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Abstract: In many modern particle physics experiments, high-rate data handling is one of the most
critical challenges due to the increase in particle intensity required to achieve higher statistics. We
will tackle the challenge in the COMET experiment by developing the sub-microseconds ultra-fast
machine learning (ML) algorithm implemented inside FPGAs to search for the lepton flavour violation
process, a µ-e conversion, using the world’s most intense muon beam. Our previous study showed
that a trigger algorithm based on a gradient-boosted decision tree will realise the sufficient trigger
performance within 3.2 µs with a cut-based event classification. In this paper, we further investigated
neural network algorithms as event classifications. For the feasibility test, a multi-layer perceptron
(MLP) model was implemented inside the FPGA, and the preliminary results are presented.

Keywords: muon physics; detectors; FPGA; machine learning

1. Introduction

A COMET (COherent Muon to Electron Transition) experiment searches for a muon
to electron (µ-e) conversion in a field of aluminium nuclei [1,2]. This process is extremely
suppressed in the standard model of particle physics with a minimal extension, includ-
ing neutrino masses. However, many new physics models predict the conversion rate
enhancement around the level of 10−15 due to the presence of new particles mediating
the flavour-changing neutral current [3]. The COMET experiment aims for an upper limit
sensitivity of 3 × 10−15 to investigate the new physics in Phase-I. To achieve the target
sensitivity, the experiment will collect more than 1016 muons stopped inside an aluminium
target with the world’s highest intensity muon beam, available at Japan Proton Accelerator
Research Complex (J-PARC), with 150 days of data collection. Figure 1 shows the detector
configuration in the COMET Phase-I physics measurement. Due to the high-intensity muon
beam, an extremely high particle hit rate is expected in both a Cylindrical Drift Chamber
(CDC) and a Cylindrical Trigger Hodoscope (CTH). To significantly suppress accidental
coincidence, the coincidence of four neighbouring hits is required in CTH counters to
generate the primary trigger signal. After taking the four-fold coincidence (also referred as
a “CTH Trigger”), a fake trigger rate is dominated by the electrons and positrons induced
by gamma rays coming from the muon-stopping target with relatively high energy, such
that they can penetrate the multiple counters. The rate is calculated to be 100 kHz based on
the simulation study, and this rate is still an order of magnitude higher than the maximum
trigger rate available of 13 kHz. Most of those electrons and positrons have a momentum
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smaller than 50 MeV/c; hence, they create fewer hits inside the CDC volume compared to
the µ-e conversion electrons. To suppress the fake trigger rate due to such low-momentum
particles, we introduce the CDC hit information into an entire trigger system, called a “CDC
trigger”, in addition to the four-fold CTH trigger. The entire CyDet trigger system, called
“COTTRI” (COmeT TRIgger) [4], is based on the field-programmable gate arrays (FPGAs)
and high-speed data transfer protocol between multiple boards. To realise high-efficiency
fast trigger signal processing, machine learning (ML)-based algorithms are being developed.
The R&D status and preliminary results of the CyDet trigger system will be presented in
this paper.

Figure 1. Alternating cross-section view of the CyDet in COMET Phase-I (left) and an event display
with a signal electron trajectory and background hits in X-Y cross-section view in CyDet (right).

2. The COTTRI System

Figure 2 shows the entire structure of the CyDet trigger system, including the cen-
tral trigger system. To summarise all CDC and CTH readout channels without having
boundaries, both CDC and CTH trigger systems have front-end trigger-info processing
boards (FE) and signal merger boards (MB). The FE boards and MBs are connected via
copper cables with DisplayPort (DP) connectors, and a multi-gigabit data transfer protocol
(Aurora8B10B, 2.4 Gbps) is adopted for inter-board communication. Due to the limited
online event buffer size available in the CDC readout system, the trigger decision should
be made and distributed to all readout systems within 7.5 µs. For the COTTRI CDC MB
and CDC FE boards, each board has one commercial FPGA (Xilinx, xc7k355t-2ffg901) as a
main processor, allowing one board to have 10 DP connections and two optical links or one
optical link plus an additional DP connection, respectively.
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Figure 2. An illustration describing the structure of the trigger system, including the central trigger
system, called FC7 [5].
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3. The Event Classification

In a previous study [5], we developed a hit classification to distinguish signal-like hits
based on a gradient-boosted decision tree (GBDT) and combined this with a cut-based event
classification. The result showed a 96% trigger efficiency while keeping the fake trigger rate
less than 13 kHz with a delayed measurement time window of [700, 1170] ns after the pulse
timing of muons. Instead of the cut-based event classification, it is possible to implement
a pattern matching algorithm into FPGAs to further improve the trigger performance,
enabling us to increase the time window, for instance, to [500, 1170] ns. Due to nature
of muons in terms of their exponential decay, a 200 ns wider time window will increase
signal events by more than 70%. However, it is known that the calculation for conventional
pattern-matching algorithms such as a Hough transformation requires resources and time,
as pointed out in [6], and the expected latency is unacceptably large. Another approach is
to implement the software trigger inside the data acquisition computers, commonly used
in collider-based experiments [7,8]. This approach requires intensive computing resources,
high-throughput data transfer devices, and/or temporary long buffer data storage. Instead,
it is possible to construct a neural network (NN) model trained offline, and implement it
into an FPGA chip as a machine learning interface. This may result in significantly shorter
processing time without requiring resource-intensive calculations, except for the activation
functions, which can be extremely simplified equations based on either look-up tables
(LUTs) or random access memories (RAMs) inside an FPGA. Since the processing of LUTs
or RAMs only takes one or two clock cycles, the whole calculation time of NNs can be
significantly shorter than that of conventional methods. However, there are a few key
challenges which should be solved to realise the integration of NN algorithms into FPGAs,
as follows:

• Limited FPGA resources for large-sized neural networks, such as a convoluted neural
networks.

• The complexity of converting NN models into FPGA firmware using hardware-level
synthesis (HLS) language.

These are common challenges in modern high-intensity particle physics experiments
since it is a common goal to make a fast online trigger with high accuracy, and it is a
natural way to use NN-based algorithms. Recently, an open-source software called hls4ml
was developed by the community [9]. This tool can automatically convert deep learning
models into HLS files, enabling almost seamless studies ranging from model construction
and optimisation based on the standard ML software such as TensorFlow to firmware
implementation. This results in the easier and faster optimisation of model structure, in
terms of accuracy, network size, and latency. The procedure enables efficient node reduction
by identifying the less effective nodes, making a sparse network, changing the precision of
calculations by interfacing QKeras, and allowing some layers to be reused multiple times.
Owing to these factors, the two challenges above have been solved by hls4ml (more details
in [9]).

For the feasibility test, we constructed a simple NN model based on the “Quantized”
Multilayer Perceptron (QMLP). The model consists of one 6-bit × 40 inputs layer, four
hidden layers with a 4-bit rectifier linear unit as an activation function, and one output
layer. Some of the hyper-parameters such as the number of layers were optimised using
Bayesian optimisation in Keras before the final training.

4. The Performance Test

Although the QMLP model described in the previous section was not fully optimised,
we performed a preliminary firmware implementation to check the feasibility of whether
the current FPGA chip (Kintex-7, xc7k355t-2ffg901) is capable of accommodating NN
models with reasonable classification accuracy.

For training and testing the model, we produced 20,000 random uniform background
events in a 2D field and equally split them. Half of these events were mixed with a
pseudo-signal trajectory in the form of an arch pattern, as shown in Figure 3. The dataset
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was randomly split into training (50%), validation (10%), and testing (40%) datasets. The
categorical cross entropy loss function is minimised with L1 regularisation [10] of the
weights using the Adam optimiser [11]. The batch size is set to 32, and the training
proceeds for 20 epochs.

Y. Fujii, NuFact2022, Salt-Lake city, Utah

MODEL CONSTRUCTION (3)
➤ As a first test, we made sets of toy MC for signal/background events for NN training/test 

➤ 5% noise events randomly distributed with/without the arch (signal-like) pattern 

➤ Quantised and sparse Multi layer perceptron (QMLP) was tentatively chosen 

➤ Few hyper-parameters tuned roughly by utilising a Keras built-in Bayesian optimiser
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Figure 3. Examples of pseudo-signal + BG (left) and random BG-only (right) data prepared for this
study. Original data before compression consist of 1-bit, 60 × 16 pixels.

To fit the data into the QMLP model, we flatten and compress the data into one-
dimensional 6-bit 40 arrays. The consistency between hls4ml model prediction and an actual
HLS converted model was checked using the Vivado simulation test bench tool [12]. The
hardware test was performed using one COTTRI MB with the QMLP module implemented,
and validation data were sent from COTTRI FE through the DP cable. Output scores were
obtained using the Vivado ILA debug tool [13] through the JTAG cable and compared with
the offline model.

5. Results

We found that the current QMLP model fits our baseline FPGA chip comfortably with
a latency of 26 clock cycles, corresponding to 130 ns with a 200 MHz clock speed, as shown
in Table 1, which was reported by hls4ml. The latency value was also confirmed by the
Vivado test bench simulation.

Table 1. Estimations of resource usage for xc7k355t-2ffg901 and the latency reported by hls4ml.

BRAM Usage (%) DSP Usage (%) FF Usage (%) LUT Usage (%) Latency

0 0 5 32 26 clock cycles

As shown in Figure 4a, the signal classifier showed consistent performance against the
same validation data. The classification performance was as high as 96% at a BG rejection
of 80%, as can be seen in Figure 4b.
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Figure 4. Comparisons of the QMLP signal classifier performance implemented inside the FPGA.
(a) Score comparison. (b) ROC curve comparison.

6. Discussion

We found that the compact QMLP model can comfortably fit inside our baseline FPGA
chip with a short latency of 130 ns, which meets the requirement. The firmware including
this QMLP module was successfully generated and tested with a set of COTTRI MB and
COTTRI FE. Therefore, we concluded that it is possible for us to utilise an online NN-based
event classification algorithm on middle-class FPGA in the COMET Phase-I trigger system,
in terms of both cost and performance. This study was conducted using only pseudo-data,
namely, both signal-events and BG events were produced based on toy models. As a next
step, we will use more realistic input data for both signal and BG events, together with
further optimisations for NN models to improve the performance.
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