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Abstract: Since 2020, the Catania-Messina-Enna Cancer Registry (CR) has operated a transformational
and incremental program while also applying a Lean Six Sigma methodology (LSS) to optimize the
processes and reduce waste. Each project aimed to raise the performance of the CR while also
providing the opportunity for human resources to express their talent. In this context, a machine
learning project was developed to reduce the time spent on raw free-text histopathological reports
that contain relevant information for cancer evaluation. The ability to extract meaningful information
from histopathology reports is really important because reports provide crucial insights into the
morphology and topography of cancer, enabling operators to validate oncology cases with the utmost
diagnostic precision. However, the CR faced a significant challenge due to the extensive volume
of written natural language reports, where only a small fraction contains pertinent information
for cancer evaluation. In this paper, we describe how we applied the LSS method, the observed
difficulties, and the benefits achieved by adopting a machine learning algorithm as a strategic solution
in the Improve phase.

Keywords: project management; Lean Six Sigma; cancer registry

1. Introduction

Lean Six Sigma (LSS) is “a methodology that maximizes shareholder value by achiev-
ing the fastest rate of improvement in customer satisfaction, cost, quality, process speed
and invested capital” [1]. It shows how Lean and Six Sigma methods complement and
reinforce each other. Moreover, LSS has a commonality in the field of application. Lean
focuses on reducing “chronic” waste and Six Sigma focuses on reducing the variation and
thereby its “adverse effects” [2].

Transformational projects usually have to cope with different risks that could bring
about the failure of the project if not adequately addressed. In order to reduce the prob-
ability of failure, the project manager applied the international standard of the Project
Management Institute [3], pairing it with coaching techniques and business analysis with
frequent sponsor validation.

Histopathology reports serve as one of the most important sources of information for
the operators of the CR. A prominent challenge arises from the reliance on the text that
implies the presence of heterogeneous expressions due to the natural language used by the
authors of the documents and due to the low level of standardization within the reports.
Moreover, the proportion of pertinent information for cancer evaluation constitutes merely
a fraction of the overall annual histopathological reports. Operators usually need to read
all of the documents just to identify those that help them to identify an oncology case and
then validate it at the utmost level of precision.
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Since 2020, the Catania-Messina-Enna Cancer Registry (CR) has operated a transfor-
mational program while also applying a Lean Six Sigma methodology (LSS) to optimize
the processes and reduce waste.

The project management methodology was also tailored to the specific peculiarity of
the CR collaborators, existing organizational process assets, and enterprise environmen-
tal factors.

In this paper, we describe how we applied the LSS method, the observed difficulties,
and the benefits achieved by adopting a machine learning algorithm as a strategic solution
in the Improve phase. In this paper, we will also look at the machine learning project [4]
that aimed to better manage histopathology reports.

2. Methodology
2.1. LSS Methodology

The LSS methodology applies a cycle (called DMAIC) made of five distinct phases:
Define, Measure, Analyze, Improve, and Control [5].

The Define phase. The Define phase aims to state the problem, reach a consensus
about it, define the project management approach, approve the project charter, and set
the measurable variables that represent the process performance. A deep analysis of the
actual process is performed and a flowchart is defined to better understand the process.
Flowcharts are developed in an iterative approach until the right level of detail is gained.
By the analysis of the flowchart, it is also possible to identify “non-value added activities”
(NVAA), which are actions that do not increase the worth of what is delivered by the process.

The Measure phase. During the Measure phase, a plan to collect relevant data is
designed and applied to create a meaningful picture of the actual state of the process. The
raw data are then used to create a baseline of the performance of the process so that at
the end of the project, it is possible to measure the increment (or decrement in the worst
scenario) of the performance of the process.

The Analyze phase. The Analyze phase aims to identify the root causes of the problem
and to define the action to solve the problems, which involves a deep use of statistics. This
is the phase that applies the Six Sigma methodologies and provides insight into the process.

The Improve phase. The Improve phase aims to implement the solution suggested by
the data collected and analyzed during the previous phases. One of the processes that the
CR aimed to improve was related to the delivery of thousands of histopathology reports.
In the next paragraphs, a project about machine learning is described as a solution that was
implemented in one of the DMAIC cycles performed by the CR.

The Control phase. The Control phase measures the variables identified during the
Define phase in order to numerically evaluate if a real improvement had been reached
within the Improve phase. The Control phase was implemented in two distinct periods—a
few weeks and two months—to separate the transition from the fully operational new
process. During this phase, the process owner and other people involved were trained
and sustained during the application of the designed changes in order to guarantee the
adoption of the new process in the long run.

The LSS methodology focuses on reducing eight types of waste: overproduction,
inventory, defects, motion, over-processing, waiting, transportation, and talent. All of
them were addressed during the define phase. Each project was managed by a project
team made of the domain expert (usually a biologist or a medical doctor), the process
owner (the professional accountable for the process), two developers, and the Project
Manager/LSS manager.

2.2. The Machine Learning Project

One of the processes that the CR aimed to improve was related to the delivery of
thousands of histopathology reports. A project about machine learning was a solution
implemented in one of the DMAIC cycles performed by the CR. Histopathology reports are
important for CR as the operators evaluate them to define the morphology and topography



Med. Sci. Forum 2023, 19, 12 3 of 7

of cancer. Using a machine learning algorithm, the CR built a classification model that
evaluates each free-text report and returns a score that indicates the probability that it could
contain relevant oncologic information. The CR managed a project to identify relevant
information in each report by using a classification model that assigned a score to all the
reports. Then, operators were able to read the first report that could contain relevant
oncologic information as detected by the algorithm.

The project implemented a supervised machine learning approach [6] that detects
among new free-text diagnoses only the reports that contain useful information. This is
achieved by testing the performance of the most common classification algorithms and
performing an automatic classification of pathology free-text reports into a class of relevant
or not-relevant oncologic information.

More than one million records were available to train the algorithm, so it was possible
to split this large amount of data to reduce the time spent by the training and also gain a
test dataset and do not conduct the k-fold cross-validation [7].

At the end of the training, the project team was able to evaluate several learning
algorithms and identify the one with the highest performance.

3. Results

The transformational program was defined after a series of coaching interviews with all
the internal stakeholders of the CR. Then, a prioritization matrix was defined for evaluating
several parameters such as strategy coherence, time cycle of the process, concurrent projects,
commitment, and so on. An overall score was assigned to each project to define a priority
scale among the projects. Each project was approved by developing the project charter and
then a stakeholders analysis helped the project team to mitigate risks and also to orient
future choices.

The project involving machine learning was made possible thanks to the results of the
other projects undertaken through the innovation program.

The primary deliverable of this project was the ability to process 1000 new free-text
reports in 4 s. This result helped the CR to increase its performance: the CR serves the
whole area of Eastern Sicily, where the estimated population, on 01-01-2021, amounted to
1,846,682, according to ISTAT. Related to the same area, the CR medical doctors manually
identified 260,113 pathology reports as relevant in order to better qualify an oncologic case;
additionally, 790,839 pathology reports were also defined as unuseful. The length of the
reports varied from 22 to 5080 characters.

To better focus on the impact of the program, the list below cites the primary deliver-
ables of the projects of the program:

• Introduction of Agile methodologies (SCRUM) into the Information Technology office;
• Refactoring the software, gaining operational speed, and reducing the database size

by 20%;
• Introduction of versioning and a tracking platform for the software releases;
• Team-building sessions;
• Mapping of the overall process of the CR along with NVAA activities (see Figure 1);
• Training of the project team members while managing the project;
• Changes in the organizational structure, introducing the Project Manager role, and

reassigning daily operations to different roles;
• Reducing the waste of talent and applying competencies in machine learning that

were not identified among the employees of the CR;
• Increasing performance, from 6% to 100%, of the process designed to upload raster

documents to the repository in 3 days (before the project, the waiting time was up to
50 days for single documents); Figure 2 shows how the variable Upload Time changed
after the Improve phase.
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4. Discussion

The histopathological reports are written in natural language, and only a small part
of the total annual histopathological reports contains relevant information for cancer
evaluation. Filtering the right information is a key problem of the CR.

CR medical doctors retrieve a huge amount of pathology reports from Medical Pathol-
ogy Services and they read all the documents to identify the relevant ones and then capture
the information in order to analyze a tumor case. The reports help to identify new neo-
plastic cases, morphological and topological characteristics, the year of first diagnoses, and
determine the histopathological confirmation percentage, which is an important indicator
of quality [8,9]. Removing the wasted time spent by the operators in reading non-relevant
documents is a primary goal of the operation of the CR, so the extraction of the information
from free text represents an important improvement and it is also challenging due to the
implicit nature of free text. [10].

The LSS project was able to elicit the needs of the operators of the CR and identify
several solutions aligned with the strategy of the CR. Mapping the needs of the operators
helped the Project Manager to identify a solution that increased the engagement of the
operators and also of the ML specialist that deployed the first ML algorithm for the CR,
with a confidence interval of 95%. It is important to also note that there were already many
NLP systems developed based on English text that, due to the peculiarity of the language
and the nature of free text, do not provide relevant results with text written in Italian [11,12].
The algorithm developed by the CR is able to process 1,000 reports in 4 seconds and then
operators can be notified of the relevant information in order to correctly code the right
case. This helps to reduce the cost of coding activities, not only because the time spent by a
human to identify information is obviously more than the time spent by the algorithm but
also because it is also more accurate than extracting information by using other automatic
approaches, such as keyword-based [13,14] and rule-based classification that identify a
pattern of words [15].

Furthermore, machine learning, along with related disciplines such as deep learning
and big data, is rapidly expanding in healthcare and represents a field with high potential
for its application [16–19].

The project management and the LSS methodology was applied as a driver of the
improvement of the performance of the CR: knowledge and competencies were already
possessed by the team; the project manager aimed to foster the team to perform together
and express their potential while also managing the engagement of all the stakeholders
involved in the project.

5. Conclusions

The described machine learning project helped the CR shorten the time spent by its
operators and this was only one of the projects undertaken by the CR. In order to obtain
the relevant impacts from a set of projects, they were organized as an incremental series of
projects, where the newest one leveraged from the results—or simply acquired information
from failure—of the predecessor projects.

Implementing a specialized office to continuously improve several processes, as
described in this paper, with a professional Project Management Professional (PMP®)
certification holder and Lean Six Sigma Black Belt with competencies in coaching, has been
demonstrated as a good approach to improve the performance of the CR.

The LSS methodology also appears to fit well in the innovation program of the CR,
and the health industry could be the right place to find great economies of scale.

Change management aims to manage the transition to a new state of organization
that can be maintained. Pilot projects and proof of concepts are only the first steps toward
changing economic institutions such as the organization the CR operates. Further studies
could be focused on how to leverage the experience described in this paper to create a new
way of working inside the institution and to make this kind of project and organizational
approach the new operational standard.
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The bottom-up approach is not effective enough to achieve a structural change such
as the one described and it is hard to find awareness about the importance of the culture of
project management inside the institution. Moreover, professionals with deep project man-
agement skills are perceived as “external” from the institution, limiting the opportunities
to implement changes. For example, it is simple to state that for non-medical professionals
involved in the program described above there are undefined career paths, underpaid
profiles, and the absence of institutional roles that match the competencies deployed by the
project manager [3] or LSS professional [2]. On the other hand, if an organization has been
able to successfully apply the deep knowledge of its professionals, remove talent waste,
and develop a machine learning project, such as ours involving histopathology reports [4],
this kind of environment would also incentivize professionals to leave such organizations.
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