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Abstract: Since manual inspections of offshore wind turbines are costly, there is a need for remote
monitoring of their health condition, including health prognostics. In this paper, we focus on corrosion
detection and corrosion prognosis since corrosion is a major failure mode of offshore wind turbine
structures. In particular, we propose an algorithm for corrosion detection and three algorithms
for corrosion prognosis by using Bayesian filtering approaches, and quantitatively compare their
accuracy against synthetic datasets having characteristics typical for wall thickness measurements
using ultrasound sensors. We found that a corrosion prognosis algorithm based on the Pourbaix
corrosion model using unscented Kalman filtering outperforms the algorithms based on a linear
corrosion model and the bimodal corrosion model introduced by Melchers.
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1. Introduction

New wind farms are often operating far from shore and under challenging and highly-
corrosive operating conditions. To reduce the number of regular manual inspections, remote
monitoring of the health condition of critical components and sub-systems in offshore wind
turbines is necessary [1]. Moreover, for decommissioning and maintenance scheduling,
prognosis of the remaining useful life of wind turbines is essential.

Corrosion, and in particular uniform corrosion, is a major cause of failure of offshore
structures [2,3]. Indeed, uniform corrosion may reduce the steel wall of the wind turbine
structure beyond its corrosion allowance, at which point the structure reaches the end of
useful life. The thickness of the steel wall of the wind turbine structure can be continu-
ously measured using ultrasound sensors mounted on the interior side of the wall [4,5]
and corrosion information (including corrosion prognosis) can then be visualized for the
onshore wind farm operator [6]. We remark that ultrasound is but one possible technique
to monitor corrosion, see, e.g., [7], where electrochemical techniques are used instead of
ultrasound. In this paper, we focus on ultrasound due to its attractive trade-off between
measurement accuracy and cost [5]. Moreover, we remark that the sensors need not be
fixed, but can be equipped on climbing robots, UAVs, or underwater robots [8].

A typical corrosion prognosis method uses historical offline data only to estimate
the unknown parameters of an empirical corrosion model, see, e.g., [9,10]. Similarly to
in [11,12], we focus in this paper on corrosion prognosis of offshore wind-turbine structures
using real-time measurement data. Corrosion prognosis is an essential component within
a decision support pipeline where an optimal decommissioning time can be computed
depending on the cost of operations and maintenance, energy production, risk aversion,
etc. [13].
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We present a corrosion detection method and three corrosion prognosis methods based
on a technique called Bayesian filtering [14], following an approach as outlined in a high-
level in [15]. The corrosion detection method identifies the onset of corrosion, i.e., the initial
wall thickness reduction when the coating (at the monitored position) is fully degraded
and the bare steel is exposed. The corrosion prognosis algorithms compute the probability
distribution of the remaining useful life time. Each corrosion prognosis algorithm is based
on a particular corrosion model. In particular, we consider the linear corrosion model, the
power-law corrosion model, and the involved bimodal corrosion model [16]. The prognosis
algorithms are compared using the well-known remaining useful life α-λ-accuracy metric
against synthetic datasets having measurement and process noise levels typical for wall
thickness measurements using ultrasound sensors.

A conference version of this paper containing preliminary results is published in the
conference proceedings of IWSHM 2021 [17]. More specifically, the present paper (1) con-
siders coated steel (as opposed to bare steel in the conference paper), thereby introducing a
corrosion detection phase, (2) considers prognosis methods based on three degradation
models (the power-law model was not considered in the conference paper), and (3) provides
quantitative (i.e., based on metrics), as opposed to qualitative, performance results.

This paper is structured as follows. Section 2 discusses Bayesian filtering, including
Kalman filtering and extensions of Kalman filtering, and in Section 3 we discuss the
proposed methodology, consisting of a corrosion detection phase followed by a corrosion
prognosis phase. The accuracy performance of the proposed methods against the synthetic
datasets is evaluated in Section 4. Finally, we provide a conclusion in Section 5.

2. Bayesian Filtering

While prognosis of a wind turbine structure can be based solely on the current lifetime
of the wind turbine and historical data (e.g., the mean useful lifetime of offshore wind
turbines), one can improve the accuracy of the remaining useful life prognosis by using
online measurements. Since there is currently a very limited amount of historical data
available on corrosion of offshore wind turbine structures covering the entire lifetime from
commissioning until end of life, using data-driven methods (such as typical AI-based
methods) for corrosion detection and prognosis are likely currently unsuitable, i.e., give
inaccurate results for newly acquired measurement datapoints. Instead, we employ a
well-known technique called Bayesian filtering [14]. In Bayesian filtering, an empirical
corrosion model, describing the amount of corrosion loss over time, is used together with
online measurements to estimate the unknown parameters of the model. Process noise
(i.e., the inaccuracy of the corrosion model) and measurement noise (i.e., the inaccuracy of
the measurements) are both taken into account in Bayesian filtering.

In general, Bayesian filtering deals with estimating the state of a system iteratively,
given a sequence zi of measurements at times ti, a model F describing system dynamics
over time (more precisely, F is a function mapping each possible system state xi to its next
system state xi+1), and a model H mapping system states to their corresponding measure-
ment values. Various Bayesian filtering methods exist depending on the complexity of the
functions F and H and the nature of the process noise (describing the accuracy of the model
F) and the measurement noise (describing the accuracy of the measurements). These meth-
ods include (ordinary) Kalman filtering, extended Kalman filtering, and unscented Kalman
filtering. In the next subsections, we recall these Bayesian filtering techniques.

2.1. Kalman Filtering

Kalman filtering [18] is a computationally efficient Bayesian filtering method that
provides an optimal solution in the case where F and H are linear transformations and
both the process and measurement noise are known and normally distributed. In the case
of wall-thickness measurements using ultrasound sensors, H satisfies this condition, since
ultrasound sensors typically have a (known) normally distributed measurement noise.
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We now briefly recall the Kalman filtering method which serves as a basis understand-
ing of the other variants. For each discrete time step i, we first compute a preliminary, called
a priori, estimate x′i of the current system state from the (final/non-preliminary) estimate
xi−1 of the previous system state, called a posteriori estimate. Moreover, we compute an a
priori estimate of the uncertainty of the current system state, described by a covariance
matrix P′i , using the a posteriori covariance matrix Pi−1 estimating the uncertainty of the
previous system state and a covariance matrix Q describing the amount of process noise:

x′i := F · xi−1 (1)

P′i := F · Pi−1 · FT + Q, (2)

where F is represented by a matrix and (·)T denotes the matrix transpose operator. For the
first time step i = 0, the values xi and Pi need to be provided manually.

The update step computes the a-posteriori state estimate xi by combining the a priori
estimate x′i with the current measurement zi, taking into account the uncertainty of x′i
(represented by P′i ) and the uncertainty of zi (represented by the covariance matrix R
describing the amount of noise in H). Moreover, the update setup computes the a-posteriori
state estimate Pi from P′i by taking into account the measurement noise represented by R.

xi := x′i + Ki · (zi − H · x′i) (3)

Pi := (I − Ki · H) · P′i , (4)

where H is represented by a matrix, I is the identity matrix of suitable dimension, and

Ki := P′i HT(HP′i HT + R)−1 (5)

is called the Kalman gain.

2.2. Extensions of Kalman Filtering

In cases where F or H are not linear transformations, Kalman filtering is not suitable.
In this case, while still assuming normally distributed measurement and process noise,
adaptions of Kalman filtering can be used, such as extended Kalman filtering (EKF) or
unscented Kalman filtering (UKF) [19]. In contrast to Kalman filtering, these methods do
not necessarily provide optimal solutions. Compared to EKF, UKF provides a higher
accuracy at the expense of a larger computational time and is, therefore, more suitable
for slow processes, such as corrosion. Both KF and UKF provide a state estimation with
an associated uncertainty probability distribution. It is important to remark that the state
estimation includes, in addition to the wall thickness estimate, estimation of the parameters
of the corrosion model. For example, in the case of the power-law corrosion model described
in Equation (11), it includes estimations for parameters A and p and so they need not be
known beforehand (although a rough “ballpark” estimate of these parameters improves
the quality of the estimation). We remark that in cases where measurement or process noise
are not normally distributed, other methods, such as particle filtering, exist.

3. Proposed Methodology

The methodology proposed in this paper consists of two stages, namely corrosion
detection in the first stage, followed by the corrosion prognosis stage, where both stages
use Bayesian filtering. We propose three methods for the corrosion prognosis stage, corre-
sponding to three well-known corrosion models. For the corrosion detection stage, we use
(ordinary) Kalman filtering, while for the corrosion prognosis stage we use either Kalman
filtering or unscented Kalman filtering, depending on the underlying corrosion model.
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3.1. Corrosion Detection

This section describes a natural method for the detection of the onset of corrosion
based on Bayesian filtering, which occurs when the protective coating has fully degraded
and the bare steel becomes exposed.

The method to detect the onset of corrosion uses a constant (i.e., no-change) state-
transition function F, which corresponds to the assumption that the coating is intact, i.e.,
no wall thickness degradation. In this case, F is a linear transformation (it is represented by
an identity matrix) and, assuming a normally distributed process noise, Kalman filtering
is a suitable algorithm for the estimation of the current wall thickness. Mathematically,
a system state is a vector of dimension one consisting of the wall thickness. Interpreting
such a vector as a scalar, we have F = H = 1 (H = 1 since we measure the wall thickness
directly), and we have, cf. Section 2.1,

xi := (1− Ki) · xi−1 + Ki · zi (6)

pi := (1− Ki) · p′i, (7)

where

p′i := pi−1 + q (8)

Ki := 1/(1 + r/p′i) (9)

and all terms are scalars (using lower case variable names to signify this). Notice that the
distances of the value of xi to the previous estimate xi−1 and to the measurement value zi
are clearly determined by the Kalman gain Ki ∈ [0, 1].

The high-level idea of the algorithm is that corrosion onset is detected once the current
wall thickness is significantly below the initial wall thickness, where the significance is
defined by a fixed threshold value below the initial wall thickness. Due to manufacturing
tolerances, the initial wall thickness is known only up to these some tolerances, and is
likely more accurately estimated using ultrasound wall thickness measurements of the first
few months (say, the first 6 months) assuming the coating has not yet been fully degraded
during this time. In other words, the estimated initial wall thickness is, by definition, the
estimated wall thickness after this fixed “calibration” time period. Note that the importance
of an accurate estimation of the initial wall thickness. Indeed, if the assumed initial wall
thickness is significantly higher than the actual wall thickness, then we erroneously detect
corrosion onset straight away (a false positive). On the other hand, with an assumed
initial wall thickness that is significantly lower than the actual wall thickness, the onset of
corrosion will be detected too late (a false negative).

This calibration time period is a meta-parameter and must be chosen sufficiently short
such that it is highly unlikely that the coating was fully degraded and sufficiently long
that a reliable estimate can be obtained. Similarly, the threshold value is a meta-parameter
of the algorithm. Suitable values for the calibration time and the detection threshold in
general depend on the sample rate and measurement noise.

3.2. Corrosion Prognosis
3.2.1. Prognosis Algorithms

Prognosis of End-Of-Life (EOL) of offshore wind turbine structures is vital for schedul-
ing maintenance, while avoiding system faults and escalation of damage. Prognosis can be
based on historical data, e.g., the mean lifetime of an offshore wind turbine structure, or on
online measurements, or both. In many application domains, the use of online measure-
ments significantly improves prognostic performance compared to only using historical
data. The prognosis method consists of two phases. In the first phase of the lifetime of
a wind turbine structure, no corrosion has yet been detected and the EOL for the given
location is assigned with a nominal probability distribution corresponding, for instance,
to prior information on the duration of coating allowance within the applicable operating
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context. The second phase starts as soon as corrosion is detected. Once corrosion is detected
we “switch” to one of the three above-described (ordinary or unscented) Kalman filtering
approaches for estimation of the wall thickness during corrosion. This is an instance of a
general paradigm called switching Kalman filtering, where different phases are treated by
different Kalman filtering algorithms. In order to perform prognosis, the current estimate
of the internal state xi is extrapolated by applying the state-transition function F iteratively.

3.2.2. Wall Thickness Estimation during Steel Corrosion

An essential part of prognosis is the estimation of the wall thickness during steel
corrosion. We consider three algorithms corresponding to three corrosion/degradation
models in the literature:

• Linear corrosion model;
• Power-law corrosion model;
• Bi-modal corrosion model.

Each of these models assumes bare steel, and so these models are only used after
corrosion is detected (i.e., when the steel is exposed due to coating degradation).

In general, a corrosion model w(t) is a function describing wall thickness degradation
over time due to corrosion. We have w(t) = w0 − closs(t), where w0 denotes the initial wall
thickness (e.g., in mm) and closs(t) denotes the loss of wall thickness after time t.

The linear corrosion model simply assumes a constant corrosion rate r, and so the
corrosion loss is closs(t) = r · t and we have

w(t) = w0 − r · t. (10)

For the Pourbaix equation [20] (see also [21]), we have closs(t) = A · tp, where A and p,
with 0 < p < 1, denote empirical constants assuming constant environmental conditions.
Notice that the corrosion rate A · p · tp−1 within this model is infinite initially (i.e., at t = 0).
A natural adaption is to introduce flexibility in the initial corrosion rate by introducing a
non-negative time offset parameter t0, to obtain closs(t) = A · (t + t0)

p and so

w(t) = w0 − A · (t + t0)
p. (11)

By power-law corrosion model we denote this corrosion model adapted from the Pour-
baix equation.

A refinement of the power-law corrosion model for time scales of decades is called
the bi-modal corrosion model, proposed in [16]. This model has two “modes” where the
corrosion rate in each mode decreases over time following the power-law corrosion model.
Both modes also contain a constant corrosion rate phase: the power law is prepended by a
constant corrosion rate phase in the first mode and appended by such a phase in the second
mode. The first mode starts with a constant corrosion-rate phase, with a smooth transition
to the power law model, while the second mode ends with a constant corrosion-rate phase.
More precisely, the bi-modal model is defined in terms of corrosion rate as follows:

biModalCorrRate(t) :=


A1 · p1 · t1

p1−1 if t ≤ ts

A1 · p1 · (t− ts + t1)
p1−1 if ts ≤ t ≤ tbi

A2 · p2 · (t− tbi + t2)
p2−1 if tbi < t ≤ te

A2 · p2 · (te − tbi + t2)
p2−1 if te ≤ t

, (12)

where Ai and pi are as in Equation (11) for each Mode i ∈ {1, 2}, ts is the time of the start
of the first power-law phase (and duration of the first phase), tbi is the time of the start
of Mode 2, and te is the time of the second phase of Mode 2 (i.e., the start of the final
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linear phase). The values for ti are such that r0,i := Ai · pi · ti
pi−1 correspond to the initial

corrosion rates of each mode. Equivalently, we have

biModalCorrRate(t) =


r0,1 if t ≤ ts

r0,1 · ((t− ts)/t1 + 1)p1−1 if ts ≤ t ≤ tbi

r0,2 · ((t− tbi)/t2 + 1)p2−1 if tbi < t ≤ te

r0,2 · ((te − tbi)/t2 + 1)p2−1 if te ≤ t

. (13)

3.2.3. Implementation

Since the linear corrosion model corresponds to a linear state-transition function F,
we use Kalman filtering for wall-thickness estimation. The other two corrosion models
correspond to non-linear state-transitions functions, and so we use Unscented Kalman
Filtering (UKF).

Linear Corrosion Model

We now consider a degradation model F based on constant-rate corrosion. In other
words, we assume that the corrosion loss per unit of time is constant. Of course, constant-
rate corrosion is a very crude approximation of the real corrosion process as, for example,
it ignores external influences, such as temperature. Nevertheless, such a baseline algorithm
might still give satisfying results, since, even though the degradation model assumes
constant corrosion rate, the corrosion rate is constantly updated by Bayesian filtering (in
fact, Kalman filtering) according to real-time incoming measurements.

Let us define a system state x = (w r)T to be a column vector of length 2 consisting
of the (estimated) wall thickness w and the (estimated) corrosion rate r. Recall that the
model F sends each possible system state x to the next system state x′ after some (fixed)
period of time ∆t. Therefore, F(x) = x′ with x′ = (w′ r′)T , w′ = w− ∆t · r, and r′ = r.
Indeed, since the corrosion rate r is fixed, r′ = r, and w′ is simply the linear extrapolation
of w corresponding to an increase in time ∆t. We notice that F is a linear transformation
(since ∆t is fixed), and so it is represented by the following matrix (which by slight abuse of
notation we also denote by F):

F =

[
1 −∆t
0 1

]
. (14)

Since we assume we measure the wall thickness directly (albeit with measurement
noise), H simply sends x to the 1-by-1 matrix containing w. Therefore, H is the linear
transformation represented by the matrix H = [1 0].

To finalize the Kalman filter implementation of this corrosion model, we are left with
defining the initial state x0, the initial covariance matrix P0, and the covariance matrices Q
and R representing the magnitude of the process noise and the measurement noise. We
assume the initial independence of the stochastic random variables w and r, and so P0 is a
diagonal matrix. Since the corrosion detection algorithm provides an estimate of the initial
wall thickness w0, we set the first entry of x0 to this estimate. Moreover, we set the entry
(P0)1,1 to the value of the 1-by-1 matrix P from the corrosion detection algorithm at the
moment the corrosion detection algorithm fixes its initial wall thickness estimate. Since
the initial corrosion rate is unknown, we set the second entry of x0 to some “typical” value
(we have chosen 0.2) and set (P0)2,2 to a relatively large value of 0.052. The 1-by-1 matrix
R contains the variance σ2

R of the noise of the measurement device. The measurement
noise level of ultrasound sensors is usually known and provided. For validation, we have
considered several measurement noise levels σR ∈ {0.005, 0.020, 0.105} consistent with
noise levels encountered for ultrasound sensors. Since the model is a constant velocity
model (the velocity being the corrosion rate), we use a process noise covariance matrix Q
suitable for this type of model, as described in [22]. Specifically, Q = σ2

Q · GT · G, where

G is the row vector
(
(∆t)2

2 ∆t
)

and σQ is a scalar. The value σQ is difficult to estimate in
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practice, and is, therefore, often used as a “tuning” parameter. To automate tuning, we
choose the value of σQ that obtains highest accuracy for equidistant values on a base-10 log
scale against some synthetic training datasets (see Section 4 for descriptions of the datasets
and the accuracy metric). In this way, we have obtained σQ = 0.01.

While, as mentioned above, there is a potentially large deviation of the ground truth
with the constant-rate corrosion model, corresponding, therefore, to a relatively large
process noise, it does enjoy a number of favorable properties compared to more complex
models. First, F is linear, which together with linearity of H (and assuming normally
distributed noise sources), allow for Kalman filtering to be applicable. Second, the length of
the system state (it is of dimension 2) is essentially minimal, avoiding potential overfitting
in state estimations relying on larger system states (as is the case of more complex models)
and minimizes the problem of providing suitable initial estimates and (co)variances of un-
known constants of the model (as only the initial estimate of the corrosion rate is required).
Third, it provides robust results if the underlying physical mechanism is poorly understood
(e.g., if certain external effects, such as temperature influence, are not known) or the mea-
surement data are of (very) low quality. Fourth, since (1) the accuracy of corrosion prognosis
for the remaining useful life estimation is most important near the end of life, and (2) as
empirically confirmed in [16], the last phase of corrosion has a constant rate, we can expect
accurate results in the most important last phase of the lifetime of an offshore wind turbine.

Bi-Modal and Power-Law Corrosion Models

Recall the bi-modal corrosion model of Equation (13) describing the corrosion rate
as a function in time t. While several of the 9 parameters of this model are known to
be temperature dependent [16], for Bayesian filtering we assume that they are constants.
Similarly to as in the constant-rate corrosion model of Section 3.2.3, we rely on Bayesian
filtering to adapt these constants to account for mechanisms and influences (such as
temperature influences) not explicitly covered in the degradation model. If we would
explicitly take into account, say, temperature influence, then this would result in a “blow-
up” of constants that needs to be estimated. Indeed, in this case we would have, e.g.,
tbi = aebT + c for some constants a, b, and c, resulting in a threefold increase in the number
of constants to estimate (or fourfold if one includes the estimation of temperature itself).

Exactly as in Section 3.2.3, the wall thickness w(t + ∆t) at time t + ∆t is equal to
w(t)− ∆t · corrRate(t). A system state x is defined as an 11-tuple

(t, w, t1, t2, ts, tbi, te, r0,1, r0,2, p1, p2), (15)

where t is the time, w is the wall thickness, and the other 9 values are the constants of
Equation (13). We have F(x) = x′, where (x′)1 = t + ∆t, (x′)2 = w− ∆t · corrRatex(t) with
corrRatex(t) as in Equation (13) using the constants as given in x, and (x′)i = (x)i for i ∈
{3, . . . , 11}. In other words, the values other than t and w are constants. The measurement
function H simply sends x to its wall thickness entry (x)2.

To finalize the unscented Kalman filter implementation of this corrosion model, we
are again left with defining the initial state x0 and the initial covariance matrices P0, Q, and
R. We set the entries of x0 according to historical data provided in [16,23]. In particular,
p1 = 0.5, p2 = 1/3, and at 20 ◦C we have r0,1 = r0,2 = 0.2, t1 = 0.23, and t2 = 0.36 (while
adjustments can be made if the initial temperature is known, as described above, we take
temperature into account through automatic adjustments due to Bayesian filtering). For
matrix P0 we assume the independence of the parameters (i.e., a diagonal matrix), where
the entries corresponding to the constants pi, r0,i, and ti are set to a large uncertainty of
σ2 with σ = 0.1. Again, we consider Q as a tuning matrix and automate the tuning. To
avoid overfitting, we assume the process noise of the elements of the state are mutually
independent, in other words, Q is a diagonal matrix. Moreover, optimize the accuracy of
Q := s · P0 over a set of equidistant values for the scalar s in the base-10 log scale against
the synthetic training datasets. Finally, matrix R is defined as in Section 3.2.3.
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The power-law corrosion model is essentially a degenerate case of the bi-model
corrosion model. A system state x is then defined as a 4-tuple

(t, w, A, p, t0), (16)

where the entries are as in Equation (11). Since the long-term behavior is most important, we
mimic the power-law of the second mode in Equation (13) and choose p = 1/3, t0 = 0.36,
and A = r0,2/(p · t0

p−1) ≈ 0.3 (using, for the computation of A, the formula given in the
paragraph above Equation (13)). Additionally, Q is computed in the same way as described
for the bi-modal case.

Model Complexitity vs. State Estimation

The accuracy of a prognosis method is dependent on both the accuracy of the estimate
of the current internal state and the accuracy of the degradation model. There is commonly
a trade-off: the more accurate the degradation model, (typically) the more complex the
degradation model (for example, more parameters to estimate), and so the more difficult it is
to obtain an accurate estimate of the current internal state. The three degradation/corrosion
models on which the three prognosis algorithms are based, reflect this trade-off: the
bimodal corrosion model being the most accurate/complex model, the linear corrosion
model being the simplest one, and the power law model in-between these two models
regarding model complexity.

4. Results

In this section, we evaluate the performance of the corrosion detection algorithm and
the three corrosion prognosis algorithms.

4.1. Performance Metric

To objectively compare the three prognosis algorithms, we employ the well-known
α-λ-accuracy metric [24]. This metric is defined as the fraction of the remaining useful life
(RUL) estimations, from commencing the wind turbine until end of life, where at least an
area of β (with β some value between 0 and 1) of the RUL distribution is within a factor of
1± α of the ground truth RUL. Note that this accuracy metric is applied after EOL due to
the required availability of the ground truth RUL.

4.2. Datasets

Due to limited available field data, we have simulated the wall thickness “ground
truth” data and, using this ground truth data, also simulated the corresponding measure-
ment data. The simulated ground truth data were obtained using the bimodal corrosion
model. We assume here that the online monitoring system converts the raw ultrasound
measurements into wall thickness values, which for convenience we simply call wall thick-
ness measurements here. The parameters of the bi-modal model for which no suitable
(real world) values were provided in [16], were instead estimated based on fitting (using
a fitting tool that we specifically made for the bimodal corrosion model) the calculated
corrosion-loss behavior from the corrosion loss plots given in that paper. In the bi-modal
model, the corrosion rate at the end of the first mode is different from the corrosion rate at
the beginning of the second mode leading to a discontinuity in the corrosion rate. Since
such a discontinuity in corrosion rate is unrealistic, smoothing method is suggested. We
employ the following smoothing method:

rtransition(t) = w(t)r1 + (1− w(t))r2, (17)
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where rtransition is the corrosion rate at time t with t between the start t1,s and end t2,s of the
smoothing process, r1 and r2 are the corrosion rates for Mode 1 and Mode 2, respectively,
assuming no smoothing, and

w(t) =
t− t1,s

t2,s − t1,s
(18)

is a weight factor. The temperature variation due to seasonal variation was simulated by a
sine wave with a period of one year and an amplitude based on the seasonal temperature
variation compatible with Canary islands as a concrete use case. Finally, we incorporated
the influence of temperature on the level of corrosion by introducing a global factor of
eT−Tref on the corrosion rate, as described in [23]. Various simulated ground truth corrosion
datasets were generated using various realistic process and measurement noise variations
and temperature variations. The ground truth is computed using a sampling rate of 0.01
year. From the simulated wall thickness ground truth, we have simulated corresponding
wall thickness measurements by sampling at the expected measurement period of one
month per position, and, following [11], a Gaussian measurement uncertainty was used
with standard deviations ranging between 5 and 105 µm). An example simulated corrosion
process with measurement data is given in Figure 1, where the coating has degraded after
three years (i.e., the onset of corrosion starts in year 2023). Given the initial wall thickness,
the three plots depicting the wall thickness, corrosion rate, and corrosion loss all represent
the same information (assuming the initial wall thickness is known).

Figure 1. A dataset of simulated wall thickness measurements (a Gaussian measurement noise with
a standard deviation of 20 µm is used here) along with the ground truth and the corresponding
corrosion rate and corrosion loss. Only the wall thickness measurements are used in the corrosion
detection and corrosion prognosis [24].

4.3. Corrosion Detection

Figure 2 shows the output of the corrosion detection algorithm on simulated measure-
ment data from a single position of the wind turbine structure. This current wall thickness
is the pink curve. The calibration time period is set to 8 months and the wall thickness
detection threshold is set to 0.02 mm (recall these meta-parameters in Section 3.1).

Notice that several measurements that are coincidentally below the ground truth in
the first half of 2021 do not lead to a detection, while corrosion is detected (the moment the
pink curve drops below the red threshold line) 6 months after it commenced in the first
month of 2023. This period of 6 months between corrosion onset and detection depends on
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the measurement noise and the measurement frequency, and can be reduced by increasing
the measurement frequency.

Figure 2. Output of the corrosion detection algorithm on simulated measurement data of a single
position, along with the ground truth for reference. Again, a Gaussian measurement noise with a
standard deviation of 20 µm is used here.

4.4. Corrosion Prognosis

Figure 3 shows the output of the corrosion prognosis algorithm based on the power-
law corrosion model on the above-described (simulated) measurement data (along with
the ground truth for reference). The above-mentioned extrapolation of the current esti-
mate of the internal state corresponds to the purple curve in the top plot of the figure.
Recall that (ordinary or unscented) Kalman filtering provides more generally a probability
distribution of the current estimate of the internal state. Extrapolating a large number of
elements/particles drawn from this probability distribution allows one to obtain a confi-
dence interval for prognosis (again top plot of the figure) and a probability distribution for
the EOL estimate (bottom plot in the figure).

Figure 3. Output of the corrosion prognosis algorithm based on the power-law corrosion model on
(simulated) measurement data, along with the ground truth for reference, see also [13].
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4.5. Accuracy of Remaining Useful Life Estimates

Figure 4 illustrates the computation of the α-λ-accuracy metric on a dataset containing
measurements from corrosion detection (after 3 years) until end of life. The red (purple,
resp.) dots correspond to timestamps where less (more, resp.) than an area of β of the RUL
distribution is within a factor of 1± α of the ground truth RUL. The fraction of purple dots
among the purple and red dots is 0.6, and so the α-λ-accuracy for this dataset is 0.6. To
obtain a robust comparison of the three prognosis algorithms, we compare the mean of the
α-λ-accuracy values over five representative datasets with varying relevant measurement
and process noise and temperature variations. The results are shown in Table 1. We observe
that the prognosis algorithm based on the power law model performs best, and, therefore,
this algorithm is selected as the final prognosis algorithm.

Figure 4. Remaining useful life estimates over time, along with the ground truth and an illustration
of the computation of the corresponding α-λ-accuracy.

Table 1. Comparison of the accuracy of the prognosis algorithms based on the three corrosion models.
Highest mean accuracy in bold.

Prognosis Algorithm Mean Accuracy

Linear 0.400
Power law 0.415

Bimodal 0.376

5. Conclusions

We considered a corrosion detection method and three corrosion prognosis meth-
ods based on Bayesian filtering, in particular, ordinary and unscented Kalman filtering.
The three corrosion prognosis methods cover a range of corrosion model complexities, from
the very simple linear corrosion model to the involved bimodal corrosion model, to evalu-
ate the trade-off between model accuracy and current state estimation accuracy. Using the
α-λ-accuracy metric, we quantitatively compared the performance of the three prognosis
algorithms against a number of synthetic datasets, which cover a range of measurement
and process noise levels typical for wall thickness measurements of offshore wind turbines
using ultrasound sensors. We observed that the prognosis method based on the power-law
corrosion model (in model complexity between the linear corrosion model and the bimodal
corrosion model) has the highest mean accuracy score.
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