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Abstract: We parameterize the core of compact spherical star configurations by a mass (mx) and a radius
(rx) and study the resulting admissible areas in the total-mass–total-radius plane. The employed fiducial
equation-of-state models of the corona at radii r > rx and pressures p ≤ px with p(r = rx) = px are
that of constant sound velocity and a proxy of DY∆ DD-ME2 provided by Buchdahl’s exactly solvable
ansatz. The core (r < rx) may contain any type of material, e.g., Standard-Model matter with unspecified
equation of state or/and an unspecified Dark-Matter admixture. Employing a toy model for the cool
equation of state with first-order phase transition, we also discuss the mass-radius relation of compact
stars with an admixture of Dark Matter in a Mirror-World scenario.
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1. Introduction

The advent of detecting gravitational waves from merging neutron stars, the related
multi-messenger astrophysics [1–8] and the improving mass-radius determinations of
neutron stars, in particular by NICER data [9–11], stimulated a wealth of activities. Be-
sides mass and radius, moments of inertia and tidal deformabilities become experimentally
accessible and can be confronted with theoretical models [1,12–18]. The baseline of the
latter ones is provided by non-rotating, spherically symmetric cold dense matter configu-
rations. The sequence of white dwarfs (first island of stability) and neutron stars (second
island of stability) and—possibly [19]—a third island of stability [20–22] thereby shows up
when moving to more compact objects, with details depending sensitively on the actual
equation of state (EoS). The quest for a fourth island has been addressed too [23,24]. Here,
“stability” means the damping of radial disturbances. Since the radii of configurations of
the second (neutron stars) and third (hypothetical quark/hybrid stars [25–27]) islands are
very similar, the notion of twin stars [28,29] has been coined for equal-mass configurations;
“masquerade” was another related term [30].

The standard modeling of such static compact star configurations is based on the
Tolman–Oppenheimer–Volkov (TOV) equations

dp
dr

= −GN
(e + p)(m + 4πpr3)

r2(1− 2GN m
r )

, (1)

dm
dr

= 4πer2, (2)

emerging from the energy–momentum tensor of a perfect isotropical fluid and spherical
symmetry of space–time and matter as well, within the framework of Einstein gravity
without a cosmological term. Newton’s constant is denoted by GN , natural units with
c = 1 are used, unless relating mass and length and energy density, for which h̄c is needed.
Given a unique relationship of pressure p and energy density e as equation of state (EoS)
e(p), in particular at zero temperature, the TOV equations are integrated with boundary

Astronomy 2022, 1, 36–48. https://doi.org/10.3390/astronomy1010005 https://www.mdpi.com/journal/astronomy

https://doi.org/10.3390/astronomy1010005
https://doi.org/10.3390/astronomy1010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/astronomy
https://www.mdpi.com
https://orcid.org/0000-0002-3544-6622
https://doi.org/10.3390/astronomy1010005
https://www.mdpi.com/journal/astronomy
https://www.mdpi.com/article/10.3390/astronomy1010005?type=check_update&version=2


Astronomy 2022, 1 37

conditions p(0) = pc and m(0) = 0 (implying p(r) = pc − (r2) and m(r) = 0 + (r3) at
small radii r), and p(R) = 0 and m(R) = M with R as circumferential radius and M as
gravitational mass (acting as a parameter in the external (vacuum) Schwarzschild solution
at r > R). The quantity pc is the central pressure. The solutions R(pc) and M(pc) provide
the mass-radius relation in parametric form M(R).

A great deal of effort is presently focused on the EoS at supra-nuclear densities [31].
Figure 1 in [32] exhibits the currently admitted uncertainty: up to a factor of ten in pressure
as a function of energy density. At asymptotically large energy-density, perturbative
QCD constrains the EoS, though it is just the non-asymptotic supra-nuclear density region
which crucially determines whether twin stars may exist or quark-matter cores appear in
neutron stars. Accordingly, one can fill this gap with a big number of test EoSs to scan
through the possibly resulting mass–radius curves; see [33–36]. However, the option that
neutron stars can accommodate Dark Matter (or other exotic material) [37–40] obscures the
safe theoretical modeling of a reliable mass–radius relation in such a manner. Of course,
inverting the posed problem with sufficiently precise data of masses and radii as input
offers a promising avenue towards determining the EoS [33,41–46].

Here, we pursue another perspective: we parameterize the supra-nuclear core by
a radius rx and the included mass mx and integrate the above TOV equations only in
the corona, i.e., from pressure px to the surface, where p = 0. This yields the total mass
M(rx, mx; px) and the total radius R(rx, mx; px) by assuming that the corona EoS e(p) is
reliably known at p ≤ px. (Our notion “corona” could be substituted by “mantel” or
“crust” or “envelope". It refers to the complete part of the compact star outside the core,
rx ≤ r ≤ R.) Clearly, without knowledge of the matter composition at p > px (may it be
Standard-Model matter with uncertain EoS or may it contain a Dark-Matter admixture,
for instance, or monopoles or some other type of “exotic” matter) one does not get a simple
mass–radius relation by such procedure, but admissible area(s) over the mass–radius plane,
depending on the core parameters rx and mx. This is the price of avoiding a special model
of the core matter composition.

We are going to test two models of the corona EoS: (i) constant sound velocity with cru-
cial parameter e0 = e(p = 0) and p = 0 for e < e0, and (ii) Buchdahl’s EoS which, surprisingly,
represents a proxy of the DY∆ DD-ME2 EoS [23] and has the property limp→0 e(p) → 0. One
could consider this as a test of the sensitivity against variations of the neutron star crust
(see [47,48] for such a crust test within the traditional approach with a given core EoS).

We emphasize the relation of ultra-relativistic heavy-ion collision physics, related to
the EoS p(T, µB ≈ 0), and compact star physics, related to p(T ≈ 0, µB), when focusing
on static compact-star properties [49,50]. (Of course, in binary or ternary compact-star
merging-events, finite temperatures T and a large range of baryon-chemical potential µB
are also probed [51].) Implications of the conjecture of a first-order phase transition at
small temperatures and large baryo-chemical potentials or densities [52–55] can be studied
by neutron-hybrid-quark stars [56–59]. It has been known for some time [20–22,60,61]
that a cold EoS with special pressure–energy-density relation p(e), e.g., a strong local
softening up to first-order phase transition with a density jump, can give rise to a “third
family” of compact stars, beyond white dwarfs and neutron stars. In special cases, the third-
family stars appear as twins of neutron stars [30,62,63]. Various scenarios of the transition
dynamics to the denser configuration as mini-supernova were discussed quite early [64,65].

Our paper is organized as follows. In Section 2, we employ the corona EoS model
(i) (constant sound velocity) and also consider the instructive limiting case of an incom-
pressible fluid. Special relations of mx(rx) are deployed to emphasize the relation to the
traditional approach, which emerges as cut in the M-R plane representing the curve M(R).
Section 3 uses the corona EoS model (ii) (Buchdahl’s EoS as proxy of a nuclear-physics-
based EoS). The M(R) relations for models (i) and (ii) are quite different, as are the admitted
areas over the M-R plane. We conclude in Section 4. Appendix A considers Dark-Matter or
Mirror-World admixtures in neutron (quark) stars with a phase transition with the goal of
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illustrating the potential impact of a first-order phase transition on the mass–radius relation
and the quest for twin stars. This is another way to specify the relation mx(rx).

2. Corona with Constant Sound Velocity EoS

The constant sound velocity EoS

p(e) = v2
s(e − e0) for e > e0, p = 0 for e ≤ e0 (3)

introduces a scale setting parameter e0, which drops out in the representation by scaled
quantities: p̄ = p/e0, r̄ = r

√
GNe0, m̄ = mGN

√
GNe0. Only the sound velocity v2

s = ∂p/∂e
remains as parameter. We use this as model (i) and—arbitrarily—take p̄x = 1 as the upper
limit of scaled pressure of the corona EoS.

2.1. A Limiting Case: Infinite Sound Veleocity

It is instructive to consider the limiting case v−2
s → 0, i.e., ē → 1 for p̄ ≤ 1. The constant

energy density in Equation (2) results in m̄ = m̄x + 4π
3 (r̄3 − r̄3

x), and the Riccati-type ordinary
differential Equation (1) becomes, by a suitable shift of the pressure, a Bernoulli equation,
allowing a quadrature to get the pressure profile p̄(r̄) = −1+(p̄c +1) exp{ 1

2(λ−λ0}N, N−1 =
1 + 4π(p̄c + 1) exp{− 1

2 λ0} ∫
r̄

r̄x
dr̃ r̃ exp{ 3

2 λ(r̃)}, e−λ = 1 − 2m̄/r̄, λ0 = λ(r̄x), cf. [22,66]. Since
the term with ∫

r̄
r̄x

dr̃r̃ exp{ 3
2 λ(r̃)} is less transparent due to the elliptic integral(s), we turn

on an approximation of the case e = const and numerically integrate Equations (1) and (2)
with v−2

s = 10−4 to mimic the above constant energy density EoS by a proxy with large
sound velocity. We then find admissible area in the M̄-R̄ plane displayed in Figure 1. That
area is mapped out here by curves r̄x = const with m̄x varying from small (at the r.h.s.) to
large (at the l.h.s.) values. The l.h.s. limitation is given by the black hole condition M̄ = R̄/2
(red fat line). In the limit of small cores, the r̄x = const curves M̄ = m̄x + 4π

3 R̄3 − (r3
x)

approach the Schwarzschild mass–radius relation M̄ = 4π
3 R̄3 (dashed black curve), i.e., the

gap to the r̄x = const curve becomes larger with decreasing values of R̄ due to increasing m̄x.
The Schwarzschild curve terminates in the asterisk, since that is where p̄c = 1 is reached.
One may recall the pressure profile of the interior Schwarzschild solution p̄Schwarz(r̄) =
−[(1 + p̄c) − (1 + 3p̄c)W]/[3(1 + p̄c) − (1 + 3p̄c)W], W ∶=

√
1− 8π

3 r̄2, yielding R̄(p̄c) from
p̄(R̄) = 0 to see this via our proposition p̄ ≤ p̄x.

In this context, it is interesting to compare the pressure profiles of the interior Schwarzschild
solution and the core–corona model at small values of r̄x. Adjusting the central pressure of
the interior Schwarzschild solution to obtain the same scaled radius R̄ as in the core–corona
model with a given small value of r̄x and a given value of m̄x, one finds (not displayed) a
rapidly dropping pressure in a narrow region above r̄x towards the Schwarzschild pressure
p̄Schwarz(r̄), which holds until the surface. In such a way, the admissible area of masses and
radii of the core–corona model are bracketed by the black-hole limit at l.h.s. and the conventional
mass–radius curve in the lower part of the mass–radius plane.

Let us now consider two possible sections through the mass–radius plane. First, we
assume a core-mass vs. core-radius relation as m̄x(r̄x) = 4π

3 r̄3
x. This yields the dotted curve,

which clearly coincides with the Schwarzschild relation when continuing the latter one
to central pressures larger than p̄x. Note that with increasing values of r̄x, the admissible
region of the core–corona model leaks increasingly into the r.h.s.
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Figure 1. Admissible area in the M̄-R̄ plane mapped out by curves r̄x = const (blue solid, obtained
by integrating the TOV equations from r̄x to R̄). The black hole condition M̄ = R̄/2 is depicted by
the red fat line. Buchdahl’s limit M̄ = 4R̄/9 is displayed by the dashed red line. The Schwarzschild
curve M̄ =

4π
3 R̄3 (black curve) terminates in the asterisk �, where p̄c = 1 is reached. Allowing for

a larger central pressure, the Schwarzschild curve continues (dotted black curve), which coincides
with the core–corona model for m̄x(r̄x) =

4π
3 r̄3

x. Imposing the side condition m̄x(r̄x) =
4π
3 λ̄r̄3

x results
in λ̄ = 2.2 in the cyan double curve. The actual calculations are for Equations (1)–(3) with v−2

s = 10−4,
to approximate an EoS with constant energy-density.

A second side condition in relating the core-mass and core-radius is given by m̄x(r̄x) =
4π
3 λ̄r̄3

x, meaning that the energy density in the core is λ̄ times the energy density of the
corona. (This is essentially the two-shell model considered in [21,22]). Selecting λ̄ = 2.2
facilitates the cyan double curve, again a well-defined mass–radius curve. Larger (smaller)
values of λ̄ bend down (up) that curve. The section between the local r.h.s. mass maximum
at the asterisk and the local mass minimum belongs to unstable configurations, while left
to the local mass minimum, the configurations become stable again. This very construction
is at the heart of twin stars, i.e., stable configurations with the same mass but (slightly)
different radii. There is notable leakage into the region l.h.s. to the Buchdahl bound (cf. [67]
for a corollary) given by M̄ = 4R̄/9. This issue is caused by the fact that a central pressure
p̄c < ∞ does not drop to p̄x at radius r̄x when using the TOV equations with core density λ̄ē0.
Phrased differently, the above ad hoc choice m̄x(r̄x) = 4π

3 λ̄r̄3
x is compatible with the TOV

equations only for a limited range of values of r̄x. The validity of the TOV equations for a
consistent (always decreasing) pressure profile from pc to zero limits the extension of the
curve under discussion and lets it terminate before reaching Buchdahl’s limit. Nevertheless,
extensions of the TOV equations, e.g., as system describing a multi-fluid medium with
Dark-Matter components (see Appendix A), make the occupancy of the region beyond
Buchdahl’s limit conceivable.

2.2. Finite Sound Velocity

For a finite sound velocity, the mass–radius curve bends to the left and facilitates a
mass maximum, e.g., M̄max = 0.051 at radius R̄ = 0.195 for v−2

s = 3. By the requirement of



Astronomy 2022, 1 40

M ≈ 2M⊙ one gets e0 ≈ 231.5 MeV/fm3 and finds, from R = MGN R̄/M̄, a radius of 11.27 km,
(accidentally) in the right ballpark.

The mass–radius plane is exhibited in Figure 2 with the same line style conventions as
in Figure 1. One meets the features discussed in the previous Subsection. The admissible
region is bracketed l.h.s. by the black hole condition and r.h.s. by the plain mass–radius
curve M̄(R̄) (dashed black curve) up to the asterisk, where p̄c = p̄x is reached. In the
dotted section, the central pressures obey p̄c > p̄x. Due to non-zero matter compressibility,
the analog relation m̄x(r̄x), discussed in Section 2.1, must be constructed numerically to see
that this side condition within the core–corona model in fact coincides with the mass–radius
curve obtained by the (ad hoc) continuation of the EoS (3) at p > px. For small values of
r̄x = const, the permitted masses as a function of radius approach the mass–radius curve
M̄(R̄). For larger constant values of r̄x, the pattern of the curves M̄(R̄, r̄x, m̄x; p̄x) is as
discussed in Section 2.1. They also leak beyond the Buchdahl limit.
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Figure 2. Same as Figure 1 but for v−2
s = 3 to cope with causality. The dashed magenta curves depict

additional mass–radius relations for running values of r̄x and m̄x = const with values of 0.01, 0.02,
0.04, and 0.09 above the labeled m̄x = 0.005 curve; the rightmost curve for m̄x = 0.001 is displayed
only for M̄ > 0.03.

We relegate the consideration of special cuts m̄x(r̄x) and variations of px to the Appendix A,
where we explicitly include an admixture of Dark Matter to be dealt within a two-fluid approach.

3. Corona with Buchdahl’s EoS and NY∆ DD-EM2

While the employed corona EoS in Section 2.2 displays a finite positive slope of the
mass–radius curve for a large range, the currently preferred EoS models point to a steep
increase. An example of an EoS compatible with neutron star data is NY∆, based on the
DD-ME2 density functional [23]. Surprisingly, Buchdahl’s EoS [68]

e = 12
√

p∗p − 5p, p ≤ p∗ (4)

with p∗ ≈ 64 MeV/fm3 matches fairly well NY∆ within the range tabulated in [23], see
Table 1. Due to causality requirement v2

s ≤ 1, Equation (4) is limited to p ≤ p∗. In contrast to
the EoS of model (i), Equation (4) extends smoothly to e = 0 and p = 0. The mass–radius
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relation is given by M = βR/GN , and the radius is parameterized by R = 1−β
√

1−2β

√
π

288p∗GN

for β ∈ [0, 1/6] [68,69]. In this section, we use physical units, e.g., p∗ in MeV/fm3 instead
of p̄x, and display masses in units of M⊙ and radii in units of km. With the above quoted
value of p∗ one finds R = 11.33 1−β

√

1−2β
km and M = 7.66β

1−β
√

1−2β
M⊙, where the maximum

mass 1.31M⊙ and radius 11.56 km can be read off.
The resulting mass–radius plot is exhibited in Figure 3, with line style conventions as

seen in Figure 1. All the features discussed in Section 2 are recovered, e.g., the convex shape
of the curves rx = const, the approach of these curves to the mass–radius relation based on
the EoS (4) at small values of rx, the occupancy of a region beyond the Buchdahl limit up to
the black hole limit etc. Since px = p∗ is comparatively small, the resulting mass–radius
curve (solid black curve) terminates at rather small mass, quoted above. However, the core–
corona decomposition shows that the maximum-mass region of NY∆-DD-ME2 (see gray
curves) is easily uncovered too, interestingly with sizeable core radii and noticeably smaller
up to larger total radii.
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Figure 3. Same as Figure 1, however for the corona model (ii), i.e., EoS (4) with p∗ = 64 MeV/fm3

(solid black curve). Note the different units. Faint gray curves are based on the standard integration
of the TOV equations by using the numbers of the NY∆ EoS tabulated in [23] with linear interpolation
both in between the mesh and from the tabulated minimum energy density to the p = 0 point at
e0. The chosen values are e0 = 100, 10, 1, and 0.1 MeV/fm3 (from left to right). The variation of
the low-mass sections of these mass–radius curves points to some sensitivity on the outer crust
properties. The slight deviation of the solid black curve and the second (from left) gray curve points
to a non-perfect match of (4) and NY∆.

4. Summary

We investigate a scenario which assumes the knowledge of a trustable equation of
state (EoS) for compact spherical stars at pressures p ≤ px. In a core–corona decomposi-
tion, the core with an unspecified composition and thus unknown (maybe exotic matter)
equation(s) of state is parameterized by a mass mx and a radius rx; the pressure at rx is
just px. Besides the unspecified equations of state at p > px, the core may also contain
any type of matter, most notably Dark Matter. By definition, outside the core—in the
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corona—only a Standard-Model neutron-star matter is present, described by the fiducial
(“trustable”) EoS. The solution of the TOV equations of the corona pressure profile p(r) for
radii r ≥ rx delivers a broad range of admissible masses and radii of the total core–corona
configurations, bracketed by the black hole limit (thus going beyond the Buchdahl limit)
and, in part, by the conventional mass–radius curve. We explore these admissible regions
by using two test EoS models of the corona as simple substitutes of a state-of-the-art EoS:
one with a constant sound velocity EoS and another one which refers to Buchdahl’s EoS,
which in turn approximates some part of a particular density-functional approach, i.e.,
NY∆ DD-ME2. The latter is compatible with current mass–radius observations.

One may imagine that all possible continuations of a fiducial (“trustable”) EoS beyond
px generate mass–radius curves within the admissible region, even with the Buchdahl limit
as a border line. However, the admissible region is larger, since it can refer to cores which
are not described by the isotropic one-fluid TOV equations. A straightforward extension of
the latter is provided by the two-fluid TOV equations, dealt with in the Appendix A. In
line with investigations of the impact of the cool EoS on compact star properties, including
the intriguing quest for twin stars, we add this schematic consideration of compact-star
mass–radius relations for an EoS with first-order phase transition. In doing so, the two-fluid
model is deployed where the second fluid is aimed at describing Dark Matter leaking out
of a Mirror World. This scenario also facilitates the option of twin stars for a wide range of
the Dark Matter admixture.
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Appendix A. Dark-Matter/Mirror-World Admixtures in Neutron Stars with
Phase Transition

Spherical multi-fluid configurations in hydrostatic equilibrium are determined by the
generalized TOV equations (cf. [70,71])

dp̄(i)

dr̄
= −(ē(i) + p̄(i)) 1

r2
∑ m̄(i) + 4πr̄3∑ p̄i

1− 2∑ m̄(i)
r̄

, (A1)

dm̄(i)

dr̄
= 4πr̄2 ē(i), (A2)

where the index i labels the fluid components, which are here assumed to be not mutually
interacting but are governed by the common gravity field. The quantities are scaled
commonly by e0, which figures in the EoS

p̄ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for ē ≤ 1,
v2

s(ē − 1) for 1 < ē < 1+ v−2
s p̄x,

p̄x⋯∞ for ē = λ̄(1+ v−2
s p̄x).

(A3)



Astronomy 2022, 1 43

The incompressible part at p̄ ≥ p̄x mimics a stiff EoS above the phase transition at p̄x with
energy density jump λ̄, i.e., ∆ē = (λ̄ − 1)(1+ v2

s p̄x). Phrased differently, the EoS Equation (A3)
is a toy model of a linear EoS, p = v2

s(e − e0) for e ∈ (e0, ex), and p = px + v̂2
s(e − λex) for

e ≥ λex, where px and ex are related by px = v2
s(ex − e0) [72]. To reduce the parameter space,

we consider v̂2
s →∞ as limiting stiffness. Due to deploying the scaled quantities, one gets rid

of the explicit value of the surface energy-density e0, where p(R) = 0 holds.
Fluid i = 1 is attributed to Standard-Model matter (SM) and should represent dense

strong-interaction (hadron ⋯ quark) matter in β equilibrium with local electric charge
neutrality. Fluid i = 2 stands for a non-self-annihilating Dark-Matter (DM) candidate, which
we also describe using Equation (A3), i.e., p̄(i)(ē(i)) has the same functional dependence
for all i, thus tremendously reducing the parameter space. What now distinguishes SM and
DM is the central pressure: p̄(1)c and p̄(2)c parameterize the solutions p̄(i)(r̄; p̄(1)c , p̄(2)c ) and
m̄(i)(r̄; p̄1

c , p̄2
c) of (A1)–(A3) yielding, e.g., M̄ = M̄(1) + M̄(2) as total gravitational star mass

and visible-matter circumferential radius R̄ = R̄(1) for choices p̄(2)c = xp̄(1)c with x ∈ [0, 1],
facilitating R̄(2) ≤ R̄(1).

One could also think on fluid i = 2 as matter in a hidden Mirror World which duplicates
our SM world and communicates essentially only via gravity (cf. [73–75] for recent activities
in the field founded fifty years ago [76]). Particles of the Mirror World apparently represent
candidates of Dark Matter [77,78] (cf. [79–81] for further implications and [82–84] for
cosmological aspects, including SM matter–DM portal/mixing/feeble-interaction issues).
Such a picture justifies the application of the EoS, Equation (A3), for both SM matter and
DM; see [85]. We emphasize that, in this Appendix, DM described by Equation (A3) is
possible at all pressures p̄ ⪌ p̄x, while in Section 2, no DM is allowed at p̄ < p̄x. To expose
this difference, we contrast the EoSs used in Section 2 and in the current Appendix in
Figure A1.
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Figure A1. Schematic plots of the EoSs employed in Section 2 (left panel) and in the current Appendix
(right panel). (Left panel): Equation (3) for v−2

s = 3 and p̄x = 1. The asterisk marks the endpoint
of the fiducial SM matter EoS (solid black line, which is a substitute of a trustable EoS), resulting
in the mass–radius curve exhibited in Figure 2 by the solid black curve. Beyond p̄ = 1, any EoS
is conceivable. The dotted line is one possible extension of the fiducial EoS, especially with the
same sound velocity. The resulting mass–radius relation is depicted in Figure 2 by the dotted black
curve for Standard-Model matter only. Another conceivable continuation could be analog to the
pattern displayed in the right panel. (Right panel): Equation (A3) with ē0 = 1 (by definition) and
ē1 = ē0 + v−2

s p̄x and ē2 = λ̄ē1. Several values of p̄x (here the critical pressure of a first-order phase
transition) are considered, while v−2

s = 3 and λ̄ = 3 are kept fixed. The same EoSs apply for SM matter
and DM Mirror-World matter.
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Numerical results, relying on regularity in the center, m̄(i) = 0+ (r̄3), and boundary
values p̄(i) = p̄(i)c − (r̄2) at r̄ → 0, are exhibited in Figure A2 for v−2

s = 3. (For the depen-
dence on v2

s , see [86] (a factor of
√

197.32 is to be applied for M̄ and R̄ in Figure 7 there).)
The solid black curves display the mass–radius relation for p̄x →∞, i.e., the constant sound
velocity EoS is extended unlimited to high pressure (while in Section 2 it was restricted
to p ≤ px). Gradually reducing the value of p̄x means including an energy-density jump
from ēx to λ̄ēx at pressure p̄x (mimicking a sharp first-order phase transition). The mass–
radius curves become strongly modified (see colored curves), since the density jump ∆ē
is fairly large. In particular, for p̄x ≤ 1, an unstable section of the mass–radius curve is is
caused, where the slope is negative, followed by a sequence of stable configurations, where
the slope is positive again; see the respective Figure 2 in [87–89] for the very pattern of
stable–unstable–stable branches. Equal-mass points on the stable sections represent twin
stars. The case of p̄DM

c ≡ p̄(i=2)
c = 0 (left top panel, x = 0) corresponds to no DM at all, as in

Figure 2, and exhibits various cuts provided by an implicit relation of m̄x(r̄x). Thus, it
directly supplements Figure 2.

With increasing DM fraction, parameterized by x, the pattern seen in the left top
panel of Figure A2 (x = 0) is shifted to left-down, i.e., the configurations become more
and more compact. A tiny admixture of DM, e.g., x = 0.01 (right top panel), does hardly
have any noticeable impact on the mass–radius curves. For x = 0.1, one can recognize the
left-down shift of the pattern, which becomes somewhat larger at x = 0.2; see middle row.
The subtle interplay of p̄c and p̄DM

c and p̄x causes additional features at x ≈ 0.5 due to
slightly displaced jumps in the energy density profiles; see left bottom panel. The special
value x = 1 means that SM matter and DM have the same pressure and energy-density
profiles, i.e., p̄(i=1)(r̄) = p̄(i=2)(r̄) and ē(i=1)(r̄) = ē(i=2)(r̄) implying m̄(i=1)(r̄) = m̄(i=2)(r̄).
The resulting configurations become most compact, as exhibited in the right bottom panel.
For p(i)(r) = p(r) and m(i)(r) = m(r), the generalized Schwarzschild pressure profile in the
uniform-density core of n mutually non-interacting fluids, with e2 each, reads

pSchwarz,n(r) = −e2
(e2 + pc) − (e2 + 3pc)Wn

3(e2 + pc) − (e2 + 3pc)Wn
, (A4)

Wn(r) ∶=
√

1− n
8π

3
GNe2r2, (A5)

where the scaling, e.g., by e2 = λ̄(e0 + v−2
s px) when referring to the EoS (A3), can be applied.

The core radius follows from pSchwarz,n(r) = px; it scales as ∝ 1/
√

n.
The selected range of p̄x causes a crossing of the mass–radius curves within narrow

regions. This can be considered as reminiscence of the “special point" discussed in [59,90].
When relating these panels to Figure 2, one must ensure that, at radius r̄x, the DM

component must have vanished. On account of that requirement, the panels in Figure A2
provide explicit examples of possible cuts in the mass–radius plane of Figure 2 under
variation of p̄x. One could demonstrate this relation more explicitly by digging out the
information of m̄x and r̄x along the mass–radius curves in Figure A2. We leave such a study
for follow-up work.
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Figure A2. Mass–radius relations of neutron stars with Dark-Matter admixture for v−2
s = 3 and

∆ē/ē0 = 3 and various values of p̄x ≡ px/e0 (black solid: ∞ (i.e., no phase transition), cyan double
line: 0.25, green dot-dashed: 0.5, blue dotted: 1, red dashed: 5). The equation of state Equation (A3)
is used. The DM admixture is determined by the relation p̄DM

c = xp̄c with x = 0 (left top panel,
r̄DM

x = m̄DM
x = 0) to 1 (right bottom panel, r̄DM

x = r̄x, m̄DM
x = m̄x). The central pressures are very large

towards the endpoints of curves terminating within the panels.
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