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Abstract: The IceCube Neutrino Observatory is a Cherenkov detector located at the South Pole,
instrumenting a cubic kilometer of ice. The DeepCore subdetector is located at the lower center of the
IceCube array, and has denser configuration that has improved ability to see GeV-scale neutrinos
in the detector. Convolutional neural networks (CNN) are used to reconstruct neutrino interactions
in DeepCore, achieving comparable performance to the current likelihood-based method but with
roughly 3000 times faster processing speeds. In this study, we present a preliminary atmospheric
muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample, and the
sensitivity to neutrino oscillation parameter measurements is shown and compared to the recent
IceCube results.
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1. Introduction

The IceCube Neutrino Observatory is a Cherenkov detector located deep under the
South Pole ice. It contains 5160 digital optical modules (DOMs), constituting 78 IceCube
(IC) strings and 8 DeepCore (DC) strings (Figure 1) with 60 DOMs on each string. The DC
strings are in the lower center of the detector.

Figure 1. IceCube detector (left) and top view of detector strings (right) with eight DC strings (red
filled).

When cosmic rays enter the atmosphere and interact with a nucleus, atmospheric
neutrinos are produced. Those atmospheric neutrinos that interact in or near the IceCube
detector produce charged particles. When these charged particles propagate in the ice faster
than the speed of light, Cherenkov photons are emitted. The DOMs detect and convert the
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light signals into digitized waveforms. Using the charge and time information extracted
from the waveforms of each DOM, convolutional neural networks (CNNs) are employed
to reconstruct the neutrino interactions in the detector. The DOMs in the DC strings have
higher quantum efficiency and are spatially denser than DOMs in the surrounding detector.
With the DC detector, neutrino interactions can be measured at the GeV scale, providing
excellent sensitivity to atmospheric neutrino oscillations and in particular to atmospheric
νµ disappearance.

2. Neutrino Oscillations

Neutrinos are produced and detected in their flavor states, i.e., electron (νe), muon
(νµ), or tau (ντ), while they propagate in their mass eigenstates, i.e., ν1, ν2, and ν3. After
traveling, neutrinos can be detected in different flavor states from those they were produced
in; this is called neutrino oscillation, and has been studied in many experiments [1–6]. The
probabilities of neutrino oscillations can be described by a unitary matrix, the Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix [7,8], as functions of the neutrino energy (E) and
distance traveled (L). The PMNS matrix can be parameterized by three mixing angles, the
squared-mass difference between neutrino mass states (∆m2

ij with i, j = {1, 2, 3}), and one
CP-violating phase. In νµ disappearance analysis, it is possible to measure the oscillation
parameters θ23 and ∆m2

32. The νµ survival probability under two-flavor approximation is
described by

P(νµ → νµ) ≈ 1− sin2(2θ23) sin2

(
1.27∆m2

32L
E

)
, (1)

and plotted as a function of cos(θzenith) and E in Figure 2, where cos(θzenith) is the neutrino
arrival angle, which can be mapped into L. The probabilities of neutrino oscillations
are functions of (L/E), which suggests that precise reconstruction is critical in neutrino
oscillation measurements. CNNs are employed to reconstruct neutrino interactions in and
near the DC detector using the digitized pulses of neutrino events.

Figure 2. The νµ disappearance probability as a function of the energy and cos(θzenith).

3. Convolutional Neural Networks

CNNs have been broadly used in neutrino experiments for regression and classification
purposes [9,10]. All of the DC strings along with the surrounding nineteen IC strings are
used to learn the features of the neutrino interactions in and near the DC detector. Five
summarized variables (the total charge, times of the first and last charges, time-weighted
mean of the charge, and time-weighted standard deviation of the charge) are calculated
from the digitized waveforms. Because the IC and DC strings are configured differently,
they are fed to the CNN through two separate input layers, allowing the local features to
be better learned and used by the CNN.
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4. Reconstruction
4.1. Training

To build the νµ disappearance analysis, it is necessary to reconstruct the neutrino
interactions in the DC detector and select those neutrino events in the selected sample that
are well reconstructed with a reasonably high signal-to-background ratio. We employ the
CNN to reconstruct the neutrino energy, arrival angle (θzenith), interaction vertex, particle
identification (PID), and a classifier for cosmic ray muon rejection. The energy, θzenith, and
PID are used together as the analysis observables, while the event interaction vertex and
muon classifier are respectively used to select the events in or near the DC detector and
to further reduce the background muon rate. The PID can be inferred from the outgoing
particle trace of the event in the detector. Most of the signal (νµ CC) events leave a long
muon track in the detector, and as such are track-like. The other neutrino interactions,
such as νe CC, NC, and most ντ CC, produce relatively short particle cascades, and are
considered ’cascade-like’. For reconstruction purposes, different training samples are used
to optimize the reconstruction performance.

As shown in Figure 3, for the energy, θzenith, and interaction vertex we use Monte Carlo
(MC) simulated νµ CC events with a relatively flat distribution of the corresponding variable
to train the CNN. In this way, the reconstruction performance is optimized on the signal
events for the best reconstruction resolution while ensuring that the CNN reconstructions
have reasonable performance on the background events (νe CC, ντ CC, and NC events).
The neutrino energy and interaction vertex is trained on the flat true energy νµ CC sample,
which has 7 million events in total, split into 80% for training and 20% for testing. The θzenith
is trained on a νµ CC sample flattened in true θzenith distribution. The PID is trained on a
balanced mixture (50:50) of track (νµ CC) and cascade (νe CC and νµ neutral-current) events
with a total of 6 million events. The muon classifier is trained on approximately 4 million
events with a combination of νe CC (20%), νµ CC (40%), and atmospheric muons (40%).

Figure 3. Training samples for energy (left) and θzenith (right).

4.2. Testing

Performance is evaluated using the nominal MC νµ CC and νe CC events with flux,
cross-section, and oscillation weights applied. The baseline benchmark is drawn using the
current likelihood-based reconstruction [11].

As shown in Figure 4, the fractional error of energy reconstructed by the CNN has
a smaller bias along the true neutrino energy compared to the likelihood-based method,
especially in the low energy region; both methods show comparable performances on the
reconstructed θzenith, PID, and muon classifier. For the latter two, the area under curve
(AUC) is used as the performance metric, where a larger AUC means a better performance.
The reason for CNN’s better energy resolution in the low-energy region is that the focus
is on the near DC region and it is optimized for low-energy events, which contribute the
most to the oscillation sensitivities.
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Figure 4. Performance comparison of CNN (blue) and likelihood-based (orange) on reconstruction of
(from top left to bottom right) the energy, θzenith, PID, and muon classifier, where random represents
the baseline performance of particles being randomly assigned to different categories.

Figure 5 shows the purity of the selected samples by using the interaction vertex to
select events starting inside or near the DC detector. The fraction of events selected by
the CNN-reconstructed vertex that truly start in the DC region is similar to that of the
likelihood-based method. For events that are far from the DC detector, the CNN has worse
performance than the likelihood-based method, which is largely due to the information loss
in the inputs to the two methods. Farther from the near-DC region, the likelihood-based
method makes use of all photon information from the entire detector, meaning that it has
more accurate estimates of the vertex position. However, because we have sufficiently large
statistics in our data, the loss in uncontained events is unimportant to this analysis.

Figure 5. Selected sample purity when using CNN (left) and likelihood (right) methods reconstructed
interaction vertex; the rows sum to 1, while the numbers corresponds to the fraction of unweighted
events.

4.3. Processing Speed

With comparable or slightly better performance, CNN reconstruction runs approxi-
mately 3000 times faster than the likelihood-base method (Table 1) assuming the use of
1000 CPUs, and is even faster when running on GPUs. Faster processing speeds repre-
sent a major advantage for atmospheric neutrino datasets, where full MC simulation is
approximately at the order of 108 events.
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Table 1. Averaged processing speed of the CNN and likelihood-based methods assuming 1000 cores.

Time per 3k Events (s) Full Sample (1000 Cores)

CNN on GPU 21 13 min

CNN on CPU 45 7.5 h

Likelihood-based on CPU 120,000 46 days

5. νµ Disappearance Analysis

From the CNN reconstruction, we can construct the νµ disappearance analysis to
measure θ23 and ∆m2

32. The energy, cos(θzenith), and PID are used for analysis binning, as
shown in Figure 6, providing better sensitivity to physics parameter measurements and
robustness against systematic uncertainties. As shown in Figure 7, events with PIDs in the
range of [0.55, 1] are placed in the track-like bin, events with PIDs in the range of [0, 0.25]
are placed in the cascade-like bin, and the middle histogram (the mixed bin) contains the
remaining events.

Figure 6. Preliminary sample in cascade (left), mixed (middle), and track (right) bins with flux, cross-
section, and oscillation weights applied; the pink circle highlights the νµ disappearance “valley”.

Figure 7. MC distribution of CNN-reconstructed PIDs with stacked interaction types (colors) and
boundaries used for binning (dashed).

As shown in Figure 8, the projected sensitivity contour using CNN reconstruction
shows significant improvement in comparison to the DeepCore 2021 result, and is at a
level similar to using likelihood-based reconstruction. The projected sensitivity contour is
compatible with previous experimental results [3–5,12].
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Figure 8. Preliminary sensitivity using CNN reconstruction (black) projected from DeepCore 2021
result (yellow) compared to using likelihood-based reconstruction (red).

6. Summary

In this analysis, we achieve comparable reconstruction performance to the likelihood-
based method when employing CNNs, except with processing speeds up to 3000 times
faster. When using the preliminary sample selected and binned by the CNN-reconstructed
variables, the sensitivity to θ23 and ∆m2

32 measurement is been improved relative to the
DeepCore 2021 results, and is comparable to using likelihood-based reconstruction. The
CNN method can be adapted and applied to the future detector (the IceCube Upgrade [13])
to further improve the measurement precision of neutrino oscillation parameters.
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