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Abstract: In many Bayesian computations, we first obtain the expression of the joint distribution of all
the unknown variables given the observed data. In general, this expression is not separable in those
variables. Thus, obtaining the marginals for each variable and computing the expectations is difficult
and costly. This problem becomes even more difficult in high dimensional quandaries, which is an
important issue in inverse problems. We may then try to propose a surrogate expression with which
we can carry out approximate computations. Often, a separable expression approximation can be
useful enough. The variational Bayesian approximation (VBA) is a technique that approximates the
joint distribution p with an easier, for example separable, distribution q by minimizing the Kullback–
Leibler divergence KL(q|p). When q is separable in all the variables, the approximation is also called
the mean field approximation (MFA), and so q is the product of the approximated marginals. A
first standard and general algorithm is the alternate optimization of KL(q|p) with respect to qi. A
second general approach is its optimization in the Riemannian manifold. However, in this paper, for
practical reasons, we consider the case where p is in the exponential family and so is q. For this case,
KL(q|p) becomes a function of the parameters θ of the exponential family. Then, we can use any other
optimization algorithm to obtain those parameters. In this paper, we compare three optimization
algorithms, namely a standard alternate optimization, a gradient-based algorithm and a natural
gradient algorithm, and study their relative performances in three examples.

Keywords: variational Bayesian approach (VBA); Kullback–Leibler divergence; mean field approxima-
tion (MFA); optimization algorithm

1. Introduction

In many applications, with direct or indirect observations, the use of the Bayesian com-
putations starts with obtaining the expression of the joint distribution of all the unknown
variables given the observed data. Then, we must use it for inference. In general, this
expression is not separable in all the variables of the problem. So, the computations become
hard and costly. For example, obtaining the marginals for each variable and computing the
expectations are difficult and costly. This problem becomes even more crucial in high di-
mensional quandaries, which is an important issue in inverse problems. We may then need
to propose a surrogate expression with which we can carry out approximate computations.

The variational Bayesian approximation (VBA) is a technique that approximates
the joint distribution p with an easier, for example a separable one, q, by minimizing the
Kullback–Leibler divergence KL(q|p), which makes the marginal computations much easier.
For example, in the case of two variables, p(x, y) is approximated by q(x, y) = q1(x)q2(y)
via minimizing KL(q1q2|p). When q is separable in all the variables of p, the approximation
is also called mean field approximation (MFA).
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To obtain the approximate marginals q1 and q2, we have to minimize KL(q1q2|p).
The first standard and general algorithm is the alternate optimization of KL(q1q2|p) with
respect to q1 and q2. By finding the expression of the functional derivatives of KL(q1q2|p)
with respect to q1 and q2 and then equating them to zero alternatively, we obtain an iterative
optimization algorithm. A second general approach is its optimization in the Riemannian
manifold. However, in this paper, for practical reasons, we consider the case where p is in
the exponential family and so are q1 and q2. For this case, KL(q1q2|p) becomes a function
of the parameters θ of the exponential family. Then, we can use any other optimization
algorithm to obtain those parameters.

In this paper, we compare three optimization algorithms: a standard alternate op-
timization (Algorithm 1), a gradient-based algorithm [1,2] (Algorithm 2) and a natural
gradient algorithm [3–5] (Algorithm 3). The aim of this paper is to consider the first
algorithm as the VBA method and compare it with the two other algorithms.

Of the main advantages of the VBA for inference problems, such as inverse problems
and machine learning, we can mention the following:

- First, VBA builds a sufficient model according to prior information and the final
posterior distribution. Especially in the mean field approximation (MFA), the result
ends in an explicit form for each unknown component using conjugate priors and
works well for small sample sizes [6–8].

- The second benefit is, for example in machine learning, that it is a robust way for
classification based on the predictive posterior distribution and diminishes over-
trained parameters [7].

- The third privilege is that the target structure has uncertainty in the VBA recursive
processes. This feature prevents further error propagation and increases the robustness
of VBA [9].

Besides all these preponderances, the VBA has some weaknesses, such as difficulty
regarding the solution of integrals and expectations in terms of obtaining a posterior
distribution, and there is no evidence of finding an exact posterior [6]. Its most significant
drawback arises when there are strong dependencies between unknown parameters, and
the VBA ignores them. Then estimates, computed based on this approximation, may be
very far from the exact values. However, it works well when the number of dependencies
are low [8].

In this article, we examine three different estimating algorithms of the unknown pa-
rameters in a model concerning prior information. The first iterative algorithm is a standard
alternate optimization based on VBA, which begins a certain initial points. Sometimes, the
points are estimated from an available dataset, but most of the time, we do not have enough
data on the parameters to make certain pre-estimations of them. To solve this obstacle, we
can start the algorithm with certain desired points, and then by repeating the process, they
approach the true values using the posterior distribution. The second two algorithms are
gradient-based and natural gradient algorithms, whose base function is Kullback–Leibler
divergence. First, the gradient of Kullback–Leibler for all unknown parameters must be
found, then must start from points either estimated from data or desired choices. Then,
we repeat the iterative algorithm until it converges to certain points. If we denote the
unknown parameter space with θ, then the recursive formula is θ̃(k+1) = θ̃(k) − γ∇KL(θ̃(k))
for gradient-based and natural gradient algorithms with different values of γ.

Additionally, we consider three examples, normal-inverse-gamma, multivariate nor-
mal and linear inverse problem for checking the performance and convergence speed of
the algorithms.

We propose the following organization of this paper: In Section 2, we present a brief
explanation of the basic analytical aspect of VBA. In Section 3, we explain our first example
related to normal-inverse-gamma distribution analytically and, in practice, explain the
outcomes of three algorithms to estimate the unknown parameters. In Section 5, we
study a more complex example of a multivariate normal distribution whose means and
variance–covariance matrix are unknown and have normal-inverse-Wishart distribution.
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The aim of this section is to demonstrate the marginal distributions of µ̃ and Σ̃ using a set of
multivariate normal observations using the mean and variance. In Section 6, the example
is closer to realistic situations and is a linear inverse problem. In Section 7, we present a
summary of the work carried out in the article and compare the three recursive algorithms
through three different examples.

2. Variational Bayesian Approach (VBA)

As we mentioned previously, VBA uses Kullback–Leibler divergence. Kullback–
Leibler divergence [10] KL(q|p) is an information measure of discrepancy between two
probability functions defined as follows. Let p(x) and q(x) be two density functions
of a continuous random variable x with respect to support set SX. KL(q|p) function is
introduced as:

KL(q|p) =
∫

x∈SX

q(x) ln
q(x)
p(x)

dx. (1)

For simplicity, we assume a bivariate case of distribution p(x, y) and want to assess it
via VBA; therefore, we have:

KL(q|p) = −H(q1)− H(q2)− 〈ln p(x, y)〉q1q2 , (2)

where

H(q1) = −
∫

x∈SX

q1(x) ln q1(x)dx and H(q2) = −
∫

y∈SY

q2(y) ln q2(y)dy

are, respectively, the Shannon entropies of x and of y, and

〈ln p(x, y)〉q1q2 =
∫ ∫

(x,y)∈SXY

q1(x)q2(y) ln p(x, y)dxdy.

Now, differentiating the Equation (2) with respect to q1 and then with respect to q2 and
equating them to zero, we obtain:

q1(x) ∝ exp
{
〈ln p(x, y)〉q2(y)

}
and q2(y) ∝ exp

{
〈ln p(x, y)〉q1(x)

}
(3)

These results can be easily extended to more dimensions [11]. They do not have any closed
form because they depend on the expression of p(x, y) and that of q1 and q2. An interesting
case is that of exponential families and conjugate priors, where writing

p(x, y) = p(x|y)p(y), and p(y|x) = p(x, y)
p(x)

=
p(x|y)p(y)

p(x)
, (4)

we can consider p(y) as prior, p(x|y) as the likelihood, and p(y|x) as the posterior dis-
tributions. Then, if p(y) is a conjugate prior for the likelihood p(x|y), then the posterior
p(y|x) will be in the same family as the prior p(y). To illustrate all these properties,
we provide details of these expressions for a first simple example of normal-inverse-
gamma p(x, y) = N (x|µ, y)IG(y|α, β) with q1(x) = N (x|µ, v) and q2 = IG(y|α, β). For
this simple case, first we give the expression of KL(q|p) with q1(x) = N (x|µ̃, ṽ) and
q2(y) = IG(y|α̃, β̃) as a function of the parameters θ = (µ̃, ṽ, α̃, β̃) and then the expressions
of the three above-mentioned algorithms; after which, we study their convergence.

3. Normal-Inverse-Gamma Distribution Example

The purpose of this section is to explain in detail the process of performing calcu-
lations in VBA. For this we consider a simple case for which we have all the necessary
expressions. The objective here is to compare the three different algorithms mentioned
above. Additionally, its practical application can be explained as follows:
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We have a sensor which measures a quantity X, N times x1, . . . , xN . We want to model
these data. In a first step, we model them as N(x|µ, v) with fixed µ and v. Then, it is easy
to estimate the parameters (µ, v) either by maximal likelihood or Bayesian strategy. If we
assume that the model is Gaussian with unknown variance and call this variance y and
assign an IG prior to it, then we have a model NIG for p(x, y). The NIG priors were
applied to the wavelet context with correlated structures because they were conjugated
with normal priors [12]. We chose the normal-inverse-gamma distribution because of this
conjugated property and ease of handling.

We showed that the margins are St and IG. Working directly with St is difficult. So, we
want to approximate it with a Gaussian q1(x). This is equivalent to approximating p(x, y)
with q1(x)q2(y). Now, we want to find the parameters µ, v, α, and β, which minimize
KL(q1q2|p). This process is called VBA. Then, we want to compare three algorithms to
obtain the parameters which minimize KL(·|·). KL(·|·) is convex with respect to q1 if q2 is
fixed and is convex with respect to q2 if q1 is fixed. So, we hope that the iterative algorithm
converges. However, KL(·|·) may not be convex in the space of parameters. So, we have to
study the shape of this criterion concerning the parameters ṽ, α̃ and β̃.

The practical problem considered here is the following: A sensors delivers a few
samples x = {x1, x2, · · · , xN} of a physical quantity X. We want to find p(x). For this
process, we assume a simple Gaussian model but with unknown variance y. Thus, the
forward model can be written as p(x, y) = N (x|µ, y)IG(y|α, β). In this simple example,
we know that p(x) is Student’s t-distribution obtained by:

S(x|µ, α, β) =
∫
N (x|µ, y)IG(y|α, β)dy (5)

Our objective is to find the three parameters θ = (µ, α, β) from the data x and an approxi-
mate marginal q(x) for p(x).

The main idea is to find such q1(x)q2(y) as an approximation of p(x, y). Here, we
show the VBA, step by step. For this, we start by choosing the conjugate families q1(x) =
N (x|µ̃, ṽ) and q2(y) = IG(y|α̃, β̃).

In the first step, we have to calculate ln p(x, y)

ln p(x, y) = c− 1
2

ln y− 1
2y

(x− µ̃)2 − (α̃ +
1
2
) ln y− β̃

y
. (6)

where c is a constant value term independent of x and y. First of all, to use the iterative
algorithm given in (3), starting by q1 = N(x|µ′, v′) we have to find q2(y), so we have to
start by finding q2(y). The integration of ln p(x, y) concerns q1(x)

〈ln p(x, y)〉q1 = c− 1
2y
〈(x− µ̃)2〉q1 − (α̃ + 1) ln y− β̃

y
. (7)

Since the mean of x is the same in prior and posterior distribution, µ̃ = µ̃′ then 〈(x −
µ̃)2〉q1 = ṽ, otherwise 〈(x− µ̃)2〉q1 = ṽ + (µ̃− µ̃′)2. Thus when µ̃ = µ̃′

q2(y) ∝ exp[−(α̃ + 1) ln y− (
ṽ
2
+ β̃)

1
y
]. (8)

Thus, the function q2(y) is equivalent to an inverse gamma distribution IG(α̃, ṽ
2 + β̃).

Similarly, q2(y) is IG(α̃, ṽ+(µ̃−µ̃′)2

2 + β̃) when µ̃ 6= µ̃′. We have to take integral of ln p(x, y)
over q2 to find q1

〈ln p(x, y)〉q2 = c− (α̃ + 1)〈ln y〉q2 − (β̃ +
1
2
(x− µ̃)2)〈1

y
〉q2 (9)
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Note that the first term does not depend on x and 〈 1
y 〉q2 = 2α̃

2β̃+ṽ
, so

q1(x) ∝ exp[− 2α̃

2β̃ + ṽ
(β̃ +

1
2
(x− µ̃)2)] ∝ exp[− (x− µ̃)2

2 2β̃+ṽ
2α̃

]. (10)

We see that q1 is, again, a normal distribution but with updated parameters N (µ̃, 2β̃+ṽ
2α̃ ),

so ṽ = 2β̃+ṽ
2α̃ . Note that we obtained the conjugacy property: if p(x|y) = N (x|µ, y) and

p(y) = IG(y|α, β), then p(y|x) = IG(y|α′, β′) where µ′, α′ and β′ are µ′ = µ, α′ = α ,
β′ = β + 2β+v

2α . In this case, we also know that p(x|α, β) = St(x|µ′, α, β).
In standard alternate optimization based on VBA (Algorithm 1), there is no need

for an iterative process for µ̃ and α̃, which are approximated by µ̃ = µ0 and α̃ = α0,
respectively. The situation for β̃ and ṽ is different because there are circular dependencies
among them. So, the approximation needs an iterative process, staring from µ̃(1) = µ0,
ṽ(1) = v0, α(1) = α0 and β(1) = β0. As a conclusion for this case is that the values of α and
µ do not change during the iterations, and so depend on the initial values. However, the
values of β and v are interdependent and change during the iterations. This algorithm is
summarized below.

Alternate optimization algorithm based on VBA (Algorithm 1):

α̃(k+1) = α̃(k),
β̃(k+1) = β̃(k) + ṽ(k)

2 ,
µ̃(k+1) = µ̃(k),

ṽ(k+1) = 2β̃(k)+ṽ(k)

2α̃(k)
.

This algorithm converges to v = (2β̃ + ṽ)/(2α̃), which gives ṽ = (2β̃)/(2α̃− 1) and β̃ = 0,
so ṽ = 0, which is a degenrate solution.

The two other algorithms, gradient- and natural gradient-based, require to find the
expression of KL(q1q2 : p) as a function of the parameters θ = (α, β, µ, v):

KL(θ̃) =2 ln Γ(α̃− 1
2
)− (2α̃ +

3
2
)ψ0(α̃−

1
2
) +

(2α̃− 1)(ṽ + 2β̃)

4β̃
+ α̃ +

5
2

ln β̃− 1
2

ln ṽ− 1. (11)

We also need the gradient expression of ∇KL(θ̃) for θ̃:

∇KL(θ̃) =
(

ṽ
2β̃
− (2α̃ +

3
2
)ψ1(α̃−

1
2
) + 2, −(2α̃− 1)

ṽ
4β̃2

+
5

2β̃
, 0,

2α̃− 1
4β̃

− 1
2ṽ

)
. (12)

As we can see, these expressions do not depend on µ̃, so their derivatives with respect to µ̃
are zero. The means are preserved.

Gradient and natural gradient algorithms (Algorithms 2 and 3):

α̃(k+1) = α̃(k) − γ
(

ṽ(k)

2β̃(k)
− (2α̃(k) + 3

2 )ψ1(α̃
(k) − 1

2 ) + 2
)

,

β̃(k+1) = β̃(k) − γ
(
−(2α̃(k) − 1) ṽ(k)

4[β̃(k) ]2
+ 5

2β̃(k)

)
,

µ̃(k+1) = µ̃(k),
ṽ(k+1) = ṽ(k+1) − γ

(
2α̃(k)−1

4β̃(k)
− 1

2ṽ(k)

)
.

Here, γ is fixed for the gradient algorithm and is proportional to 1/‖∇KL‖ for the natural
gradient algorithm.
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4. Numerical Experimentations

To show the relative performances of these algorithms, we generate n = 100 samples
from the model p(x, y) = N (x|1, y)IG(y|3, 1) for the numerical computations. Thus, it
should be noted that we know the exact values of the unknown parameters which can
be used to show the performances of the proposed algorithms. The following results: θ̃1,
θ̃2 and θ̃3 are the estimated parameters using, respectively, Algorithm 1, Algorithm 2 and
Algorithm 3. The contour plots of the corresponding probability density functions are
shown in Figure 1 compared with original model.

θ̃1 =


µ̃ = 0.044724,
ṽ = 0.590894,
α̃ = 3.792337,
β̃ = 1.765735

θ̃2 =


µ̃ = 0.044724,
ṽ = 7.910504,
α̃ = 4.991621,
β̃ = 3.002594

θ̃3 =


µ̃ = 0.044724,
ṽ = 0.423761,
α̃ = 4.415239,
β̃ = 0.706049.

(a) True contour plot of the model (b) The VBA approximation

(c) The gradient-based algorithm (d) The natural gradient algorithm

Figure 1. The true model is N (x|0, y)IG(y|3, 1). The numbers of iterations until the convergence are
different in the algorithms.

All three algorithms try to minimize the same criterion. So, the objectives are all the
same, but the number of steps may differ. The requirements must reach the minimum
KL(·). In this simple example of the normal-inverse-gamma distribution, the convergence
step numbers of VBA, gradient-based and natural gradient are 1, 2 and 1 using moment
initializations. The overall performance of the standard alternate optimization (VBA) is
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more precise than any other. The poorest estimation is from a gradient-based algorithm.
So, the algorithms are able to approximate the joint density function with a separable one
but with different accuracy. In the following section, we will tackle a more complex model.

5. Multivariate Normal-Inverse-Wishart Example

In previous section, we explained how to preform VBA in order to approximate a
complicated joint distribution function by tractable marginal factorials using a simple case
study. In this section, a multivariate normal case p(x) = N (x|µ̃, Σ̃) is considered, which is
approximated by q(x) = ∏iN (xi|µ̃i, ṽi) for different shapes of the covariance matrix Σ̃.

We assume that the basic structure of an available dataset is multivariate normal with
unknown mean vector µ̃ and variance–covariance matrix Σ̃. Their joint prior distribution is
a normal-inverse-Wishart distribution of NIW(µ̃, Σ̃|µ̃0, κ̃, Ψ̃, ν̃), which is the generalized
form of the classical NIG. The posteriors are multivariate normal for mean vector and
inverse-Wishart in the variance–covariance matrix. Since the normal-inverse-Wishart distri-
bution is a conjugate prior distribution for multivariate normal, the posterior distribution
of µ̃ and Σ̃ again belongs to the same family, and their corresponding margins are

MN
(

κ̃µ̃0 + nx
κ̃ + n

,
1

κ̃ + n
Λ̃
)

, IW
(

Λ̃ + Ψ̃ +
n

∑
i=1

(xi − x)(xi − x)T , ν̃ + n

)
, (13)

where n is the sample size. To present the performance of the three algorithms, we examined
on a dataset based on x ∼ NIW(x|µ, Σ), whose parameters have the following low-
density structure:

µ ∼MN
(

µ|
[

2
1

]
,

1
2

[
3 −1
−1 1

])
, Σ ∼ IW

(
Σ|
[

3 −1
−1 1

]
, 6
)

.

We used only the data of x in the estimation processes. The results of algorithms are
presented in Figure 2 along with the true contour plot of the model. The VBA estimation
is the most separable distribution compared with gradient and natural gradient methods.
The next best case is the natural gradient algorithm, but its weakness is transferring the
dependency slightly to the approximation. The results for the gradient-based algorithm
show the dependency completely, along with its inability to obtain a separable model.

(a) True contour plot of the model (b) The VBA approximation

Figure 2. Cont.



Phys. Sci. Forum 2022, 5, 48 8 of 10

(c) The gradient-based algorithm (d) The natural gradient algorithm

Figure 2. In this example, the numbers of iterations to obtain the convergence are different between
the three algorithms. These numbers are, respectively, 2, 280 and 4. The VBA and natural gradient
algorithms estimate the distribution with separable functions in fewer steps than the gradient which
seems not converged even up to 280 iterations.

6. Simple Linear Inverse Problem

Finally the third example is the case of linear inverse problems with g = H f + ε with
priors p(ε) = N (ε|0, vε I), p( f ) = N ( f |0, diag[v]) and p(v|α, β) = ∏j IG(vj|α, β), where
f = [ f1, f2, · · · , fN ] and v = [v f1 , v f2 , · · · , v fN ]. Using these priors, we get p( f , v|g) ∝
p(g| f , vε)p( f |v)p(v) with p(g| f , vε) = N (g|H f , vε I). See [13] for details.

Thus, the joint distribution of g, f , and v:

p(g, f , v) ∝ p(g| f , vε)p( f |v)p(v). (14)

is approximated by q(g, f t, ṽ) = q1(g| f t)q2( f t)q3(ṽ) using the VBA method. Even if the
main interest is the estimation of q2( f t), but in the recursive process, q1(g| f t) and q3(ṽ) are
also updated. For simplicity, we suppose that the transfer matrix H is an identical matrix I.
The final outputs are as follows:

f t ∼MN

 µ̃ f t

1 + 2ṽε α̃
n(ṽ+µ̃2

f̃
+2β̃)

, diag[
ṽε(ṽ + µ̃2

f̃
+ 2β̃)

n(ṽ + µ̃2
f̃
) + 2nβ̃ + 2ṽεα̃

]

,

g ∼ N (µ̃ f t, ṽε I), and ṽj ∼ IG

α̃j,
ṽj + µ̃2

f̃ j

2
+ β̃ j

, j = 1, · · · , N.

(15)

For simulations, we chose a model to examine the performance of these margins
and compare them with gradient and natural gradient algorithms. The selected model is
g = H f + ε with the following assumptions:

H = I, f ∼MN ( f |0, diag[v1, v2]), v1 ∼ IG(v1|3, 2), v2 ∼ IG(v2|4, 3), ε ∼MN (ε|0, b). (16)

In the assessment procedure, we do not apply the above information. The output of
algorithms are shown in Figure 3, as well as the actual contour plot. In this example, the
best diagnosis is from the natural gradient algorithm. The VBA by construction is separable
and cannot be the same as the original.
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(a) True contour plot of the model (b) The VBA approximation

(c) The gradient-based algorithm (d) The natural gradient algorithm

Figure 3. The true model is almost separable. The natural gradient algorithm works better in this
example, and the poorest approximation is that of the gradient-based algorithm.

7. Conclusions

This paper presents an approximation method of the unknown density functions for
hidden variables called VBA. It is compared with gradient and natural gradient algorithms.
We also consider three examples normal-inverse-gamma, normal-inverse-Wishart and
linear inverse problem. We provided details of the first model and showed examples of
two other examples throughout the whole paper. In all three models, the parameters are
unexplored and need to be estimated by recursive algorithms. We attempted to approximate
the joint complex distribution with a simpler version of the margin factorials that appeared
to be independent cases. The VBA and natural gradient converged fairly early. The major
discrepancy in algorithms comes from the accuracy of the results. They estimate the
intricate joint distribution with separable ones. Here, the best overall performance of VBA
is demonstrated.
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