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Abstract: Extremely slow recession of the Moon from the Earth has been recently proposed and
attributed to conversion of Earth’s axial spin to lunar orbital momentum. This hypothesis is incon-
sistent with long-standing recognition that the Moon'’s orbit involves three-body interactions. This
and other short-comings, such as Earth’s spin loss being internal, are summarized here. Consider-
ing point-masses is justified by theory and observational data on other moons. We deduce that
torque in the Earth-Moon-Sun system increases eccentricity of the lunar orbit but decreases its in-
clination over time. Consequently, the average lunar orbital radius is decreasing. We also show that
lunar drift is too small to be constrained through lunar laser ranging measurements, mainly be-
cause atmospheric refraction corrections are comparatively large and variations in lunar cycles are
under-sampled. Our findings support co-accretion and explain how orbits evolve in many-body
point-mass systems.

Keywords: orbital instability; conservation laws; lunar drift; torque; force imbalance; lunar cycles;
3-body problem; spin dissipation; orbital evolution; non-central forces

1. Introduction

Kepler’s elliptical orbits (the reduced two-body problem) reasonably approximates
much of the solar system, but neither describes its evolutionary behavior, nor accurately
portrays the orbital dynamics of the Moon, which only appears to orbit the Earth. Rather,
both bodies co-operatively orbit the Sun (e.g., [1]). Gravitational interactions of three
unequal masses, considered by Euler and Lagrange, should pertain. However, the Moon
does not occupy any of the Lagrangian points, which are stable positions when two mi-
nor bodies move in a plane fixed in space about a very large body (Figure 1). Hence, in-
stability of the lunar orbit is of long standing and current interest (e.g., [2]).

Recent studies consider the lunar orbital radius to be very slowly growing. The tiny
change, alleged to be +38 mm y! from modelling recent lunar laser ranging (LLR)
measurements (e.g., [3-6]), is attributed to conversion of Earth’s spin, which is decreas-
ing, into lunar orbital angular momentum, which is perceived as increasing (e.g., [7]).
This transfer hypothesis approximates the Earth and Moon as being an isolated
two-body system [8], a case where no torque can exist [9], so angular momentum of the
system should be conserved.

The hypothesis is poorly reasoned, as follows:

e Neither body is isolated from the Sun [1], as illustrated in Figure 2.

e Torque is required to modify angular momentum [9], yet torque (7 =7 X F) on the
Moon originating from the Earth is zero, because their vectors for separation dis-
tance (r) and their attractive gravitational force (F) are collinear.
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e No mechanism has been proposed for transforming axial spin of a body to the or-
bital angular momentum of a distant body.

e Equations for the gravitational origin of orbits do not depend on the spin of the
central body: indeed, a body need not even exist at the system barycenter, as exem-
plified by Pluto and Charon.

Hence, revisiting stability and evolution of the lunar orbit is warranted. The purpose
of this report is to provide a physically plausible cause of the current changes, which
could provide constraints on the origin of the moon.
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Figure 1. Key features of the 3-body Earth-Moon-Sun system: (a) Schematic of stable 3-body orbits
around the stationary Sun in a plane fixed in space. Blue orb represents Earth. Large crescents de-
pict stable orbital positions at the 60° and antipodal Lagrangian points. Tiny crescents depict qua-
si-stable points utilized for satellites; (b) Quadrant of the lunar orbit showing a to scale comparison
of the nearly circular barycenter orbit (solid line) to the Moon’s sinuous orbit (pink dots), which
reaches a maximum of ~405,000 km from Earth (e.g., [10]). The actual excursion is slightly less than
the maximum shown, due to the orbit being elliptical. The lunar monthly period is idealized as
1/12th of a year; (c) Orientation of Earth’s spin and various orbital elements. The barycenter and
ecliptic planes are distinct. Pink indicates components affected by the time-varying lunar orbit. The
directions of the barycenter axis and the spin axis vary from ~0 to 28.5° over the lunar cycling, and
precess independently. The radial position of the barycenter (B, pink double dots) varies by ~500
km over a month inside the lower mantle. Its longitude varies by 360° every day. Earth-Moon
distance is not to scale, but body sizes and angles are. Part c was modified after [11], which has a
Creative Commons 4 license.
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The paper is based on Newtonian physics. Section 2 describes the complex lunar
orbit, its multiple cycles, and how orbital parameters, namely the semi-major axis (a),
eccentricity (e), and inclination (i), are ascertained. Section 3 explains why the lunar orbit
can be treated as gravitational interactions between point-masses. Section 4 discusses
reduction of body spin through internal dissipation. Section 5 sets limits on changes in
lunar g, ¢, and 7 using conservation laws, and accesses the possible changes based on force
imbalances and torques experienced by the Moon during the three-body point-mass in-
teractions. Section 6 covers the problems in LLR models which prevent quantifying lunar
orbital evolution. Section 7 discusses lunar evolution and origin, and compares our
findings to behavior of the planets, which are also perturbed by three-body interactions
[12]. Section 8 concludes.

2. Observations and Parameterization of the Unique Lunar Orbit and its Cycles

In this work, “lunar orbit” refers to the Moon encircling the Earth, whereas “sinuous
lunar path” is applied to the actual motions of the Moon about the Sun in the heliocentric
frame of reference. The lunar orbit is around the barycenter of the Earth-Moon system.
The enormous Solar mass allows us to treat the Sun as stationary in our theoretical as-
sessment, and so “barycenter” as used in this report refers to the barycenter of the Earth—
Moon system, which orbits the Sun in a nearly circular path.

2.1. Long-Standing Techniques for Measuring Motions in the Solar System

Motions of the Moon, Sun, and planets have been reliably recorded from the Earth
against the stars for ~200 years. Only motions perpendicular to the line-of-sight are
well-resolved. Consequently, mathematical modeling and multicomponent fitting are
used to describe the apparent motions of astronomical bodies against the background of
stars and to parameterize the orbital motions [13-15]. Although the Earth-Moon bary-
center moves in an elliptical orbit around the Sun, the position of Earth’s center in space
is controlled by the varying Earth-Moon distance: Thus, the geoenter does not move
around the Sun in a simple elliptical orbit (Figure 1). Neither are geocenter cycles annual
because the Julian year is not an integer multiple of any lunar monthly cycle (see below).
Due to this complexity, observations are based on Earth crossing the ecliptic in the spring
(the vernal equinox) which defines the ecliptic plane for that particular year, and also an
imaginary grid of longitude and latitude against the stars.

Projecting motions forward in time requires revising model parameters. Newcomb’s
[13] meticulous calculations were used for many decades. Such models describe obser-
vations of the Moon from the Earth as polynomial expansions with five to nine terms
[14,15], and similarly depict motions of the planets. From these models, which are af-
fected by the Earth’s complex motions in a time-varying plane, orbital parameters are
extracted. Trade-offs exist between providing accuracy for the present century and a
large time span of applicability [15].

2.2. Lunar Orbital Parameters and Velocities

Available data show that the Moon’s orbit around the barycenter, on average, re-
sembles a Keplerian ellipse. Table 1 provides orbital and body parameters.



Astronomy 2022, 1, 58-84

61

Table 1. Physical paramet

ers and notation .

Description Symbol Value Description Symbol Value
Solar mass Ms 1.99 x 10 kg Gravitational constant G 6.674 %10 m3kgls?
Earth’s mass MEe 5.97 x 10* kg Barycenter orbit radius 8 149.6 x 10° km
Lunar mass Mmn 7.35x 102 kg Lunar semi-major axis 2 a 384,748 km
Earth’s average radius Re 6371 km Lunar eccentricity 2 e 0.05490
Moon’s average radius Rm 1738 km Inclination to Earth’s equator 3 i 18-28°
Earth’s ellipticity £ 0.003353 Barycenter-geocenter distance B average ~4670 km

1 Subscripts S refers to the Sun; E to the Earth, m to the Moon; and B for barycenter is used as both a
symbol and subscript. Sources: [10,16,17]. Some apparent inconsistency among sources exists, as
lunar orbital radii may refer to the geocenter, which is more convenient. 2 Refers to the Moon’s
average ellipse around the barycenter, which varies monthly and yearly. 3 See Figure 1c for the
many angles of components in the Earth-Moon-Sun system.

Tangential velocities are ~1 km s for the Moon’s apparent path around the Earth, or
~30 km s for the barycenter around the Sun (e.g., [10]). To “keep pace with the Earth”
the Moon moves faster when it is outboard of the barycenter, than inboard, but because
the barycenter orbit is curved, the moon spends more time outboard (Figure 2).
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Figure 2. Geometry of the sinuous lunar orbit and its cycles: (a) Plan view of the whirligig orbits of
the Moon and Earth, and of the circular barycenter orbit, all about the Sun. The barycenter orbit is
straight for simplicity. The crossings as sketched for the Moon and Earth are required for
non-colliding paths and fixed orbital radius, but are distorted in this view; (b) Plan view of an ideal
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2-body orbit of the Moon around the Earth, for which representation, the Sun can be considered as
a perturbing force. Hence, the Sun accelerates the Moon along (a11) and perpendicular (a1) to its
orbit around the Earth except during the crossings of the barycenter orbit (black dots). The Moon is
additionally accelerated towards the barycenter plane (a at X). Due to curvature of the barycenter
orbit, the Moon spends more time outboard than inboard (stippled pie slice); (c) Graph of days
since 1 January 2001 between sequential first and last quarters of the Moon from January 2001 to
the end of the 8.85 year apsidal precession cycle in 2009, obtained from tabulated data for the cen-
tury [18], and confirmed by comparison to ephemeris tables [19]. This cycle describes a complete
revolution of the orbital ellipse. The number of days outboard vs. inboard varies from -2.49 to
+2.52, so the Moon spends a small excess fraction of the month outboard; (d) Plan view of the orbits
around the Sun, from a geocentric perspective, showing additional effects of the non-circular lunar
orbit.

2.3. Lunar Cycles: “Year” vs. “Month”

To observers on Earth, phases of the Moon and eclipses define key lunar cycles.
Phases of the Moon repeat on average every 29.53 days, providing the well-known syn-
odic month. Full moons occur at the extreme outboard position with respect to the Sun
and the barycenter orbit, whereas new moons occur at the extreme inboard position
(Figure 2). Quarter moons roughly occur at medial times along the barycenter path, due
to its curvature. Tilt of the lunar orbital plane with respect to the barycenter plane (Figure
1) and its varying orientation make eclipses infrequent, rather than monthly [10,20-22].

Other definitions exist for a lunar month [10]. The important cycle as regards orbital
evolution is the anomalistic period of 27.55 days, which represents the interval from
perigee to perigee (or apogee to apogee).

Due to inclination, eccentricity, the variable orientation of the lunar orbital plane
with respect to the fixed reference frame of the barycenter plane, and the anomalistic cy-
cle not being some simple fraction of a year (i.e., the barycenter orbital period of 365.25
days), the orbit of the Moon around the Sun involves several long cycles. Many are on
human time-scales [10,20-22]. Apsidal precession takes 8.85 years (Figure 2). The ~19
year Metonic cycle links the synodic month to the tropical year, but the Callippic cycle of
76 years is more exact. The Saros cycle of 18.029 years concerns eclipses, and thus a spe-
cial repeated orientation of the lunar and barycenter planes.

2.4. Motivation to Directly Measure the Moon’s Orbital Radius

Various scenarios for formation suggest slow growth of the average radius of the
lunar orbit. For example, if the Moon was ejected from the Earth or fission occurred [23],
its current average orbital radius suggests growth at ~90 mm y~! assuming zero radius at
solar system beginnings. This upper limit for recession is 12 or 13 orders-of-magnitude
smaller than orbital velocities (Section 2.2), and is far too small to quantify based on ob-
servations against the stars. Alternatively, as proposed by Laplace, the Moon could have
formed from a ring of dust around the Earth (see, e.g., [23,24] and references therein).
Co-accretion points to an originally circular orbit at some finite radius, permitting nega-
tive values for lunar drift. Section 5 provides details.

Crucially, annual resetting of the geocentric reference frame at the vernal equinox
greatly complicates, if not prohibits, quantification of multi-year changes. Thus, to
measure possible tiny perturbations of the Moon’s orbit, laser light is reflected from ret-
ro-reflectors (denoted “mirrors” for brevity) placed on the Moon by astronauts (e.g., [3]).
See Section 6 for details.

3. Gravitational Attraction to Oblate Planets and to the Pluto-Charon Binary

Two facts pertain to the motion of a small mass in the gravitational potential well of
large body. First, at some distance from any mass distribution, the gravitational potential
must reduce to the inverse radial dependence associated with a point mass. Second, the
radial force of gravity, combined with forces during axial spin, renders large
self-gravitating bodies oblate: this reduction in symmetry makes the force field
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non-central [25]. This section discusses how gravitational attraction to the oblate and
lower symmetry distribution affect natural satellites in our solar system.

3.1. Gravitational Attraction to Non-Spherical Mass Distributions

The gravitational potential exterior to an oblate body, first derived by Gauss and
Dirichlet, is complex even for a body of homogenous density. Hofmeister et al. [25] pro-
vide simpler, but exact, equations along the special axes of an axisymmetric body for the
potential (¢) and force (F) as functions of the radial (r) and axial (z) directions:

Bt ext (Z) =-— 3GMim [—Zag + (22 + azgz)ArcTan (Eﬂ )

20°¢? z

Bt (1) = —%{aﬁ/ﬂ —a’s’ - (r2 - 2a252)ArcSin (Eﬂ @)

da’e r
3GMm z as
Fpe(2)= —W[l ———ArcTan (jﬂ 6)
3GMm| r . (ae a’e?
Fy e (r)=- s {EArcSm (7j —. 1= = } )

where m is the mass of an exterior test body, and M is the mass of the central body with
equatorial radius a and ellipticity e. MacMillan [26] provides a formula equivalent to
Equation (1). Figure 3a shows that the axial, equatorial and spherical potentials converge
rapidly with increasing distance even if the oblate body is very flat. Thus, beyond a few
body radii, the attraction is close to that of a spherical distribution. Convergence becomes
more rapid as ellipticity decreases.
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Figure 3. Gravitational forces around the upper right quadrant of a highly flattened oblate sphe-
roid: (a) Values of force along the two special directions for a body with e/a = 0.1, shown as a grey
oval (where ¢ is the polar radius), compared to the force around a sphere of equivalent mass (pink
dotted curve). At 10 body radii (Distance = 10 «; offscale), the forces along special directions of this
flattened spheroid only differ from than that of the sphere by +0.3%; (b) Directions of force, which
are continuous from outside to inside the body (faint gray oval). Both parts modified after Hof-
meister et al. [25] (Figures 4a and 7f therein), with permissions.
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For the general point exterior to the body:

3GMm r z P z

(pnbl,axt =- 20 ﬁwct 1 26{282 + azgz + 26!282 Slnﬂext Cos O, — 0[282 tanﬁext ®)
where:
2
1 2f +a’e? 2 +a’s’ a’s’
B = EArcCos —— ]| 1+ > —-4— (6)
r r r

The term in square brackets in Equation (5) is dimensionless and reveals the non-central
nature of gravitational attraction to an oblate body [25]. Specifically, at each and every
external point, the potential is not inversely proportional to the spherical radial distance s
= (12 + z2)”. Moreover, at a general point the force is not even directed towards the object’s
center (Figure 3b: see [25] for additional examples).

Regarding the special directions, symmetry requires that force vectors along the
polar axis and above the equatorial plane do point towards the center, but again force
magnitudes neither vary as 1/r? nor as 1/s? per Equations (1)—(6).

3.1.1. Comparison with the Generalized Potential Used in Fitting

The “generalized” potential describes attraction of a test mass to a large body as a
perturbation on results for a sphere [27]:

GMm GMm-&S(a. N . .
Poenext =~ - ZZ(%) P(sin6)(C,, coskA+S,, sinkA) (7)

S S n=l k=0

where aave is mean equatorial body radius; s, 8, and A are the spherical orbital radius,
latitude, and longitude of the test mass; Pn* are associated Legendre functions of the first
kind; and Cnk and Snk are numerical coefficients obtained from fitting. As a potential for a
planet must necessarily include their predominantly oblate shape, limitations of the
generalized potential are understood by comparing Equation (7) to the exact results for
an oblate body, Equations (1)—-(6).

For an axially symmetric body, Crk and Snk terms involve longitude and k = 0, where
the zonal harmonic coefficients (J», defined as -Cwo) are used in fitting, e.g., of motions of
satellites around a gas giant. Equation (7) can only be reconciled with results for the spe-
cial axes, Equations (1) and (2), if and only if the relationship for each term:

_3(_ l)n 82}1

m = m (8)

is used [25]. Furthermore, this equivalence also presumes that many terms in each series
are used to achieve convergence, which is atypical of fitting procedures using Equation
(7), see, e.g., [28].

Furthermore, the series describing points off the special axes of the oblate body is
incompatible with the generalized potential. The meaning of the coefficients is lost in fit-
ting, because attraction to an oblate body is not central as in Equation (7), as illustrated in
Figure 4. In short, the properties of Equation (7) are incompatible with those of oblate
bodies. The theoretical and observed shape of spinning, self-gravitating, astronomical
entities is the oblate spheroid: However, the generalized potential cannot accurately de-
scribe attraction to bodies such as gas giants and stars.

Here, we note that the generalized potential with many terms can be used to fit or-
bital data for satellites proximal to Earth. As discussed by Transtrum et al. [29], multi-
plied parameters permit fitting data with incorrect physics. The fitting approach neces-
sitates that the empirical fits are adjusted as orbits evolve, and is useful for satellites that
typically orbit at heights of only 1.02 to 1.3 Earth radii, and experience additional
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short-term accelerations from regional asymmetries such as continents with their massive
mountain ranges. However, the physical meaning of the most important terms, ]2 in par-
ticular, is lost in applying Equation (7) to the giant planets [25] which are distinctly ob-
late, rather than approximately spherical with bumps.

3.1.2. Orbits involving A Non-Central Potential

Far from a spinning astronomical body, where the point mass approximation is
valid, orbits can be inclined, eccentric, and follow Keplerian dynamics. Close in, where
forces are not central, stable orbits are either equatorial and circular or polar and ellipti-
cal. Bodies close-in with inclined, but non-polar, orbits are unstable, and will be pulled
toward the equatorial plane.

Orbital parameters are controlled by distance, plus central body size and ellipticity
[25]. For bodies with close-in, low inclination orbits, equating the centripetal and gravi-

tational forces yields:
via 3 V22|
ue|-(3-4)% ©

where a is the radius and v the tangential speed of a circular orbit. Additionally, u =0 for
a constant density body, increasing to % for the limiting case of a point or spherical mass
where € =0 [25].

For the above reasons, Section 3.2 analyzes data on natural satellites in terms of the
equatorial radius (o) of the central planet, and discusses satellite systems individually, to
account for & varying among the gas giants, and to address unique Pluto’s system.

3.2. Satellite Systems Confirm That Earth Acts as A Point Mass on the Moon
3.2.1. Examples of Orbits around Uniaxial Central Mass Distributions

The giant planets are significantly flattened, with ellipticities of 0.432 for Saturn,
0.354 for Jupiter, 0.213 for Uranus, and 0.184 for Neptune [16]. The smallest axial ratio (for
Saturn) is 0.902, which is far more spherical than the example in Figure 3. In contrast,
rocky Earth and Mars have & = 0.00335 and 0.00589, respectively, whereas tiny Pluto,
which is spin-orbit coupled with nearly as large Charon, has & = 0.0000.

Orbital characteristics of the moons of the outer planets and Pluto occupy three dis-
tinct trends with a few outliers (Figure 4a). Our Moon falls on a trend with 20 others. The
self-gravitating close moons almost all have nearly circular orbits (e.g., eccentricity e <
0.018 for the 8 close Jovian moons) that lie in the equatorial planes of these planets (e.g.,
inclination i < 0.47° for the Jovian moons). More distant satellites have large i and e, with
both covering a wide range, and include many (e.g., ~60 around Jupiter) in retrograde
orbits (Figure 4a). Overall, inclination correlates with eccentricity for the moons of all
planets, and those with many moons show fits with similar slopes (Figure 4b).
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Figure 4. Orbital properties of moons of the solar system, showing correspondence of orbital in-
clination with respect to the planets’ equator with orbital eccentricity. Data from NASA [16]. Box
links symbols to planetary systems. Least-squares fits include the origin: (a) Plot differentiating
retrograde moons. Large, round moons (a > 1400 km) are labelled. Only Triton is retrograde. Re-
garding tiny Hippocamp of Neptune, 5 moons of Saturn inside the main rings, and 3 moons inside
Saturn’s ring E, zero was listed for either e or i or both. To depict these satellites on logarithmic
plots, we set e = 8 x 10 and/or i = 0.0008°, which values are below all reports for other moons:
consequently these 9 moons plot on the axes or at “zero.” The main groupings, as labeled, suggest
correlations with potential of the central body; (b) Same data, except that retrograde moons are
plotted with inclination reduced by 180°. Fits excluding retrograde moons are similar. Moons that
deviate greatly from the depicted trends are labelled, as are all large moons.

Figure 5 shows how e and i depend on the semi-major axis, normalized to central
body radius. Orbits of distant moons have high eccentricities and widely ranging incli-
nations (Figure 5a). Inclinations are larger for the close moons of Saturn, reaching 1.86°,
but the same bimodal pattern exists for e and i. Moons of Uranus follow similar trends to
the gas giant systems, whereas the few moons of Neptune are distributed bimodally.
Mars is quite round, like Earth, and its tiny moons have orbital characteristics similar to
the close moons of the giants (Figures 4 and 5). The Plutonian system is discussed below.

Iapetus of Saturn resembles our Moon in all three orbital characteristics (Figures 4
and 5a). Its average radius (~1420 km) is also similar, and Iapetus is fairly round, but its
composition provides a lower density, in accord with most (icy) moons in the outer solar
system. The inclination of Iapetus is also variable like our Moon (not shown).
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proximal moons. Data from NASA factsheets [16]. For the retrograde moons, the inclination shown
=180° minus that reported. Solid symbols = inclination (right axis) and open symbols = eccentricity
(left axis), where the color scheme is the same as in Figure 4: (a) Plot of all moons with a/a < 425.
This cutoff excludes one of Saturn’s 79 moons which is near 450 body radii; plus 5 of Uranus’s 24
moons and 5 of Neptune’s 14 moons, all of which are much further out, reaching /ot = 10,000. These
11 moons orbit with a wide range of i and ¢, like the cluster near a/a of 300. Large Triton is retro-
grade in a tilted, circular orbit, whereas Hyperion has a chaotic orbit, attributed to interactions with
Titan; (b) Expanded view of the box near the origin in the left panel. Pluto’s tiny moons [30], which
actually orbit the Pluto-Charon barycenter are not shown: see text for discussion of this unique
satellite system.

3.2.2. A Triaxially Shaped and Time-Varying Central Mass Distribution

Pluto and Charon essentially compose a binary system, where the remaining 4 tiny
satellites are spin-locked, resonating, and co-planar [30], even at large a/a of 60 (Figure
5a). These 4 tiny distant moons are forced into equatorial orbits because Pluto and
Charon together compose the central mass: Their combined gravitational potential is
highly flattened in their barycenter plane and time-dependent with a repeat near 6 days.
As occurs for a single oblate body, the direction of pull is towards their barycenter only in
their orbital plane and along the special, perpendicular, axis above their barycenter.
Nowhere in this fascinating system is the gravitational attraction proportional to the
distance to the Pluto-Charon barycenter. On average and roughly, Pluto and Charon to-
gether act as a highly flattened oblate body over their ~6-day orbital period.

Hence, the relevant parameter is not Pluto’s «, used in Figure 5, but Charon’s orbital
radius. For this extreme case, the uniaxial force operates out to a factor of 3.3 x larger than
the apparent limit of a/a = 27 seen for the oblate giants. This observation, in view of
Earth’s low ellipticity, supports modelling the Moon-Earth binary as point mass interac-
tions. The remainder of Section 3 concerns the slightly oblate planets.
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3.3. Ellipticity and Spin Rate

Todhunter [31] devised the formula for the dependence of angular velocity (w) of a
spinning, homogeneous body of homogeneous density (p) on ellipticity:

) 27pG1-¢&° [(3 -2¢’ ) arcsin(g) —3ev1—¢&’ J

53

@ (10a)

based on the geometrical constructions of MacLaurin. This classical result for homoge-
neous uniaxial bodies simplifies to a linear relationship between w and ¢ for ¢ <0.5:

2
o = 8zpGe

T or & = constant x o (10b)

[32], which therefore holds to significantly larger € than the planets of our solar system.
The small deviation between the exact relationship and the approximation (Figure 6a) is
insignificant, given that real bodies have radially varying density.
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Figure 6. Behavior of spinning self-gravitating bodyies: (a) Spin of a homogeneous density, fully
solidified oblate. Modified after Criss [32] (Figure 1 therein), with permissions; (b) Primary mech-
anism of differential rotation for the Earth. Equatorial slice, showing internal structure, down the
North pole (N), showing uniaxial stress cracks (black bars), layers (various patterns), and drag
(black arrow). The Earth’s lower mantle (blue marble) spins through the barycenter (B) on a daily
basis. This variation is not entirely longitudinal because the spin axis is inclined to the lunar orbit
and to the barycenter orbit. Dark grey = liquid outer core. Samples are limited to origins in the
upper mantle (light blue stipple). Modified after Hofmeister et al. [33] (Figure 2e therein), with
permissions.

As body spin declines, the object rounds up (Figure 6a). Distant and close in orbits
are affected differently from theoretical considerations, which are consistent with the
observations of moons in the solar system, as follows:

3.3.1. Effect of Slowing Planet Spin on nearby Satellites

For moons with close-in orbits, which occur near a planet’s equatorial plane (Figures
4 and 5), spin down of the planet will effectively weaken the exterior attractive force per
Equations (2), (4), and (9). As the attractive force changes not only in magnitude, but also
in direction, in response to spin down, orbital evolution is complicated and should de-
pends both on parameters of the planet and the satellite’s initial orbital parameters.
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3.3.2. Effect of Slowing Planet Spin on Distant Satellites

Moons in distant orbits (2 > 27a) about individual planets will not be affected by
spin decline because the central potential acts as that of a point mass at such distances
(Figures 4 and 5). Considering Figure 3a and results for round oblates [25], convergence
occurs at a small, roughly ~0.05%, difference in the actual potential from that of a sphere.
Our Moon is described by this situation because its orbital radius is ~60 Earth radii. As
Earth’s tidal bulge is miniscule compared to the difference between its polar and equa-
torial radii, this bulge negligibly affects the Moon’s motions. Thus, the lunar orbit is a
point mass problem.

4. Internal Dissipation of Body Spin and Implications for Conservation Laws

Loss of spin makes planetary bodies less oblate, per Equation (10ab). The rocky
Earth is a differentially spinning, mostly solid, layered body [34,35]. Implications of fric-
tion existing between the layers are as follows:

4.1. Oversimplified Case: Conservation of Spin Angular Momentum Holds

Earth’s ~60 km thick outermost layer (the solid lithosphere), moves westward at
about 60 mm y~! relative to the mantle and below (~6300 km radius, sketched in Figure
6b). From a classical physics standpoint, friction exists between these layers and degrades
the spin while heating their interface, but (angular) momentum is alleged to be conserved
nevertheless. Given that the lithosphere is only 0.6 wt% of the Earth [36], recent slow-
down of the surface at 2 x 10 s y! [37,38] means that if spin angular momentum were
indeed conserved, then the interior would accelerate by a mere ~10 s y~'.

The lithosphere lies on a low velocity zone, detected in seismology, and inferred to
be weak (e.g., [36]). The base of the lithosphere is partially melted, which reduces re-
sistance to the shearing motion of differential rotation. However, Earth’s subducting
tectonic plates extend to depths of 300 to 660 km [34,35] and thereby provide resistance:
Some plates break while others bend, depending on whether the subduction direction
shares the same sense as spin. This geometry shows that differential rotation exists be-
tween the outermost layer and the interior [34,35].

Another prominent weak zone exists: Earth’s outer core does not propagate shear
waves and is therefore at least partially liquid, whereas the inner core is solid due to
compression [36]. Therefore, differential rotation could exist between the strong mantle
and the inner core. Super-rotation of the core has been considered, but its small size (<1
°y~') makes quantification difficult (see [32] and the review of [39]). A tangential velocity
similar to continental drift is well below the limit of detection. Notably, super-rotation of
the whole core differs from super-rotation of the inner core. In particular, the molten
outer core flows (shears) without resistance, so a faster rotating, more oblate solid inner
core could be accommodated while the mantle rotates more slowly and is rounder. Criss
[32] provides analytical formulae for spinning stratified bodies along with calculations
for several endmember cases.

The roughly horizontal frictional force of viscous drag provides the torque needed
to change relative angular momentum of the layers (Figure 6). Conservation of momen-
tum would cause spin to decrease towards the surface, while increasing towards the in-
terior, thereby preserving the original angular momentum of the whole Earth.

Thus, transfer of spin angular momentum to the Moon is unnecessary because in-
ternal processes redistribute spin during conservative behavior.

4.2. Frictional Forces Decrease Spin

Previous discussions of friction and momentum conservation implicitly assume that
the force applied is external. Regarding the textbook example of a block sliding down a
hill, the two objects are considered to be distinct and the force is a constant, because it is
visualized as stemming from the nearly constant gravitational acceleration on Earth’s
surface. Earth acts as the external object (surroundings) in the sliding block problem. In
contrast, the internal layers of a spinning planet compose the object itself.
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Spin energy declines due to friction between internal planetary layers, which pro-
duces heat. Loss of energy depends on material properties such as the coefficient of fric-
tion and thermal conductivity. The amount may be large, as the model of Na and Lee [40]
suggests that 97% of energy loss during spin down becomes heat. Thus, Earth’s average
spin rate is declining.

Earth’s spin angular momentum decreases during heat production because friction
provides torque (Figure 6). This decline is at a slower rate than spin energy decreases (Iw
vs. V2 Iaw?, where [ is the moment of inertia). For additional discussion of large-scale pro-
cesses occur inside the Earth, see [33]. Microscopic processes that dissipate momentum
must be intimately tied with those converting mechanical energy to heat, but a detailed
discussion is beyond the scope of this report.

Thus, dissipation of spin is also an internal process, and does not affect the Moon.

5. Permissible Changes in Orbits around a Central Point Mass

The above discussion of Earth’s declining spin shows that changes in the interior
rotational motions depend on whether or not heat is produced, i.e., whether mechanical
energy is identical to the total energy, which is the quantity actually conserved. Similari-
ties and differences of spin with orbital changes are covered here. This analysis extends
our earlier analysis of the weak perturbations of planetary orbits by other planets [12].

5.1. Conservation Laws for Orbits Are Stringent

The Virial theorem of Clausius, predicated on conservative forces, results from lin-
ear momentum cancelling in all directions over the restricted space that defines some
bound state [41]. This balance is readily demonstrated for elliptical orbits. Balance in-
volves the canonical conjugate pairs of position and linear momentum, and is inde-
pendent of conservation of energy and angular momentum. The extra stipulation is at-
tributable to energy being consumed to form the bound state, which by definition is re-
stricted in space. Orbits are cyclical bound states. The Virial theorem involving Newto-
nian gravitational potential energy (P.E.) tightly restricts kinetic energy (K.E.) of the orbit:

(K.E.)= —%(P.E.} (11)

where the angle brackets indicate averaging over the orbit. Conservation of energy pro-
vides an additional constraint:

K.E.+P.E.=E,, =aconstant (12)

which holds at any given time. Multiple constraints make bound states resistant to
change.

Equations (11) and (12) hold for repeating paths, such as aperiodic orbits [42]. Thus,
the Virial constrains hold for the Moon’s path which is elliptical over a long term average.

5.1.1. Energy Conservation Is Key

Constant total energy provides a stringent restriction. Regarding orbits, friction does
not exist for an object moving in the rarefied medium of space. Although collisions could
alter the energy of an orbiting object, these have been few and small in the solar system
over the past several billion years [43], so are not considered here.

5.1.2. Changes in the Lunar Orbit Permitted under Energy Conservation

Constant Etwt of an orbiting object does not permit changes in its semi-major axis, but
allows eccentricity to vary [42]. Importantly, for a 2-body system, any inclination is per-
missible, as this factor does not enter into the description of the orbit around a point mass
or sphere. Thus, orbital inclination may also change.
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Figure 7a compares the current, quite circular, average lunar orbit to hypothetical
orbits in the same plane that have the same energy, with the Earth at one focus. The radial
distance as a function of orbital position is [42] (p. 131):

_a(=¢) (13)
1+ecosd

where the angle 0 is defined by a point on the orbit and the focus, with respect to a the
line connecting the perigee and apogee.
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Figure 7. Geometry of the lunar orbit: (a) Polar plot. Heavy black shows the current semi-major axis
and eccentricity. The central dot shows the actual size of Earth. Black dotted curve is a circular orbit
with the same energy. Additional permissible orbits obtained using Equation (13) are shown. Red
long dashes show e = 0.206 which also describes Mercury’s orbit, the most eccentric among the
planets. Green medium dashes = high e seen in orbits of some distant prograde moons (Figure 5).
Purple short dashes = very high e, above which collision with Earth could occur; (b) Calculation of
the average lunar radius from its current semi-major axis and different values of e. Arrows show
the changes associated with the limiting geometries of a circular orbit compared to a nearly linear
orbit at 4.52 by ago.

The angular average of r in Figure 7b was computed by integrating Equation (13):

r =a\l—-e*=b

average

(14)

Equation (14) provides the geometrical average of an ellipse, and rests on infinitesimally
small angles. An angular average is appropriate because a is constant under energy con-
servation and so evolution involves changes in shape (i.e., in e or b) over long periods of
time.

Elongation drives the Moon towards Earth at perigee, but away at apogee, while
shrinking the semi-minor axis (b). Consequently, the average radius decreases during
elongation. If the endmember condition of a perfectly circular orbit describes formation
4.52 billion years ago, then the rate of lunar drift is -0.13 mm y~'. A circular orbit must
describe the starting point because torque is elongating the orbit, as follows:

5.2. Solar Torques Change Eccentriciy and Inclination of the Lunar Orbit

If the Earth and Moon were truly an isolated 2-body system, the lunar orbit could
not change. Changes result from interactions with the Sun (the actual 3-body system),
which provides a force on the Moon that is 2.2x greater than does Earth:
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F F=22xF,, (15)
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Table 1 defines the physical parameters in Equation (15), lists their numerical values, and
describes our notation for subscripts.

The Sun holds the Earth-Moon pair in a heliocentric orbit. The barycenter orbit is
nearly circular, indicating long-term stability (e.g., [12]). With postulated lunar drift be-
ing ~12 orders-of-magnitude smaller than barycenter or lunar orbital velocities, force
imbalances must also be small relative to those largely controlling the orbit, i.e., those in
Equation (15). Thus, the Sun’s influence on the Moon is deduced by considering solar
forces as perturbing the lunar orbit around the Earth. The planets slightly perturb the
lunar orbit, but since the same conservation principles hold and the largest force on the
Moon (from Jupiter at its closest pass) is only 0.00017 times solar [12], this minor effect
can be neglected.

Essential behaviors, such as the shape of spinning planets and orbital characteristics,
have been inferred by comparing an attractive gravitational pull to opposing centrifugal
forces [42]. Following this approach does not idealize the orbits of these 3-bodies as co-
planar, but for simplicity we consider both the barycenter and lunar orbits to be circular.
Hence, gravitational pull (Equation (15)) and radial centripetal acceleration of the bary-
center are balanced: Fess = Frss, and similarly for a nearly stable lunar orbit: FGem = FrEm
(Figure 8). In contrast, Fcsm and Frsm are imbalanced even in this idealization.

Torque (7 = FxF ) exists because the Earth, Moon, and Sun define a triangle
(Figures 2 and 9). Rarely is the force applied by the Sun to the Moon collinear with the
Sun-Moon direction. The geometry of the 3-body system thus provides torque which
necessarily changes angular momentum, yet lunar orbital energy must remain constant.
Thus, the imbalanced solar force and consequent torque can affect only e and i of the lu-
nar orbit.

Figure 8. Schematics of forces perpendicular to the barycenter plane associated with the reduced
2-body orbits in the Earth-Moon-Sun system. Object size and angles are exaggerated to reveal the
perturbing forces and imbalances. Distances are not to scale. Forces are as labeled, with shade and
length of filled-tip arrows suggesting relative magnitude. The imbalances, denoted Solar grab and
sling, are shown as white open arrows. Sling involves the orbiting object not falling towards the
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center sufficiently fast for a stable orbit. Distances and/or orbits are indicated with various pat-
terned lines: (a) Cross section when the Moon is inside the barycenter orbit; (b) Cross section when
the Moon is outside the barycenter orbit.

5.2.1. Permissible Changes in Eccentricity

In the plane of the lunar orbit, the Sun can accelerate the Moon both radially (per-
pendicular) and along (parallel) to the orbit (Figure 2b). Centripetal acceleration of the
Moon by the Sun is evident in the variation in velocity along the month. From the NASA
factsheets [16], the maximum orbital velocity of the moon around the Earth is 1.082 km s
while the minimum is 0.970 km s'. Parallel acceleration should not change eccentricity.
Orbital precession, i.e., rotation of the orbital ellipse as the barycenter moves around the
Sun (Figure 2d), probably links to parallel acceleration.

As the Sun pulls the Moon towards the Sun in an inboard position (Figure 2ab), this
elongates the orbit, and is denoted as grab. In an outboard position, the Sun pulls the
Moon towards the Earth (and Sun) which brings the Moon closer to the lunar orbit foci,
which also elongates the orbit (Figure 2). Thus, perpendicular acceleration associated
with the Sun increases e of the lunar orbit, while decreasing the average radius (-0.13 mm
y~! from Equation (14) and Figure 7b).

5.2.2. Permissible Changes in Inclination

The Moon lies ~5° out of the barycenter orbital plane. Hence, the direction of pull on
the Moon towards the Sun is infrequently co-linear with the centrifugal force associated
with the Moon'’s path around the Sun (Figure 8ab). Stability of the lunar orbital plane is
impossible because pull towards the barycenter plane provides torque at all times except
during the instant of the ~bimonthly crossings (Figure 2b). Hence, inclination of the
Moon’s orbital plane changes unilaterally, because it is slowly but continuously pulled
into the barycenter plane.

Inclination of the lunar plane to the ecliptic is currently 5.14°, while varying from 18
to 28° with respect of Earth’s equatorial plane (Figure 1c). The latter is relevant (Section
3.2). Assuming that an equatorial configuration existed at formation suggests a progres-
sion of ~5 x 107 °y~1. Jupiter also applies torque, but to both Earth and its Moon, thereby
moving the barycenter orbital plane (Section 7).

6. Uncertainties in Modelling Lunar Drift from LLR

Difficulties in establishing slow evolutionary changes in the lunar orbit are linked to
large and rapid variations in the orbit of the Moon around the barycenter, and the many
correction terms needed to convert surface-to-surface measurements to orbital parame-
ters. This section begins by describing known lunar motions, then discusses the database
[3] provided by laser lunar ranging (LLR), and how drift is ascertained by combining
several independent models.

6.1. Characteristics of the Moving Lunar Target
6.1.1. Daily Variations

In a perfect elliptical orbit, the orbital radius changes throughout each cycle. Given
the average values in Table 1, the idealized lunar orbital radius around the barycenter
increases on average by ~3000 km d-! from perigee to apogee, and then shrinks in the
second half of the month. Simultaneously, the distance from the barycenter to the geo-
center changes proportionately:

M

m

r, =1L L
B lunar orbit
M, +M

E m

H Where K G-m = rB + I/iunar orbit * (16)

From Table 1, the associated change of +500 km inside the Earth is a factor of ~83 smaller
than the lunar variation over a month (Figure 9).
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Figure 9. Characteristics of the lunar orbit over the perigee-to-apogee half-cycle: (a) Distances as-
sociated with the lunar and terrestrial Keplerian orbits around the barycenter. Red dots = lunar
radii spaced at equal times of 0.54 days, which were calculated from Equation (13) using 0.2° in-
crements, and a4 and e in Table 1. These points are reproduced by a 4th order polynomial fit (not
shown). The average radius (black dashes) is slightly lower than the semi-major axis (grey heavy
line). Blue X and right axis = distance to the geocenter, calculated from the fit; (b) Time derivatives
of the calculated distances. Red solid curve = lunar variations over the half-cycle. Blue dots near x
axis = the barycenter variation on the same scale. Long dashes and right axis = lunar drift, as mod-
elled from LLR delay times [3], scaled to a daily basis.

Lunar drift modelled from LLR [3,4-6,44] as 38 mm y! is nearly 10-orders of mag-
nitude smaller than the average daily change in the lunar radius over a half-month (Fig-
ure 9). Accuracy in radius better than a parts-per-billion level is required to established
drift. This level of precision is not achievable, as follows:

6.1.2. Variations in Tangential Velocity during the Lunar Orbit

Because tangential velocity varies continuously with position, intermittent meas-
urements of the orbital radius are insufficient to establish lunar drift. Evenly spaced time
intervals of 0.54 days were used to construct Figure 9 mainly because LLR measurements
can, at best, be made over the %2 day period when a given LLR station spins across the
side of Earth facing the Moon. Additionally, most years in the LLR data base have ~730
data points or fewer, so intervals between measurements are, on average, ~ %2 day or
longer.

Fixed angular intervals provide additional information. Histograms of radius for the
average lunar ellipse constructed over an anomalous month at narrow (0.5°) intervals
provide a smooth distribution (Figure 10a). A wider increment of 5° returns the expected
mean radius, but the distribution has some irregularities. With a 13° increment, which is
similar to ~1 day intervals common in the LLR database, the mean is not reproduced,
which shows that large increments are insufficient to provide the mean radial distance.

Laser ranging measurements are made at irregular intervals. Our results for wide
intervals show that this approach is unlikely to constrain the average radius of an ellip-
tical lunar orbit.
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Figure 10. Histograms of the lunar Keplerian orbit over an anomalistic cycle, constructed for dis-
tances calculated for three uniform angular (~time) intervals. Panels have the same numbers of bins
for direct comparison. Except for apogee and perigee, each degree increment provides 2 counts: (a)
Radius calculated at increments of 0.5°, which roughly corresponds with 0.038 day sampling in-
tervals; (b) Radius calculated at increments of 5°, which roughly corresponds with 0.38 day sam-
pling intervals; (c) Radius calculated at increments of 13°, which roughly corresponds with 1 day
sampling intervals.

6.2. Lunar Laser Ranging Data and How Drift Is Ascertained

Muller et al. [6] review Earth-based LLR measurements, upon which the 38 mm y~*
recession value is based. Satellite experiments began afterwards and so are not covered
here. Models used to extract drift are discussed after we describe LLR raw data and
compare these to distances ascertained from ephemeris tables [19,45,46].

6.2.1. Available Station-to-Mirror Travel Times

For details on LLR measurements, see Samain et al. [47]. Battat et al. [48] discuss the
Apache point station in particular. Murphy [49] provide additional discussion and in-
clude a map of retroreflector sites on the moon, established by astronauts. For brevity,
“mirror” is used here.

Data collected from various terrestrial stations from late 1969 to early 2019 are com-
piled on the LLR website [3]. Data from the two longest running stations resemble the
aggregate data, which is presented below. The Apollo 15 site was used in 70% of the
measurements [44]. About 40% of the data were collected near quarter moons [44]. Since
1984, 58% of data since 1984 are from Grasse station [6], which contributes to ~%4 day gaps
frequently existing in the database.

Round-trip travel times were converted to distances by dividing by 2 and multi-
plying by lightspeed. The figures below show these raw data. Travel times are reported
at the level of 1012 s, which corresponds to an uncertainty of +0.03 mm for each uncor-
rected station-to-mirror distance.

6.2.2. LLR Data Collection Is Too Infrequent to Describe Monthly and Longer Lunar Cy-
cles

Most years are under-sampled: Fewer than 2 measurements per day, on average,
have been made over the program lifetime (Figure 11). Sampling may be sufficient to
provide reasonable data for 1985, 1995 through 2001, and 2015 through 2018. However,
this presumes reasonable coverage of the monthly cycles throughout any given year,
which is not the case (Figure 12).
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Figure 12. LLR (red dots) data [3] compared to the orbital radius from the ephemeris tables [45,46]
less the combined body radii of the Moon and Earth (fine black line): (a) Example of data collection
at an average interval of ~1 day. Purple vertical bar shows the 8109 km body radii contribution,
which is substantial; (b) Example of data collected at an average interval near %2 day. Blue curve
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shows the monthly average distance. For both panels, ~90% of the data were collected at Grasse
[7,44]. Note that distances longer than expected occur when the station is not collinear with the line
containing the geocenter, barycenter, and Moon's center.

An additional problem exists because the anomalous monthly cycle is not related to
the Julian year by an integer, see Figure 12. Considering an apsidal precession cycle (8.85
years) might improve statistics. However, dense sampling only occurred from ~1990 to
2001 and again after 2011, but the post 2011 interval is less than 8.85 years (Figure 11).
Additionally, the complete apsidal cycle under-samples the closer distances (cf. average
in Figure 12b and 13). This option for ascertaining changes in radius with time is not vi-
able. This problem is compounded by the anomalous monthly cycle not being related to
the Julian year by an integer, see Figure 12.

Distance varying greatly over any given anomalous cycle (Section 6.1) exacerbates
the sampling problem. As shown in Figure 11, the monthly average distance also cycles
over circa one year. Capturing this interesting variation, which may be connected with
3-body dynamics, requires adequate sampling of both the perigee and apogee, which is
not available (Figure 13), perhaps due to preferential data collection at the quarter
moons. Distances are neither constrained over the anomalistic month, nor over the
anomalistic year, nor over the apsidal cycle, even in the most densely sampled years of
LLR data acquisition.
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Figure 13. Distances from travel times obtained from 1992 to 2001.5 reveal a “bowtie” pattern over
the apsidal precession cycle (blue arrow). Black dots = individual measurements. Orange arrow
shows evidence of yearly cycling. Red curve emphasizes the 8.85 year precession cycle connected
with the minima. Green curve shows 8.85 year cycle as evident in the maxima. Pink shows the
mean station-to-mirror distance (380,432 km) over a precession cycle.
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6.2.3. Lunar Drift Is a Model Value

Lunar drift ascertained from LLR involves combining several different models and
applying many correction terms, each of which dwarfs the magnitude of the quantity
being sought (Table 2). The models compute the barycenter orbit about the Sun, the lunar
orbit around the geocenter, lunar orientation (mirror position), station positioning, and
atmospheric refraction. The ~1 cm weighted residual for 1987 to the present, mentioned
in several papers (e.g., [6,50]), refers to differences between the combined mul-
ti-parameter models and LLR measurements. Given the findings of Transtrum et al. [29],
who showed that multiplied parameters can reproduce data with incorrect physics, the
small residual demonstrates neither accuracy, nor precision, nor reliability.

Table 2. Estimated magnitudes of corrections used to model lunar drift from LLR measurements.

Type Size (mm) 2 References

The center of Earth to center of Moon distance is computed by a computer program that
numerically integrates the lunar and planetary orbits accounting for the gravitational

See section

623 [3,5,6,49]

attraction of the Sun, planets, and a selection of asteroids. !

Position of station, accounting for rock tides and seasonal motion of the solid Earth with

. 20to 1000  [3,49,51]
respect to its center of mass.

Position of mirror, with respect to the lunar center (libration effects) <1,000,000 [3,49,51]

Atmospheric refraction ~2000 [3,49,51]

! The latter is related to the location of the Solar system barycenter, which is noted by [5] and sev-
eral others. 2Size of correction terms mostly for Apache point [51]. This list does not include cor-
rections that are small (e.g., thermal expansion of mirror mounts, relativity, or lag times for emis-
sion, reflection, and reception [6]).

Impediments to converting LLR measurements to orbital parameters are as follows:

1. The models focus on the lunar orbit around the geocenter, which requires utilizing
parameterizations based on the lunar ephemerides [4,15]. Heliocentric orbital pa-
rameters of the Earth-Moon barycenter are also used [4]. Hence, due to un-
der-sampling of the cycles, the radius determinations largely rest on astronomical
observations, not on LLR acquisitions.

2. An average value for the barycenter position is used [4], which is invalid when the
station lies off of the line defined by the geocenter-barycenter-moon center. This
station orientation commonly occurs as evidenced by LLR data overshooting near
the apogee (Figure 12). These correction terms are hundreds of kilometers. In detail,
the barycenter is not located at a fixed position inside the Earth, but varies longitu-
dinally over the day, and radially over the anomalistic month (Figure 9), where the
inclination of Earth’s spin axis to the lunar orbital plane (Figure 1), provides latitu-
dinal variations.

3. The generalized potential is used [5,44]: yet even with 6 terms, this formula does not
correctly describe Earth’s axisymmetric field [25].

4.  Muller et al. [7] mentions a global parameter adjustment where improved values of
the unknowns and the corresponding formal standard errors are obtained. Adjust-
ing the unknowns provides a false precision.

5. Non-uniform distributions in the data set are one contributor to correlations be-
tween solution parameters, as stated by [44] in summarizing William et al. [52]. Ba-
sically, LLR data are insufficient to constrain the models.

6. Importantly, apparent agreement exists between LLR raw data and ephemeris tables
roughly midway between perigee and apogee (Figure 12). This section of the orbit is
unimportant because an elliptical orbit is defined by its apogee and perigee. The
apsides are under-sampled by LLR, and are most sensitive to corrections. This se-
rious problem is not discussed in available reports.

7.  Atmospheric effects, producing refraction, are highly variable. This poorly con-
strained correction term is circa 2 m, independent of all other modelling efforts.
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8.  Last, but not least, elliptical orbits are described by two parameters: the semi-major
axis and the eccentricity. Measurements of radius alone are insufficient, as two
measurements are needed to solve for two unknowns. This serious problem has
been overlooked.

7. Discussion

Motions in the Earth-Moon-Sun system are complex. Short-term behavior is not
captured by modeling LLR measurements (Section 6), so long-term evolutionary behav-
ior is unconstrained. Lunar orbital evolution was evaluated theoretically in Sections 4
and 5. Implications of these findings are covered next.

7.1. The Lunar Orbital Radius Is Decreasing, Not Increasing

Changes in Earth’s spin with time are dissipative, arising during differential rotation
of its layers which has been detected in seismologic studies [34,35]. There is no need to
invoke transfer of angular momentum to the Moon, because all the interesting action
involving spin occurs inside Earth [33].

The difference between Earth’s polar and equatorial radii is too small for this body
to exert non-central forces on the distant Moon, based on analytical results for attraction
to the oblate. It is far less possible for the significantly smaller tidal bulges to affect the
lunar orbit. That the Moon’s orbit is a point-mass problem is supported by the lunar or-
bital plane being substantially inclined to Earth’s equatorial plane, and by trends dis-
played by the moons of the giant planets (Section 3). It follows that the lunar orbit is
governed by point mass interactions.

Astronomical observations [19,45,46] show that the current, average lunar orbit,
even 4.5 x 10° y after formation, remains nearly circular (Figure 7a), despite Solar forces
acting on the Moon being double Earth’s. This observation testifies to stability of the lu-
nar orbit. Conservation of energy, and Solar forces providing torque in the 3-body ge-
ometry cause eccentricity to increase, which contracts the semi-minor axis while main-
taining the semi-major axis (Figure 7a). Consequently, the average lunar radius has de-
creased over geologic time (-0.13 mm y; Figure 7b). Inclination of the lunar orbit from
Earth’s equatorial plane is consistent with Solar torque existing, unopposed, but the in-
clination is not part of the orbital energetics. The change in 7 is rather small and is con-
sistent with stability and tiny changes in eccentricity.

7.2. Comparative Planetology and Evolutionary Behavior throughout Our Solar System

Orbits around a single central body are controlled by its mass, size, and ellipticity,
plus the distance to the small mass. For separation distances exceeding ~27 planetary
body radii, forces are effectively central and orbits are governed by point mass interac-
tions (Figures 3-5). Inward densification of planetary mass makes these objects more
similar to point masses than the constant density oblate bodies considered in Section 3,
and therefore promotes Keplerian behavior over much of the solar system.

Our recent study of interplanetary interactions [12] shows that planets act as point
masses on each other in pairs, resulting in multiple periodic surges in forces and also
torques. Previous models [53] treated the perturbing planet as a ring that exerts a central
force, which does not occur.

The variable influences on any given planet of the 7 other planets produce many
cycles for each of the 8 planets: these effects sum, yielding patterns more complex than
perturbations of the Moon. Yet, from energy conservation and symmetry arguments,
eccentricities are increasing whereas inclinations decrease as the planets are drawn to
Jupiter’s orbital plane. Solar system data provide confirmation [12]. Jupiter is highly in-
fluential because it is most massive and is near the rocky planets. In the outer solar sys-
tem, the more distant and second most massive planet (Saturn) is also influential, as ev-
idenced by the inclinations of Neptune and Uranus. Mercury’s orbit is the most elon-
gated and is changing the fastest, because it is the smallest and innermost planet. Rates of
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all planets (de/dt) vary from 1.5 x 1012 per year to 4.5 x 10-'* which are similar to and
bracket the Moon'’s rate, established here as 1.2 x 10-11,

Elongation appears to set the Moon on a collision course with the Earth (Figure 7a).
Before this occurs, elongation of the lunar orbit may be sufficient that the reduced 2-body
approximation no longer reasonably approximates the dynamics. For example, at apogee
for e ~ 0.98 (Figure 7a), the Solar force would be ~10 times Earth’s per Equation (14). This
configuration seems unlikely to persist. Essentially, the Sun is capturing the Moon. The
absence of moons for Venus and Mercury suggests that the Sun captured their moons
long ago [33]. In contrast, planets in the distant outer solar system have retained their
moons, as suggested by their large numbers.

For Uranus, di/dt is negative with a magnitude below 2 x 10 °y~!, assuming an ini-
tially polar orbit, which is consistent with orientation of its current spin axis and with its
equatorial satellite orbits. Assuming that the Moon's orbit was in Earth’s equatorial plane
at formation suggests a similar progression of ~0.5 x 10~ °y~. Both Earth and its Moon are
being pulled to the orbital plane of Jupiter around the Sun, as are Mercury, Venus, and
Mars. However, much stronger forces from the Sun has caused wobbling of the lunar
plane about the barycenter plane (Figure 1) which is still not parallel to Jupiter’s orbital
plane.

After 4.5 billion years, eccentricities and inclinations actually have changed very lit-
tle, based on the rates deduced from spherical orbits. Observations today testify to the
stability of the Solar System, which includes our Moon.

7.3. Implications for Formation in General and the Moon in Particular

Gravitational forces are the key driver of planetary formation, as discussed by many
authors. Gravitational forces also govern their subsequent evolution, via perturbations,
as discussed here and earlier [12]. Governing physical principles are summarized as fol-
lows:

e Large perturbing forces limit the applicability of the reduced 2-body approximation.

° Due to geometry, the fixed-plane three-body approximation is likewise insufficient
to describe the Earth-Moon-Sun system.

e  The highly variable 3-dimensional geometry of the lunar orbit permits the Sun to
apply torque, which changes angular momentum.

e  Forces on the Moon imperfectly balance, mainly due to the time-varying distance of
the Moon from the Sun.

e  However, without dissipation of orbital energy, which requires a non-conservative
force such as friction, orbital evolution is limited to changes in eccentricity and in-
clination, as long as the 2-body approximation is reasonably accurate.

The unique dynamics of the Earth-Moon-Sun system reveals information regarding
its origin and evolution. The initial orbit was more circular, because the Sun elongates the
lunar orbit in most positions (Figure 2). The Moon'’s orbit was probably initially in Earth’s
equatorial plane, but has been modified by the Sun consistently pulling the Moon toward
the orbital plane of the barycenter while Jupiter simultaneously has pulled bodies in the
inner solar system towards is orbital plane [12]. Jupiter’s action on the Moon is very small
compared to that of the Sun, but because this torque is unopposed, Jupiter has some in-
fluence.
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Circular orbits describing formation is consistent with contraction of a spinning
cloud of dust and gas, see, e.g., [23]. Notably, conservation of angular momentum causes
the radius of the outer shell of a cloud to grow as the interior shrinks: see discussion of
galaxies by Criss and Hofmeister [54]. For this reason, the Earth has a distant moon. The
many distant moons in the outer solar system satisfy conservation of angular momentum
during formation of the large planets. Moreover, division of the outer and inner solar
systems is a consequence of contraction of the solar nebula to the center being balanced
by expulsion of the outer shell of gas and dust. Conservation of angular momentum is
not part of currently popular fractal accretion models (e.g., [55]).

Importantly, circular orbits are the only solution for a truly isolated 2-body point
mass system. Close to an oblate central body, polar elliptical orbits are stable, but none
are observed in the solar system. Tilted orbits close to an oblate could also be elliptical
but these are not stable, and are very rare (Figure 5). Multi-body interactions are largely,
if not entirely, the cause of the currently elliptical orbits in our Solar system.

The above findings support, if not require, co-accretion of the Earth and the Moon.
Formation takes finite time and so larger bodies necessarily form more slowly. Existence
of miniature solar systems indicates that the nuclei of the planets were present during
contraction of the overall nebula to the center, forming the Sun. Planets survive today
due to the stability of their orbits, whereas the unconsolidated matter and objects in un-
stable orbits were sucked to the center. As the small dust-gas clouds of the planets con-
tracted, their outer parts expanded, yielding satellite systems. Earth may have had more
distant moons, which were robbed by the Sun long ago. Like the Earth, Saturn and
Neptune likewise each have one moon that is much larger than the others. Unlike Earth,
the outer planets are mostly composed of volatiles, and very light H and He gas, so these
seem much larger than their moons, which are quite rocky. Thus, the size of the Moon
compared to the Earth is not unusual, as the rock and metal cores of the giants are con-
siderably smaller than their enshrouding atmospheres (see, e.g., [56]). Our Moon is
simply not as unusual as currently perceived.

7.4. Relationship of Our Work to Previous Studies

Prior to LLR measurements which began in late 1969, lunar drift was unknown since
radial motions from astronomical observations were insufficiently accurate to constrain
small changes (Section 2). Hence, earlier estimates of lunar recession were maxima in-
ferred from assumed formation conditions. Subsequently, the small positive drift sug-
gested by LLR models were well received because they supported popular models for the
Moon’s origin.

Inconsistencies and assumptions in models (Sections 1 and 6) motivated us to closely
examine the physical principles underlying evolution of the lunar orbit. Our theoretical
approach contrasts with the LLR modeling, which stems from Newcomb’s mathematical
approach to deciphering orbital parameters, to which several additional correction terms
are added.

8. Conclusions

Conservative conditions govern temporal changes in orbits because friction between
distal bodies is null. In contrast, axial spin of bodies is dissipated non-conservatively and
internally due to friction, torque, and heat production accompanying differential rotation
of the internal layers (Section 4), and has no impact on orbital evolution. Thus, orbital
evolution consists of increases in eccentricity and variations in inclination as a result of
three-body interactions: These tiny perturbing forces and torques arise from distant ob-
jects. Even for the Moon, where the perturbing object, the Sun, exerts twice the force of
the Earth, the changes are slow (Section 5) and similar to rates at which e and 7 of planets
have changed since formation [12].

We have shown that long-term (~10° year) changes in orbits are not constrained by
lunar laser ranging measurements (Section 6). Instead, we use conservation laws to de-
duce the following:
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e The lunar orbital radius is shrinking, so drift is about —0.13 mm y~'.

e  The lunar orbit was originally circular and probably about Earth’s equator.

e  Co-accretion is favored, if not proven, since these findings rule out all other con-
tenders for the lunar beginnings (a giant impact, fission, or capture).

Regarding broader implications of this study, the nearly circular paths remaining
after 4.5 billion years on diverse scales in the solar system demonstrate the radial nature
of gravitational pull. Large distances between small bodies make the two-body approx-
imation valid over much of the solar system, which allowed Kepler to analyze the mo-
tions and to set the stage for development of the theory of gravity [56]. Our results point
to a need for further exploration of Newtonian forces and torques that arise in
three-body, pair-wise point-mass interactions.
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