Abstract ## Pyridazin-3(2H)-one as New FABP4 Inhibitors Suggested by Molecular Growing Experiments [†] Giuseppe Floresta 1,*D, Letizia Crocetti 2D, Chiara Zagni 1D and Agostino Cilibrizzi 3,*D - Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy - Dipartimento NEUROFARBA—Pharmaceutical and Nutraceutical Section, via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy - Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK - * Correspondence: giuseppe.floresta@kcl.ac.uk or giuseppe.floresta@unict.it (G.F.); agostino.cilibrizzi@kcl.ac.uk (A.C.) - † Presented at the 8th International Electronic Conference on Medicinal Chemistry, 1–30 November 2022; Available online: https://ecmc2022.sciforum.net/. Abstract: The therapeutic potential of fatty acid binding protein 4 (FABP4) is widely acknowledged. Currently, there are numerous clinical studies that indicate how fatty acid binding protein 4 inhibitors could be useful in the treatment of various diseases. To identify new and more potent inhibitors, we utilized a two-step computational approach to design novel structures. Through the use of this approach, we were able to identify a new class of FABP4 inhibitors (FABP4i IC50 2.97 to 23.18 μM) that are capable of inhibiting the activity of FABP4 as low as Arachidonic acid (FABP4i IC50 3.42 \pm 0.54 μM). In this study, we present the detailed structural and biological evaluation, and the synthetic procedures of the new pyridazinone-based scaffold FABP4i. **Keywords:** fatty acid binding protein; FABP4; FABP4is; FABP4 inhibitors; pyridazinone; computing assisted molecular design Citation: Floresta, G.; Crocetti, L.; Zagni, C.; Cilibrizzi, A. Pyridazin-3(2H)-one as New FABP4 Inhibitors Suggested by Molecular Growing Experiments. *Med. Sci.* Forum 2022, 14, 19. https://doi.org/ 10.3390/ECMC2022-13445 Academic Editor: Maria Emília Published: 1 November 2022 Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). **Supplementary Materials:** The following are available online at https://www.mdpi.com/article/10.3390/ECMC2022-13445/s1. **Author Contributions:** Conceptualization, L.C., G.F. and A.C.; methodology, L.C., G.F.; software, G.F. and C.Z.; formal analysis, L.C., G.F. and A.C.; resources, G.F., C.Z., A.C.; data curation, L.C., G.F.; writing—original draft preparation, L.C., G.F., C.Z.; writing—review and editing, L.C., G.F., A.C.; supervision, A.C.; project administration. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. Conflicts of Interest: The authors declare no conflict of interest.