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Abstract: The aim of this study is to investigate the impact of climate conditions, altitude, and
population density on daily COVID-19 infection evolution. For an average wind speed of greater
than 25 km/h, the number of daily COVID-19 infections slightly decreased with a rate of 10%, while
the temperature, humidity and altitude factors did not affect its evolution. Furthermore, population
density strongly affects its progression with an approximate rate of 90%. Finally, we propose a
mathematical model to estimate the evolution of COVID-19 infections over time by simultaneously
taking into consideration the wind speed and the population density effects.

Keywords: COVID-19 infections; climate conditions; altitude; population density; mathematical
model

1. Introduction

Historically, between 1918 and 1920, the Great Influenza Pandemic which is known
as the Spanish Flu caused 39 million deaths which means 2% of the world population [1].
Moreover, other respiratory pandemics have appeared such as Swine Flu, SARS, Ebola,
MERS and lately the COVID-19 pandemic which is an infectious disease caused by a newly
discovered coronavirus [1–4]. In December 2019, the city of Wuhan in the Hubei province in
China attracted worldwide attention because of a new respiratory viral disease outbreak of
an unknown cause. By 7 January 2020, Chinese scientists had isolated a novel coronavirus
(COVID-19) from patients in Wuhan [5]. On the 10 January 2020, 41 patients contracted
COVID-19, 6 of whom recovered, 7 of whom had critical conditions, and the rest of which
were in a stable condition [6]. On 30 April 2020, the number of infections reached 3,090,445
with 217,769 deaths and 1,030,715 recoveries [7].

Recently, because of the quick spread of the COVID-19 pandemic around the globe,
the World Health Organization announced a state of emergency which has put researchers
and scientists from different fields in front of a great challenge; to analyze and uncover
the mechanism of the evolution of this serious pandemic, each from their own prospective.
Understanding how environmental parameters and population density factors affect the
spread of COVID-19 [8–10] is still a vital question that could help the global community to
introduce the right solutions as well as inventing new technologies to prevent along with
reducing COVID-19 infection progression.

Med. Sci. Forum 2021, 4, 30. https://doi.org/10.3390/ECERPH-3-09094 https://www.mdpi.com/journal/msf

https://doi.org/10.3390/30
https://doi.org/10.3390/30
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/msf
https://www.mdpi.com
https://orcid.org/0000-0002-7304-5416
https://orcid.org/0000-0002-4439-5337
https://ecerph-3.sciforum.net/
https://doi.org/10.3390/30
https://www.mdpi.com/journal/msf
https://www.mdpi.com/article/10.3390/ECERPH-3-09094?type=check_update&version=1


Med. Sci. Forum 2021, 4, 30 2 of 9

The aim of this paper is to study the impact of the climate parameters (daily average
temperature, daily average humidity and daily average wind speed), altitude and pop-
ulation density on the daily number of COVID-19 infections around six different cities:
Casablanca (Morocco), New York (USA), Madrid (Spain), Lombardy Milan (Italy), Paris
(France), and Wuhan (China) between the first February and 25 April 2020. Consequently,
we have proposed a mathematical model to simultaneously estimate the impact of wind
speed factor and population density on daily COVID-19 cases.

2. Materials and Methods

The databases of the daily average temperature, humidity, and wind speed across
the cities of Casablanca, New York, Madrid, Lombardy-Milan, Paris, and Wuhan were
collected between 23 January and 25 April 2020. Moreover, we have determined the average
altitude, average annual number of population and visitors plus the daily and cumulated
COVID-19 infections’ evolution around the six studied cities (Figures A1–A3 and Table A1
in Appendix A).

According to experimental epidemiologists’ estimations, 95% of patients had an es-
timated median incubation period of 4 to 5.1 days and 97.5% of them had symptoms of
11.1 days [11]. Consequently, the duration between the day when a susceptible person
will be infected by COVID-19 virus and the day on which the case could be detected is
estimated to be 9 days. Thus, we can say that the climate parameters (Temperature: Ti,
Humidity: Hi, Wind speed: Wi) on i day show their impacts on N(i + 9) detected cases at
(i + 9) days.

We have classified the studied factors into two types of variables:

• Dependent variables: Daily temperature, Ti; Daily humidity, Hi; Daily wind speed, Wi.
• Independent variables: Altitude, average annual population density.

We assume that the average annual population density is constant and given by:

Ptotal = Ps + Pt (1)

where, Ps is the average annual population density in a city and Pt is the average annual
visitors’ density across each city.

√Before the lockdown: Ptotal = Ps + P
√After the lockdown: Ptotal = Ps

The average annual number of populations N(t) in a city could be presented as [12]:

N(t) = S(t) + I(t) + R(t) (2)

where:

S(t): Number of susceptibles on day (t).
I(t): Number of infected cases on day (t).
R(t): Number of recovered patients on day (t).

The variables S(t), I(t) and R(t) vary over time and they could be presented by a system
of three differential equations as follow [13]:

dS
dt = −aS(t) (t)
dI
dt = aS(t) I(t)− bI(t)
dR
dt = bI(t)

(3)

where:

a: Expected number of people an infected person infects per day (a ≈ 1/tip).
b: The proportion of recovered patients per day (b = 1/D), while D is the approximate

number of days when patient will recover (D = 14 days in our estimations).
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tip: The estimated average incubation period (equals 5.75 days in our study) in which an
infected patient could infect other susceptible.

3. Results and Discussion

The analysis of the impact of the average daily temperature, average daily humidity,
and the average altitude (Figures A4–A6 in Appendix B) shows that these factors have no
effect on daily COVID-19 infection evolution for the studied period. While, Hwaiz et al. [14]
have presented a study shows that the increase of daily reported cases and mortality rates is
due to the increasing of temperature from April to June. Furthermore, their work show also
that the increase of temperature has no effect on reducing the number of daily COVID-19
infected cases Other study done by J. dos Santos [15] to measure the effect of climatic
conditions on the prevalence rate of COVID-19 in Brazilian states given the exogenous
nature of climate variables. The results showed that increases of 1% in the solar incidence,
average temperature, and relative humidity of the air reduced COVID-19 prevalence rates
by 0.16%, 0.049%, and 0.22%, respectively, considering the 11-day moving average.

In Figure 1 we note that, for an average wind speed of more than 25 Km/h, the ampli-
tude of daily confirmed infections is reduced across the studied cities, which means that
the wind speed factor slightly impacts the daily COVID-19 infection evolution compared
to the other climatic parameters under study.

Figure 2 shows that the population density factor greatly affects the daily number
of COVID-19 infections with a rate of 90%, compared to the other parameters under
study. Furthermore, the speed of COVID-19 spread was faster in the area which is highly
populated such as NewYork and Wuhan, and the quarantine was the only solution to reduce
the progression of COVID-19 infections’ evolution (Figures A2 and A3 in Appendix A).

Figure 1. Influence of wind speed on the number of daily cases infected.

Based on those results, the previous system of differential Equations (3) could be
rewritten as:
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patients at t0 in each city, while a = 0.35, b = 0.111, and γ = 0.04. 

Figure 3 shows the comparison between SIR model, where only population density 
was taken into account, and our estimated model, where we simultaneously implemented 
the impact of wind speed and population density factors in order to estimate their effects 
on daily COVID-19 infection evolution. 

where γ is the proportion in which wind speed contributes to reducing the number of
susceptible people infected.
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Figure 2. Average population density before and after the quarantine of across the cities under
study [16].

Furthermore, the subtracted time-period tip from t time, means that an infected patient
could infect one susceptible person or more after an incubation period of tip = 5.75 days.

The population density factor affects the evolution of infections by 90%, while the
wind speed affects it by only 10%, so γ < a; then, we estimated that γ ' a

9 .
So, these conditions could be described mathematically, as follows:

i f S > a+γ
b+γ sO

dI
dt > 0

, we say that the COVID19 epidemic grows
i f S < a

b sO
dI
dt < 0

, we say that the COVID19 epidemic shrinks

(7)

where the coefficient a+γ
b+γ presents the threshold and the initial conditions of S0, I0 and R0

successively presents the proportions of susceptible people, infected cases, and recovered
patients at t0 in each city, while a = 0.35, b = 0.111, and γ = 0.04.

Figure 3 shows the comparison between SIR model, where only population density
was taken into account, and our estimated model, where we simultaneously implemented
the impact of wind speed and population density factors in order to estimate their effects
on daily COVID-19 infection evolution.

Figure 3. Comparison between SIR model and the proposal mathematical model.
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4. Conclusions

The objective of this work is to study the impact of climate parameters, altitude, and
population density factors on the daily number of COVID-19 infections over 85 days,
between the 1 February the 25 April 2020 around six cities (Casablanca, Paris, Madrid,
Lombardy-Milan, New York and Wuhan). The main results of this research showed that:

• The temperature, the humidity and the altitude parameters have no impact on daily
COVID-19 infection evolution.

• For an average wind speed of greater than 25 km/h, the number of COVID-19 infec-
tions is slightly decreased, with an approximate rate of 10%.

• Population density has a significant impact on the daily COVID-19 spread with a rate
of 90%.

Based on this study, a mathematical model is proposed in which we simultaneously
considered the wind speed, and the population density effects on daily COVID-19 infection
evolution; consequently, in our estimated model, the number of daily susceptible people
and infections has slightly decreased compared to the presented S-I-R model.

Author Contributions: Conceptualization, R.L. and L.L.; Data curation, R.L. and L.L.; Formal analy-
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Appendix A

Figure A1. Climate condition changes across the studied cities between 23 January and 25 April 2020.
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Table A1. Table A1. Climate data of the sixth cities under study.

Average Temperature Average Humidity Average Wind Speed

Minimal Maximal Minimal Maximal Minimal Maximal

Casablanca 13.5 ◦C 20 ◦C 55% 90.5% 6 km/h 25 km/h
New York −0.5 ◦C 16.5 ◦C 24.5% 91.8% 11.2 km/h 55.7 km/h

Madrid 5 ◦C 16.3 ◦C 47.5% 95.3% 4.5 km/h 60.8 km/h
Lombardy-Milan 4.5 ◦C 19.3 ◦C 28.7% 96% 4.96 km/h 32 km/h

Paris 4.5 ◦C 19 ◦C 40% 93% 6.88 km/h 55 km/h
Wuhan 3 ◦C 19 ◦C 37% 87% 6 km/h 29 km/h

Figure A2. Average annual population density and visitors across the six cities under study [16].

Figure A3. Evolution of daily and total COVID-19 infections over time (days) with a logarithmic
scale [17–22].
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Appendix B

Figure A4. Influence of temperature on the daily number of COVID-19 infected cases.

Figure A5. Average humidity impact on the daily number of COVID-19 infections.
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Figure A6. Average altitude of the studied cities [23].
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