloud mass in excess of 2% of the stellar mass,
i.e., ∼4× 1028 kg for a star of 1 M�, with the whole mass distributing the change in angular
momentum of the passing star (Section 4.1). Although there have been proposals that
the density of Oort clouds and other debris may be high [38], it is more likely that only a
small part of this will absorb the change in angular momentum required, and inter-stellar
interactions provide the remainder of the interchange for overall damping.

Unlike the damping of simple harmonic motion, the damping of perturbed stars is not
an exponential function of time, but results in low level damping for small differentials,
with a residual perturbation of the order of ∼20–30 km s−1 maintained by the differential
rotation of neighbouring stars. Such damping may be sufficient to stabilize the orbits
against large fluctuations while retaining the small fluctuations required to maintain orbital
stability demonstrated by Binney and Tremaine [1] and Toomre [5], and matches the
perturbations described in our own galaxy from observations with HIPPARCOS [48].
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