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Abstract: Astroneu is an array of autonomous extensive air shower detection stations deployed at
the Hellenic Open University (HOU) campus on the outskirts of Patras in Western Greece. In the first
phase of operation, nine scintillators detectors and three radio frequency (RF) antennas have been
installed and operated at the site. The detector units were arranged in three autonomous stations each
consisting of three scintillator detectors (SDM) and one RF antenna. In the second phase of operation,
three more antennas were deployed at one station in order to study the correlation of the RF signals
from four antennas subject to the same shower event. In this report, we present the standard offline
SDM-RF data and simulations analysis, the main research results concerning the reconstruction of
the EAS parameters as well as the prospects of a new compact array that will be deployed by 2023.

Keywords: Astroneu; cosmic rays; extensive air showers; radio emission; scintillator detectors; RF
antennas

1. Introduction

Cosmic rays, for more than a century after their discovery, continue to stimulate
scientific interest since they are connected to the most energetic regions of the universe
while questions concerning the nature and origin of ultra-high-energy ones remain still
open. When a high energy cosmic ray (>103 TeV) enters the atmosphere, it will collide
with the air nucleus creating a shower of secondary particles many of which reach the
ground: this is called the extensive air shower (EAS). Due to the charge of the secondary
particles during the evolution of the EAS, electromagnetic radiation is emitted both in the
optical (fluorescence and Cherenkov light) and radio part of the spectrum. Apart from
the established EAS detection techniques (particle detectors and optical telescopes) radio
detection, which has been developed in the last twenty years, has gained scientific interest
mainly because it is competitive with the others in reconstructing the cosmic ray parameters
while the low-cost detectors (antennas) and the large duty cycle are among its advantages
(see [1,2] for reviews).

As a result of the work that has been completed in the field of EAS radio detection,
the main mechanisms involved in the radio frequency (RF) domain emission are now well
understood and experimentally verified. The most powerful one related to the acceleration
of EAS electrons and positrons from the geomagnetic field in a direction transverse to the
EAS axis as first proposed by Kahn and Lerche [3]. A second mechanism, which under
conditions can contribute up to 25% to the measured RF signal, comes from the excess of
electrons in the EAS front. As suggested by Askaryan [4] the acceleration of the negative
charge excess parallel to the EAS axis induces an electric field directed radially to the axis.
As the two main mechanisms create electric fields of different directions, by analyzing the
measured electric field on the ground, it is possible to highlight the contribution rate of
each mechanism.
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The Astroneu [5] is an array for hybrid EAS detection operating at the HOU campus
since 2014. In the initial phase of operation (2014–2017), nine particle detectors and three RF
antennas were installed and operated at the site. The particle detectors of each station are
large scintillator counters (scintillator detector module—SDM), while the RF detectors are
CODALEMA-type butterfly antennas [6,7]. An approximate equilateral triangle is formed
by the SDMs in stations A and C, while station B forms an amblygonal triangle, offering the
opportunity to study the efficiency and resolution of such geometry. The three detection
stations are split up by a few hundred meters (170, 330, and 470 m), allowing the option
for very high energy EAS detection by searching for coincidences between stations. In
the second period (2017–2022) of Astroneu operation, three additional RF detectors were
installed and operated in station A in order to examine the performance in estimating the
EAS parameters using the RF signal, in a city environment with strong electromagnetic
transients. The layout of the Astroneu array in both operation periods and details of the
detector deployment is shown in Figure 1.
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Figure 1. The Astroneu array during its two phases of operation installed at the HOU campus. The
positions of the SDMs are marked with green squares, while the positions of the RF antennas with
magenta circles. The triangles represent the 3 additional RF detectors installed in station A during
the second phase of operation.

The rest of this report is organized as follows: In Section 2, we briefly describe the
station’s architecture (including the electronics for data acquisition—DAQ and selection
trigger) while the simulation framework and the offline analysis are reported in Section 3.
In Section 4, results concerning the efficiency and resolution of the stations are presented as
they emerged analyzing data and simulations from the first operation period. In Section 5,
we emphasize the performance of the RF detectors using almost data from the second
operation phase. For the end of Section 6, conclusions, comments, and discussion are drawn.

2. Station Architecture

Each station is equipped with its own independent DAQ system which comprises
two individual units for the SDMs and RF detectors data [5]. The data from the SDMs are
selected and digitized by the Quarknet board [8]. The data selection trigger relies on a
three-fold coincidence of the SDMs signals, which overstep a default threshold of 9.7 mV;
around twice the pulse height of a MIP (minimum ionizing particle). The time window for
the coincidence is adapted to consider the inter-detector distances (typically 150 ns). Every
time such a coincidence appears, the DAQ system generates a NIM pulse (Quarknet-OUT)
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that triggers the RF detectors (antennas) of the station. In the RF DAQ unit the detected
signals, from both east–west and north–south polarizations, are amplified by a two-channel
low noise amplifier (LNA) and then are driven to the antenna electronics. The RFA DAQ is
triggered externally by the Quarknet-OUT signal. When a trigger signal is acquired the last
2560 sampled data from both polarizations are digitized and stored in dynamic memory.
Both the Quarknet board and the RF DAQ unit are equipped with GPS cards to provide the
appropriate timestamps for the recorded events. As described in [5] this time stamping
allows for offline event selection related to EAS detected by more than one component of
the array.

A detailed schematic representation of the connections between the independent SDM
and RF DAQ units with the corresponding detectors of station A is shown in Figure 2 (right).
Figure 2 (left) depicts the layout of station A as modified during the second operation
period (3SDM-4RF).
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Figure 2. (Left) Station A of the Astroneu array as it was configured with 3 SDM (green squares) and 4
RF detectors (magenta circles), during the second operation phase. (Right) The schematic illustration
of the connections between the station’s independent DAQ units. The inset photos depict the SDM
(top photo) and the RF antenna (bottom photo).

3. Simulation Framework and Event Analysis
3.1. Simulation Framework

The simulation of the SDM signals induced by cosmic rays EAS is a two-step scheme;
the first step deals with the phenomenology of the primary cosmic ray composition, direc-
tion, energy distribution, and EAS development in the atmosphere, while the second step
is associated with the processes tangled in the experimental signal derivation. Especially,
the CORSIKA [9] simulation code describes the evolution of the EAS, at the detector level.
In the second step, the HOU Reconstruction and Simulation (HOURS) package [10] was
applied to simulate the response of the SDMs to EAS particles [5].

For the RF signals simulation, the SELFAS package [11] is used, which calculates the
electric field of the RF transient emitted during the EAS evolution in the atmosphere. The
detector response to the RF radiation of an EAS is evaluated as the convolution of the electric
field and the vector effective length (VEL) of the antenna. The VEL is determined in terms
of the gain and structural features of the antenna using the NEC simulation code [12] as
described in [13]. Finally, the RF signal is distorted by adding background human-made
electromagnetic transients as measured around the station for a period of one year. The
event selection algorithm described below was implemented in the simulation sample too.

3.2. Event Analysis

The event selection and reconstruction software [5] applies quality criteria to the
experimental (or simulated) SDM data that reject noise, as well as merging algorithms that
take care of artificially split pulses. In order to improve data quality, small width pulses
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(less than 15 ns) were rejected. An EAS is considered to be detected by a station in case all
three SDMs of the station had valid pulses after the application of the above criteria. In the
following, multiple station coincidences are formed by combining the signals of different
stations when the absolute GPS timestamps of the stations fall within a time window of
1500 ns, which is wide enough even for horizontal showers.

The detected RF signals are analyzed as described in [13–15]. Initially, a filtering
procedure rejects signal frequencies outside the region 30–80 MHz. In order to reject RF
noise transients an event selection algorithm is applied based on the fact that RF signals
produced by EAS: (a) should exhibit an intense peak localized in a narrow time interval,
(b) they should be approximately linear polarized, and (c) they should have short rise
times. The selected candidate events are further analyzed in order to quantify the RF noise
contribution to each antenna waveform, quantify the sharpness of the signal, and estimate
the degree of polarization.

4. Results Established in Phase I

The data collected during the first operation period (more than 3 years) were used to
evaluate the performance of the Astroneu array in detecting and reconstructing EAS using
the SDMs [5], while the RF component of the EAS was successfully isolated (despite the
powerful background) and studied using noise filters, timing, and signal polarization [14].
Furthermore, we extend the analysis of the RF signals by correlating the timing and the
strength of the RF signals with the SDM data and by comparing them with the simulation
predictions [15]. The evaluated performance parameters of the Astroneu stations are sum-
marized in Table 1. The resolution (the resolution in estimating the zenith or azimuth angle
of the primary particle is defined as the square root of the variance of the difference between
the true angle of the EAS primary particle and the respective reconstructed angle of the
EAS using the simulated events) in reconstructing the zenith angle (σθ), the azimuth angle
(σϕ), the 3D reconstruction error (ω) (the 3D error in estimating the direction of the primary
particle was defined as the median of the distribution of the 3D angle between the primary
particle direction (the one used in the simulation input) and the reconstructed direction), as
well as the energy threshold (Eth) for an EAS to be reconstructed, have been estimated by
the simulation study.

Table 1. Parameters describing the performance of the Astroneu stations at single mode of operation
based on SDM data. The numbers in parenthesis denote the simulation predictions.

Station EAS Reconstruction Rate (h−1) σθ (deg) σϕ (deg) ω (deg) Eth (TeV)

A 17.5 ± 0.3 (16.8) 3.3 10.4 3.3 20

B 11.5 ± 0.3 (11.9) 6.0 14.8 5.5 30

C 18.9 ± 0.3 (18.7) 3.7 11.2 3.6 20

The performance of each station depends mainly on the geometrical layout. For ex-
ample, for station B where the three SDMs form an amblygonal triangle the event rate is
lower (compared with the others) while the corresponding resolutions in reconstructing the
zenith, and azimuth angles as well as the 3D reconstruction error are worsened. Although
in stations A and C the three SDMs form an almost equilateral triangle, a better resolution
appears in station A since the distances between the SDMs are slightly larger. The perfor-
mance results of stations A and B coincidently comprise an event rate of 0.15 per hour while
the resolution in reconstructing the zenith angle is 3.6 degrees, in azimuth 9.5 degrees, the
3D reconstruction error is about 2.9 degrees and the energy threshold 5× 103 TeV.
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5. Results Established in Phase II

Figure 3a shows the distribution of the RF signal amplitudes for experimental data
(black points) and simulations. The data were collected from station A (with four RF
detectors) during the second operation period.
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A new method for reconstructing the direction of the shower axis has been devel-
oped [13]. The shape of the RF spectrum is sensitive to the pulse frequency and to the pulse
direction. This method is based on the comparison of the event spectrum with a database
of simulations spectrums from different showers directions. The resolution (defined as
explained in Section 4) of the method have been estimated using simulations in 2.22 degrees
in zenith and 5.43 degrees in azimuth angle. Furthermore, the EAS axis directions can
be also reconstructed using the detectors positions (both SDMs and RF) and the arrival
time of the pulses in each detector, through triangulation [16]. In order to compare the
EAS axis direction as evaluated from RF data with the corresponding ones estimated with
SDM data we use the standard deviation of the gaussian function that fits the distributions
∆θ = θRF − θSDM for the zenith angle and ∆ϕ = ϕRF − ϕSDM for the azimuth angle. The
corresponding distributions are shown in Figures 3b and 3c, respectively. The corresponding
sigma is equal to 6.4 degrees for the zenith angle and 9.4 degrees for the azimuth angle.

In order to correlate the effect of the station geometry to the resolution of the EAS
axis reconstruction, four combinations of three RF detectors were used (see Figure 1).
The reconstruction was performed using the RF timing method and the corresponding
resolutions for an equilateral formation are 3.0 degrees for the zenith angle and 5.0 degrees
for the azimuth angle while for an amblygonal are 3.6 degrees for the zenith angle and
approximately 6.0 degrees for the azimuth angle.

The position of the shower core can be estimated using the RF signal and simulations
with a resolution of about 20 m for both the x and y coordinate [16]. Using the shower core
position and analyzing the measured electric field on the ground in the directions expected
considering the two main mechanisms (geomagnetic and charge excess contributions), the
contribution rate of each mechanism is estimated

(
a = Ech

Egeo
· 100%

)
for different zenith

angle (θ) and core positions (d) as summarized in Table 2 [16].
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Table 2. The summary of the contribution rate of each mechanism for different zenith angles and
distance from EAS core bins.

d∈[0, 50] m d∈[50,100] m d∈[100,150] m d∈[150,200] m

θ ∈ [0, 15] deg 8.10% 13.15% 17.14% 19.23%

θ ∈ [15, 30] deg 6.96% 10.76% 12.50% 14.92%

θ ∈ [30, 45] deg 5.16% 7.08% 8.74% 10.76%

θ ∈ [45, 60] deg 4.13% 6.56% 8.62% 10.45%

6. Prospects for the Expansion of Astroneu Array

The planned expansion of the Astroneu array on the HOU campus will consist of 16
stations, each comprising low-cost small SDMs and RF antennas developed by the HOU
Physics Laboratory [17]. Each station is expected to be equipped with three SDMs and
two (or more) RF antennas (in short, the 3SDM-2RF station) provided with the appropriate
electronics for independent DAQ. Figure 4 right shows the station setup while the left
picture depicts the layout of the stations on the HOU campus. It is expected that the new
setup will start operating in 2023.
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of the connections between the station’s units.

7. Discussion

Extended simulation studies and data analysis from the first operation period shows
that the developed Astroneu array has a well-known response to EAS, while RF EAS
detection in environments with strong electromagnetic noise is possible even with small-
scale hybrid (particle + RF detection) arrays. The data collected during the second operation
period allowed us to study the correlation between RF signals corresponding to the same
EAS. Among the studies of this period, the estimation of the EAS axis direction using the
RF spectrum, the reconstruction of the shower core using the RF signal and simulations,
and charge excess-to-geomagnetic ratio measurements are included. Finally, we report
prospects to expand the Astroneu array with more particle detectors and RF antennas
for more accurate reconstruction of the main EAS parameters and extended RF studies.
Among the prospects is to study the possibility of an RF-only self-triggered detector array
in an EM noisy urban environment (efficient new methods for noise rejection).
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