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Abstract: Bayes’ Theorem represents a mathematical formalization of the common sense. What we
know about the world today is what we knew yesterday plus what the data told us. The lack of
understanding of this concept is the source of many errors and wrong judgements in the current
COVID-19 pandemic. In this contribution, we show how to use the framework of Bayesian inference
to produce a reasonable estimate of seroprevalence from studies that use a single binary test. Bayes’
Theorem sometimes produces results that seem counter-intuitive at first sight. It is important to
realize that the reality may be different from its image represented by test results. The extent to which
these two worlds differ depends on the performance of the test (i.e., its sensitivity and specificity),
and the prevalence of the tested condition.
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1. Introduction

In the age of the coronavirus, various testing has become enormously widespread.
Unfortunately, what has not become widespread is the understanding of the test results.
The most common PCR test is used for the detection of the virus (more precisely its
particular fragments) in a sample collected by a nasopharyngeal swab. The number of PCR
positive cases can be used to assess the Case Fatality Rate (CFR) of the infection. CFR is the
proportion of COVID-19 deaths in the diagnosed (i.e., PCR positive) population. However,
CFR depends heavily on the testing strategy–any infection may reach the CFR of 100% if
only the deceased are tested. Thus, it is more sensible to estimate the Infection Fatality Rate
(IFR) which is the proportion of COVID-19 deaths in the infected population, regardless
whether the infection was detected or not. The IFR is always lower than CFR and it does
not depend on the testing strategy. However, apart from the virus itself, IFR also depends
on the characteristics of the population, state of health care, etc. To estimate the IFR, one
must infer what proportion of the population has already met the virus.

One option to find the proportion of so far infected people is to test for the presence
of antibodies against the coronavirus in a representative sample of the population. Many
seroprevalence studies have been performed and their results helped to estimate the IFR of
COVID-19, e.g., [1–3]. The meta-study by Ioannides [4] combined 61 larger sero-prevalence
studies and reported the median IFR of 0.23%. In people under 70 years, the median IFR
reached 0.05%. Both the numbers are likely to be overestimated because an unknown
proportion of population defeats the virus on the level of cellular immunity (and probably
even become immune) without producing antibodies at all [5]. This seems to be the case
especially for children [6].
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Despite the fundamental importance of various forms of testing, not enough attention
has been paid to the correct interpretation of the test results. In this paper, we want to
explain this issue in three successive steps of an increasing level of complexity. We use
the example of antibody tests here, but the same logic should be used for any test, the
results of which are converted to a binary answer (positive–negative). This applies to all
antibody tests (laboratory or rapid tests), all PCR tests (full RT-qPCR, antigen testing, etc.),
and many more coronavirus unrelated medical tests, or even health unrelated tests (such
as AB testing [7]).

2. Antibody Primer

Some explanation of the mechanism of antibodies testing is needed. We use the
example of the standard Enzyme-Linked Immunosorbent Assay (ELISA). This is a semi-
quantitative method which measures the amount of SARS-CoV-2 antibodies in a sample
by detecting a color change of the sample resulting from a reaction. The color change is
quantified by the optical density of the sample. The optical density is then divided by the
optical density of a calibration sample (provided in each kit by the manufacturer) which
contains a borderline concentration of the antibodies. The sample is considered positive, if
the resulting Optical Density Ratio (OD Ratio) exceeds a threshold set by the manufacturer
(1.1 in the case of Euroimmun ELISA kits) and negative, if the OD Ratio falls below a
threshold (0.8 in the case of Euroimmun ELISA kits). OD Ratio values between the two
thresholds are deemed inconclusive. ELISA assays are usually performed in batches of
96-well plates. Each plate contains one or two calibration samples and a few positive and
negative controls.

There are several types of antibodies, each with a specific role in fighting the disease
and thus each with specific dynamics. The most commonly measured antibodies are
immunoglobulins A (IgA) and immunoglobulins G (IgG). The production of IgA antibodies
starts 1–2 weeks from the infection and they last for at least several weeks. IgG are
produced somewhat later but usually last for several months after the infection. There
is considerable debate about the protective role of the antibodies and the possibility of a
reinfection [8–10]. It is probable that some (possibly most) of reported reinfections are due
to the false positivity or false negativity of one of the PCR tests. This provides further
motivation for thinking clearly about the test results.

3. A Binary Test Primer

Each test with a binary outcome has a certain accuracy which is never perfect. Let us
fix ideas by considering a single test with a binary outcome (positive or negative) for the
presence of a specific antibody. In each tested subject, the antibody is either present (A+) or
absent (A−), which we do not know. For each subject, the test may come out either positive
(T+) or negative (T−), which is the observed result. The performance of the test may be
significantly different for the A+ subjects and for the A− subjects. Therefore, two numbers
are needed to characterize the performance of any binary test. The sensitivity of the test
is the accuracy on the A+ population, i.e., the probability that the test comes out positive
provided the antibodies are, in fact, present. In terms of conditional probability, we can
write sens = p(T + |A+). On the other hand, the accuracy on the A− population is called
the specificity of the test. The specificity of the test is the probability that the test comes out
negative provided the antibodies are absent. Thus, spec = p(T − |A−). The prevalence of
antibodies in the population is denoted by prev. It can be interpreted as the probability that
the antibodies are present in a randomly chosen subject, i.e., prev = p(A+).

In practice, we test a subject and observe the test result, say T+. Since neither sens
nor spec are perfect, a positive test result does not necessarily imply that the antibodies are
presents (it may be a false positive). Thus, we want to make inference about the probability
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that the antibodies are present, provided the test came out positive. We use the Bayes’
Theorem to obtain

p(A + |T+) =
p(T + |A+)p(A+)

p(T + |A+)p(A+) + p(T + |A−)p(A−) =

=
sens× prev

sens× prev + (1− spec)× (1− prev)
.

It is important to realize that the posterior probability p(A + |T+), i.e., the probability
that a positively tested subject indeed has the antibodies, depends not only on the parame-
ters of the test (sens and spec) but also on the prevalence. For example, the Euroimmun
ELISA test for IgA anti-SARS-CoV-2 antibodies has a declared sensitivity of 98.6% and
specificity of 92.0%. If the prevalence is assumed to be around 1% (as it was the case at
the very beginning of the pandemic), a positive test result yields the posterior probability
p(A + |T+) of approximately 11%. Thus, about 9 out of 10 positive test results are false
positives! If the prevalence rises to 10% (a sensible figure after the first wave of the pan-
demic), the posterior p(A + |T+) increases to about 58%. Once prevalence reaches 30%
(only the hardest hit regions may have reached this figure), the posterior grows further
to 85%.

This example represents the step zero in understanding seroprevalence studies and
suggests a careful way of interpreting binary test results is needed: A positive test does
not necessarily imply that antibodies are present in the tested subject, it merely increases
the probability that it is so. The posterior probability is given by the Bayes’ Theorem
and it depends on the sensitivity and specificity of the test but also on the prevalence of
the antibodies.

4. A Single Test Study

In a typical seroprevalence study, the question is how widespread a certain antibody is
in a given population. Thus, we want to make inference on the prevalence. A test of known
parameters is used and a random sample of N subjects is drawn from the population. The
study yields data which consist of K positive test results and N − K negative test results.
The Bayes’ Theorem–this time written in terms of probability densities [11]–states that

p(prev|data) ∝ p(data|prev)p(prev). (1)

The proportional sign (∝) means that the posterior density p(prev|data) must be normal-
ized to a unit area. The posterior density represents a degree of belief about the prevalence,
taking into account all the available data. Some assumption must be made about the
prevalence that we want to estimate. This is the first principle of Bayesian inference–you
cannot make inference without assumptions. It is sensible to model the prior density p(prev) as
a beta distribution centered around our prior beliefs. For example, if the study is performed
at the very beginning of the pandemic, the prevalence is almost certainly very low, and so
p(prev) = beta(1, 10) may be a sensible prior (see Figure 1).
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Figure 1. The simulated results of a seroprevalence study with N = 1000 subjects, out of whom
K = 200 came out positive. A single test with the parameters sens = 0.7 and spec = 0.9 was used.
The dashed line represents the prior and the thick line of the same color represents the posterior
density. Notice that the prior has a negligible effect on the posterior, if the number of subjects is
sufficiently high.

Now let us evaluate the likelihood, i.e., p(data|prev). The likelihood is interpreted as
the probability of obtaining the observed data if the true prevalence was known and equal
to prev. This is a rather simple calculation because

p(data|prev) ∝ [p(T + |prev)]K[p(T − |prev)]N−K.

Both the terms are easy to evaluate:

p(T + |prev) = p(T + |A+, prev)p(A + |prev) + p(T + |A−, prev)p(A− |prev) =

= p(T + |A+)p(A + |prev) + p(T + |A−)p(A− |prev) =

= sens× prev + (1− spec)× (1− prev).

Analogously,

p(T − |prev) = p(T − |A+, prev)p(A + |prev) + p(T − |A−, prev)p(A− |prev) =

= p(T − |A+)p(A + |prev) + p(T − |A−)p(A− |prev) =

= (1− sens)× prev + spec× (1− prev).

Combining all the above, the likelihood becomes

p(data|prev) = [sens× prev + (1− spec)× (1− prev)]K×

[(1− sens)× prev + spec× (1− prev)]N−K.

This is an explicit expression that can directly be evaluated. In practice, the logarithm
of the likelihood is evaluated to avoid the problem of multiplying small numbers. Figure 1
shows the results of an artificial example with N = 1000 and K = 200 for a test with the
parameters sens = 0.7 and spec = 0.9.

Now consider the realistic setting of sens = 0.986 and spec = 0.920 for the anti-
SARS-CoV-2 IgA ELISA assay. Let us assume that in a sample of N = 1000 subjects,
we obtained K = 100 positive results. A careless estimate of the seroprevalence would
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yield prev ∼ K/N = 10%. However, the correct computation (with the beta(1, 10) prior)
reveals that the mean of the posterior is 2.2%–an almost five times lower number. The
probability that the true prevalence exceeds 5% is less than 0.01, and the probability that
the true prevalence exceeds 9% is 10−8, i.e., the careless seroprevalence estimate K/N is
all but impossible! This is consistent with the observation of the previous section that in
the environment of low prevalence, most of the positive test results are false positives.
This shows that seroprevalence studies must be evaluated correctly because the careless
estimate of the prevalence by the fraction of positive test results (prev ∼ K/N) is usually
completely meaningless.

5. Conclusions

We have shown how to use the framework of Bayesian inference to produce reasonable
estimates of seroprevalence from studies that use a single binary test. Although the Bayes’
Theorem represents only a formalization of the common sense, it sometimes produces
results that seem counter-intuitive at first sight. It is important to realize that the reality
may be different from its image represented by test results. The extent to which these two
worlds differ depends on the performance of the test (i.e., its sensitivity and specificity), and
the prevalence of the tested condition. The Bayes’ Theorem provides a logically consistent
framework for combining our prior beliefs with all the information obtained from the data.
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