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Abstract: Super-Kamiokande (SK) has observed 8B solar neutrino recoil electrons at kinetic energies
as low as 3.49 MeV to study neutrino flavor conversion within the sun. At SK-observable energies,
these conversions are dominated by the Mikheyev–Smirnov–Wolfenstein (MSW) effect. An “upturn”
in the electron neutrino survival probability in which vacuum neutrino oscillations become dominant
is predicted to occur at lower energies, but radioactive background increases exponentially with
decreasing energy. New machine learning approaches, including convolutional neural networks
trained on photomultiplier tube data and boosted decision trees trained on reconstructed variables,
provide substantial background reduction in the 2.49–3.49 MeV energy region such that the statistical
extraction of solar neutrino interactions becomes feasible.

Keywords: NuFact 2022 WG1; Super-Kamiokande; solar neutrinos; neutrino oscillations; water
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1. Introduction
1.1. The Super-Kamiokande Experiment

Super-Kamiokande (SK) is a 50 kton cylindrical water Cherenkov detector 1 km under
Mt. Ikeno in Gifu, Japan [1]. The inner detector contains 11,129 twenty-inch PMTs that
detect Cherenkov light emitted by particles traveling through the detector volume with en-
ergies above the Cherenkov threshold. The DAQ records events through two independent
triggering systems. The software trigger saves an event when the number of hits in any
200 ns window surpasses a threshold, which is adjusted over time as needed according to
the current dark noise rate. The wideband intelligent trigger (WIT) implemented in July
2015 runs parallel to the software trigger and instead performs online vertex reconstruction
in order to preserve lower-energy events with near 100% triggering efficiency at 2.49 MeV
electron kinetic energy [2]. In September 2018, SK completed SK-IV, the longest phase of
the experiment, lasting 10 years. This phase is ideal for solar neutrino analyses due to
upgraded front-end electronics as well as lower noise and radioactive background levels
compared to previous phases.

1.2. Solar Neutrinos and the MSW Effect

Solar neutrinos can be observed in SK though elastic scattering on electrons because
the maximum weak scattering angle of 15° relative to the solar direction is smaller than the
>30° direction resolution at low energies [3]. With the completion of SK-IV, solar neutrino
events have been observed with enough statistics to conduct detailed measurements,
such as measurements of the solar neutrino flux, energy spectrum, and flavor conversion
within the sun and earth [4]. At SK-observable energies of recoil electrons, the majority of
observed solar neutrinos originate from 8B decay in the solar fusion process, and their flavor
conversion within the sun is dominated by the Mikheyev–Smirnov–Wolfenstein (MSW)
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effect [5]. Through the MSW effect, few-MeV-scale electron neutrinos produced in the core
of the sun pass through a resonant density region and undergo an adiabatic conversion
to the second mass neutrino eigenstate. This conversion becomes less likely to occur at
lower energies such that the standard vacuum neutrino oscillations begin to dominate.
This transition from MSW-dominated conversions to vacuum-dominated conversions leads
to an “upturn” in the electron neutrino survival probability Pee. The MSW effect and
the implied upturn is a robust prediction of electro-weak physics, but the prevalence of
radioactive β decays producing electrons in this energy region has made it difficult for
neutrino detectors to observe this phenomenon.

At the Neutrino conference in June 2022, Super-Kamiokande presented the latest fits
to Pee as a function of neutrino energy using the complete SK-IV dataset in combination
with KAMLAND and SNO data (Figure 1). Statistical uncertainties remain large in the
upturn region, but quadratic (exponential) fits to the recoil electron energy spectrum now
disfavor an energy-independent Pee by 1.5σ (1.3σ) [6].
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Figure 1. Predicted Pee vs. neutrino energy based on fits to electron energy spectrum of daytime
events. The best quadratic fit for all solar experiments (green line), solar + KAMLAND (blue line),
and 1σ region for SK (green band), SNO (blue band), and SK + SNO (red band) are shown.

1.3. Sources of Background

The largest source of background for low-energy analyses in SK is the 214Bi β decay
that occurs during the decay process of radon (Rn) gas naturally found in the mine [7].
Carefully controlled convective currents within the inner detector make it possible to gather
the Rn near the walls and in the bottom half of the detector to preserve a fiducial volume
with a relatively low Rn concentration. The next-largest source is 208Tl β rays originating
from the PMT glass. These events are located exclusively near the walls but occasionally
reconstruct within the fiducial volume in coincidence with dark noise hits. The WIT system
triggers from O(109) events per day from these two sources of radioactive background.
SK experiences a cosmic ray muon rate of 2 Hz as well. Muon-induced hadronic showers
create a source of background for low-energy analyses through resulting radioactive nuclei
and following β decays [8].

1.4. Multiple Scattering Goodness

In addition to the event energy calculated from the light yield, multiple scattering
goodness (MSG) is extensively used in SK solar analyses [4]. Since multiple Coulomb scat-
tering increases with decreasing energy, low-energy events generate additional Cherenkov
cones that do not align well with that of the initial vertex. MSG ranging from 0 to 1 quanti-
fies the degree of alignment between the most likely direction fits of an event, with values
closer to 1 indicating better alignment and therefore less scattering.

1.5. Outline

Traditional cut-based event selection methods currently do not provide sufficient
background rejection to observe a solar neutrino signal in the low-energy, background-
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dominated region. These proceedings present the results of applying new machine learning
methods to low-energy solar neutrino event selection with the purpose of improving
background rejection and lowering the energy threshold of the SK solar analysis. Section 2
discusses the methods for generating the datasets used for training and testing, introduces
the machine learning-based classifiers, and explains the solar angle fitting procedures for
the final event selection. Section 3 presents the results of testing the various classifiers on
an evaluation dataset, followed by the results of applying a boosted decision tree to SK-IV
WIT data. Section 4 summarizes the findings and discusses future work.

2. Methods
2.1. Dataset Generation

Monte Carlo (MC) signal datasets were generated using software for the generation
of solar neutrino interaction vertices and to simulate the SK detector. For the training
dataset, the existing vertex generation was modified to randomize the vectors of the
direction of electron recoil in order to obscure the solar direction from the classifiers since
the solar direction relative to the detector is not uniformly distributed over time and
the classifiers may learn to recognize this trend. This modification makes it possible to
evaluate the classifiers’ performance through the solar angle distributions of their data
selections. The MC events without dark noise were then inserted into dummy trigger
windows containing real, untriggered raw data, and the resulting collections of hits were
then fed to the WIT triggering algorithm. The MC events were then extracted by identifying
triggered events with reconstructed vertex times within 300 ns of the true MC vertex times.
Due to the limited amount of SK-IV raw data available for the purpose of noise overlay,
the training/validation dataset was generated such that each MC event was inserted in a
unique trigger window to eliminate possible training bias due to repeated noise patterns,
while trigger windows used for the evaluation dataset were reused a maximum of four
times for different MC events. The former dataset was randomly split into 1.14 million
training and 0.14 million validation events, and the isolated evaluation dataset consisted
of 1.46 million events. These datasets consisted of equal parts signal and background to
eliminate event class bias. Since SK-IV WIT data were subjected to first reduction cuts,
which reduced the event rate to O(107) events per day due to data storage limitations, the
same cuts were applied to the triggered MC events. Real WIT data drawn from various
points in the SK-IV WIT data-taking period was used for the background sample in the
training and evaluation datasets because background events outnumber signal events by
approximately seven orders of magnitude.

2.2. Boosted Decision Tree

A boosted decision tree (BDT) [9] was trained on the reconstructed variables used
in the traditional SK solar analysis [4]. These variables included the event energy, MSG,
direction vector, distance from the vertex to the wall, position of the wall intersecting with
the reverse direction vector, and the distance between the vertex and this wall position.
Goodness-of-fit metrics based on small clusters of PMT hits, vertex fit timing residuals gt,
the Cherenkov cone symmetry gp, and their combination g2

t − g2
p were also included. In

addition to existing variables, the distance to the tight fiducial volume boundary as well as
the value of a (5th, 4th)-degree 2D polynomial fit of the spatial background distribution in
(r2, z) were added as inputs to improve the BDT’s background reduction. The variables
with the most impact on the BDT’s decision were the distance to the wall and g2

t − g2
p.

2.3. ResNet

A modified version of the ResNet18 convolutional neural network [10] developed by
the water Cherenkov machine learning group (WatChMaL) [11] was trained with 147 × 149
2D event display images of hit PMTs (Figure 2). Each pixel contained two channels with
the PMT hit charge and hit time relative to the reconstructed vertex time.
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Figure 2. A typical low-energy data event display with PMT relative times. The reconstructed
Cherenkov cone is shown in white.

2.4. Solfit

Following each networks’ data selection process, SK’s existing methods for extracting
solar neutrino events from solar angle distributions were used [4]. A background shape
was first generated using the “scramble” method, in which a solar angle histogram was
filled with cos(θij

sun) = d̂i · ŝj for all possible pairs of event directions d̂ and solar directions
ŝ in the data sample. This method generated a background shape that incorporated effects
from biases, such as the detector’s shape or event locations, that were independent of solar
direction. A signal shape was then generated using a polynomial fit to the solar angle
distribution of separately generated MC signals, now with solar direction preserved. The
“solfit” extended unbinned maximum likelihood fitter then calculated the number of solar
neutrino interactions in the sample using solar angle probability distribution functions for
the signal and background.

3. Results
3.1. Network Evaluation

A receiver operating characteristic (ROC) curve that plots the background reduction
defined as the inverse of the background efficiency as a function of signal efficiency can be
used to evaluate the classification performance of the available methods on the evaluation
dataset. The ROC curve (Figure 3) shows that both methods can provide increased sensitiv-
ities with the BDT giving 6× the background reduction with the same signal efficiency as
the traditional cuts in the 2.49–3.49 MeV electron kinetic energy region of interest.

Figure 3. Standard true-positive rate (TPR) vs. false-positive rate (FPR) ROC curve (left) and
background rejection (inverse of FPR) vs. MC signal efficiency (TPR) ROC curve (right) for considered
classification methods. Legend shows area under curve (AUC) for the standard ROC curve.
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3.2. BDT Implementation

The BDT, ResNet, and traditional SK solar analysis cuts were applied to all available
SK-IV WIT events with 2.49–3.49 MeV kinetic energy. At the time of the NuFact 2022
conference, the BDT’s implementation was complete, but ResNet’s implementation was
ongoing due to its considerable computational requirements.

The solar angle distributions, signal and background shapes (Figure 4), and corre-
sponding number of fit signal events with statistical uncertainties (Table 1) for the BDT and
traditional cuts are shown. The cut for the BDT’s output was chosen to match the expected
signal efficiency of the traditional cuts according to the ROC curve generated with the
evaluation dataset described in Section 2.1.

These total event rates show that the BDT provides the expected increase in back-
ground reduction on this full dataset, as implied by the ROC curves. The solfit results also
suggest a greater number of signal events for the BDT selection than for the traditional cuts.

Figure 4. Solar angle distribution for data selection (red), background shape (black), and sig-
nal+background shape (blue), all with 1σ statistical error bands for the BDT selection (left) and
the traditional cut selection (right).

Table 1. Total selected events and fit number of signal events with statistical error in each energy and
MSG sub-bin used in the SK solar analysis. A range covering multiple sub-bins indicates that all
included sub-bins are fit simultaneously.

Ekin Bin Range MSG Bin Range
Total Events Signal Interactions

BDT Cuts BDT Cuts

2.49–2.99 MeV 0–0.35 8,004 498,341 −60+60
−60 −220+500

−500

2.49–2.99 MeV 0.35–0.45 12,760 223,243 60+60
−60 −50+250

−250

2.49–2.99 MeV 0.45–1 17,110 111,957 80+60
−60 70+150

−150

2.99–3.49 MeV 0–0.35 26,814 51,708 130+120
−110 80+160

−160

2.99–3.49 MeV 0.35–0.45 31,125 28,701 180+100
−100 130+90

−90

2.99–3.49 MeV 0.45–1 48,463 17,686 280+90
−90 80+60

−60

2.49–2.99 MeV 0–1 37,874 833,541 90+110
−110 70+370

−370

2.99–3.49 MeV 0–1 98,402 98,095 580+160
−150 210+110

−110

2.49–3.49 MeV 0–1 136,276 931,636 630+170
−160 220+120

−120

The results of the individual sub-bins indicate that most of the BDT’s observed signal
events are from the higher-energy and higher MSG sub-bins. This trend is likely due to the
fact that the energy and MSG variables are inputs for the BDT, while the traditional cuts
are constant over this energy range. Since the background rate increases with decreasing
energy, the cut selection reflects this trend, while the BDT selects fewer events.

4. Discussion

The results of the BDT selection and number of signal events determined by solfit
suggest a hint of a solar neutrino signal in this very-low-energy region. The errors reported
here are statistical uncertainty only, and a systematic error analysis must be conducted.



Phys. Sci. Forum 2023, 8, 42 6 of 6

We expect the systematic error to be larger than the statistical error because the fit number
of signal events may vary widely depending on the cut value used for the BDT output.
Although the results imply that a signal can be observed with the current signal-to-noise
ratio, the solfit maximum likelihood function may still be unstable when near the necessary
threshold for an observable signal. Other possible sources of systematic error include
the background shape calculation method, MC generation method, and BDT training
procedure, such as the choice of variables. We plan to compute the livetime of the WIT data
sample and compare the observed signal event rate to that of the theoretical rate with and
without MSW oscillations as a method of validation and as further indication of whether a
signal can be observed using a selection method with slightly higher sensitivity.

Additional approaches we plan to investigate include a hybrid BDT/CNN approach
that takes both reconstructed variables and event display images as input, as well as other
types of networks, such as graph neural networks or networks trained on point clouds that
respect the cylindrical geometry of the detector.
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