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Abstract: Quivers are oriented graphs that have profound connections to various areas of math-
ematics, including representation theory and geometry. Quiver representations correspond to a
vast generalization of classical linear algebra problems. The geometry of these representations can
be described in the framework of Hamiltonian reduction and geometric invariant theory, giving
rise to the concept of quiver variety. In parallel to these developments, quivers have appeared to
naturally encode certain supersymmetric quantum field theories. The associated quiver variety then
corresponds to a part of the moduli space of vacua of the theory. However, physics tells us that
another natural geometric object associated with quivers exists, which can be seen as a magnetic
analog of the (electric) quiver variety. When viewed from that angle, magnetic quivers are a new
tool, developed in the past decade, that help mathematicians and physicists alike to understand
geometric spaces. This note is the writeup of a talk in which I review these developments from both
the mathematical and physical perspective, emphasizing the dialogue between the two communities.

Keywords: quivers; representation theory; Hamiltonian reduction; supersymmetry; quantaum field
theory; moduli spaces

1. A First Look at Quivers

This note is intended as an appetizer to the beautiful theory of quivers and certain
geometric spaces associated with supersymmetric field theories. We mostly focus on
examples, referring to the cited articles for the general theory. Section 1 provides an
overview of the theory of quiver representations, based on the pedagogical references [1,2].
The main goal is to introduce Nakajima quiver varieties. Section 2 shows how these varieties
appear as branches of vacua in certain supersymmetric theories. Section 3 introduces
another variety associated with a quiver and defines the notion of magnetic quiver.

1.1. Quiver Representations

A quiver is a finite directed graph: it contains a finite set of vertices I and a finite set
of arrows Ω ⊆ I2. A quiver, very much like a group, is an abstract structure that gains
flesh when it is represented. We will focus here on linear representations of a quiver ~Q. A
linear representation of ~Q is a collection of finite-dimensional vector spaces Vi, one for each
vertex i ∈ I, together with linear maps Vi → Vj for each (i, j) ∈ Ω. For concreteness, one
can pick Vi = Cvi (the vector v is then called the dimension of the representation), and the
linear maps are chosen in the space

R(~Q, v) =
⊕

(i,j)∈Ω

Hom(Cvi ,Cvj) . (1)

The group PGL(v) = (∏ GL(vi,C))/C∗ acts on the representation space R(~Q, v) by
conjugation and corresponds to the arbitrariness in the choice of bases in the spaces Vi
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that allow one to represent the linear maps via matrices. The set of isomorphism classes of
representations of dimension v can be identified with the quotient R(~Q, v)/PGL(v), which
is the set of PGL(v)-orbits in R(~Q, v):{

Isomorphism classes of
v-dim representations

}
↔
{

GL(v)-orbits
in R(~Q, v)

}
↔ R(~Q, v)/PGL(v) (2)

We will come back to some of the problems that this naive definition poses. Before
that, let us look at a few examples.

1.2. Examples and Basic Notions

Figure 1 shows five examples of quivers. Let us look at their representations. Along
the way, we introduce certain essential notions. For any quiver ~Q, a representation is
called simple if it contains no nontrivial subrepresentations; it is called semisimple if it is
(isomorphic to) a direct sum of simple representations.

•
1

•
1

•
2

•
1

•
1

•
2

•
1

•
2

(a) (b) (c) (d) (e)

Figure 1. Five examples of quivers. (a) Trivial quiver. (b) A2 quiver. (c) Jordan quiver. (e) is the
double of (d).

Example 1. Let us start with the simplest quiver, with one vertex and no arrow, see Figure 1a. An
n-dimensional representation of this quiver is simply an n-dimensional vector space, which is the
direct sum of n copies of the one-dimensional representation C. This one-dimensional representation
is the building block of all others: it is simple, while the direct sums are semisimple.

For a quiver ~Q, each orbit O is a nonsingular algebraic variety whose closure is
O = O ∪ X where X is a union of orbits of lower dimension. In addition, O contains a
unique closed orbit. If O is the orbit of a representation V, that closed orbit corresponds to a
semisimple representation, which is called the semisimplification Vss of V. The set of closed
orbits coincides with the set of isomorphic classes of semisimple representations:{

Isomorphism classes of
semisimple v-dim representations

}
↔
{

Closed GL(v)
-orbits in R(~Q, v)

}
↔ R(~Q, v)//PGL(v) (3)

What appears on the right is the GIT (geometric invariant theory) quotient [3]: if M is
a complex affine variety and G is a reductive group acting algebraically on M, M//G is
by definition the spectrum of the ring of invariants C[M]G. As a topological space, it is
identified with the set of closed G-orbits in M, and there is a surjection M/G → M//G,
which associates each orbit O with the unique closed orbit contained in O.

Example 2. For the quiver Figure 1b, a representation of dimension v = (v1, v2) is a pair of vector
spaces of dimensions v1 and v2 together with a linear map between them. Equivalently, it is a
v2 × v1 matrix. The group GL(v) = GL(v1)×GL(v2) acts by left-right multiplication on that
matrix. This is the classical problem of equivalence of matrices (not to be confused with similarity,
see the next example). It is well-known that the orbits correspond to the sets Or of matrices of fixed
rank r ∈ {0, 1, . . . , rmax = min(v1, v2)}. Therefore, R(~Q, v)/PGL(v) contains 1 + min(v1, v2)
points {O0,O1, . . . ,Ormax}. It is clear that Or for r > 0 is Zariski open, and its closure is the set
of matrices of rank ≤ r, which is the union

Or = O0 ∪O1 ∪ · · · ∪ Or . (4)
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On the other hand, O0 is (obviously) the unique closed orbit. The closure of every
orbit Or, r ≥ 0 contains a unique closed orbit O0. We formulate this fact geometrically by
saying that R(~Q, v)//PGL(v) is a point.

Example 3. The quiver in Figure 1c is the Jordan quiver. Classifying its representations is the
fundamental problem of linear algebra, which consists of classifying v× v matrices (or endomor-
phisms) up to similarity—the orbits are conjugacy classes. The full solution over C is given by the
Jordan form, and the closed orbits correspond to diagonalizable matrices. Geometrically, this means
that while R(~Q, v)/PGL(v) has a complicated structure,

R(~Q, v)//PGL(v) = Spec
(
C[λ1, . . . , λv]

Sv
)
= Cv/Sv . (5)

The lesson from the last two examples generalizes: the quiver needs to have oriented
cycles for R(~Q, v)//PGL(v) not to be reduced to a point. A particularly interesting class of
quivers having oriented cycles are double quivers, introduced next.

1.3. Double Quivers

Double quivers are quivers Q# such that arrows can be partitioned into pairs (Hi,j, Hi,j)

where if H connects vertex i to j, then H connects j to i, for (i, j) ∈ Ω—see Figure 1e for an
example. If we call ~Q the quiver obtained by deleting the H arrows, it is straightforward
to see that R(Q#, v) = T∗R(~Q, v). This is a symplectic space with a Hamiltonian action of
GL(v), with the moment map being given by

µ(Q#,Ω,v) : R(Q#, v)→ gl(v) , µ(Q#,Ω,v)({(Hi,j, Hi,j)}) = ∑
(i,j)∈Ω

[Hi,j, Hi,j] . (6)

Because of the numerous loops, the space R(Q#, v)//PGL(v) is complicated, and in-
tuitively it is not a natural object to consider as it loses its symplectic structure (this is
obvious, e.g., if the dimension of PGL(v) is odd). It is more natural to consider the Hamilto-
nian reduction µ−1(0)//PGL(v). The intuition behind this comes from the situation where
M is a smooth symplectic manifold of real dimension n with a free proper Hamiltonian
action of a real Lie group G of dimension d with moment map µ. In this case, T∗(M/G)
is symplectomorphic to µ−1(0)/G. The real dimension is 2n− d− d, where the first −d
comes from the µ-level set, and the second one comes from the quotient. The construction
of µ−1(0)//PGL(v) is the algebraic analog, and it allows for singularities and fixed points
under the group action.

1.4. Quiver Varieties

We are now ready for the central character of this note. The notion of quiver variety
is usually defined based on the notion of framed quiver representation. Here, we follow a
slightly different but totally equivalent route—the equivalence being what is sometimes
called the Crawley–Boevey trick [4]. We fix a graph Q (with set of vertices I and a set of
unoriented edges Ω ⊆ S2(I); for simplicity, we assume there are no edges connecting a
vertex to itself) and a dimension vector v such that at least one entry of v is equal to 1:
vi0 = 1. We call v̂ the vector v with that entry removed. The corresponding Nakajima quiver
varietyMH(Q, v) is then by definition [5,6]

MH(Q, v) = µ̂−1(0)//GL(v̂) , (7)

where µ̂ is the projection of the moment map µ of the corresponding double quiver Q#

onto the Lie algebra gl(v̂). Intuitively, this means that we impose the vanishing of the
commutators (6) only at vertices i 6= i0, and we impose invariance only with respect to the
GL(vi) for i 6= i0. Importantly, this definition does not depend on the choice of i0.

Examples of quivers are shown in Figure 2—the quivers are entirely specified by the
underlying graph, and by convention the graphs themselves are also called quivers. It
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is a good exercise for the reader to derive the varietiesMH for these three fundamental
examples. We deal in detail only with the first one here. We pick the left node for i0.
Therefore, the n edges give rise in the double quiver to 2n arrows that one can group into
two maps H ∈ Hom(C,Cn) and H ∈ Hom(Cn,C). The moment map m̂u reduces to HH,
and GL(v̂) = C∗ acts on (H, H) with charge (+1,−1). One then checks that

MH(Q, v) = {(H, H) ∈ Hom(C,Cn)×Hom(Cn,C)|HH = 0}//C∗ (8)

= {M ∈ Hom(Cn,Cn)|M2 = 0 , rank(M) ≤ 1 , tr(M) = 0} ,

the equality being given by M = HH. This is the closure of the minimal nilpotent orbit
of sl(n,C). In a similar way, one can show that the quiver varieties for the second and
third quivers are, respectively, the Klein singularities C2/Zn (the complex hypersurface
x2 + y2 + zn = 0 in C3), also called An−1, and the closure of the maximal nilpotent orbit in
sl(n,C).

MH = Omin(sl(n,C)) MH = C2/Zn MH = Omax(sl(n,C))

M3d
C = C2/Zn M3d

C = Omin(sl(n,C)) M3d
C = Omax(sl(n,C))

1 1

n

1 1
· · ·

1 1

1

1 2
· · ·

n− 1 1

n

Figure 2. Three graphs with the corresponding dimension vector v, indicated as integers next to each
node. Below each graph we write the Higgs and 3d Coulomb branches (see Section 3).

2. The Electric Side
2.1. Physical Theories and Quivers

In this section, we lay down some fundamental materials in supersymmetric quantaum
field theory, and we find a natural connection with the notions in the previous section. The
standard model of particle physics is the quantaum field theory (QFT) that best describes
our world and its elementary constituents. The building blocks with high energy are as
follows (we leave aside the Higgs field (which is a scalar field) as it plays no significant role
in this presentation, and its special status disappears once we consider the supersymmetric
models below ):

(α) A gauge group, which encodes the fundamental forces (electromagnetism, weak and
strong forces). This is a Lie group whose complexified Lie algebra is gSM = sl3 ⊕ sl2 ⊕ gl1.
The forces are mediated by massless gauge BOSONS Aµ, which are vector fields valued in
the adjoint representation of that algebra.

(β) Matter constituents, which are FERMION fields ψ valued in bifundamental (a bifunda-
mental representation of a semisimple Lie algebra g is the product of a fundamental
representation of a simple summand of g with the antifundamental representation
of a summand of g.) representations of gSM. This matter content can be encoded in
a quiver where the vertices are the simple summands of gSM and the arrows are the
matter fields.

A very schematic depiction of the standard model is shown in Figure 3. In addition to
these data, one should also specify the masses of the matter fields and various interaction
terms to fully define the theory. The situation is different when supersymmetry enters
the stage.
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Figure 3. A very schematic depiction of a portion of the matter content of the standard model of
particle physics (right-handed leptons and the Higgs field are not represented). The nodes correspond
to the gauge groups for the fundamental interactions (gauge bosons), and the edges correspond to
matter fields (chiral fermions) charged under these forces. SU(3) is the strong force; SU(2) the weak
isospin; and U(1) a combination of weak hypercharge and the baryonic charge, which makes the
charge of the left-handed quarks vanish.

2.2. Supersymmetric Quiver Gauge Theories

Centuries of observations of Nature by physicists have lead to the observation that
the fundamental laws are invariant under translation in space and time (with generators
Pµ), rotations in space, and boosts of special relativity (together, these are described by
generators Mµν). These transformations together form the Poincaré group, which can be
studied locally via its Lie algebra, the ten-dimensional Poincaré algebra, with generators
Pµ and Mµν. Essentially, one kind of extension of that algebra exists that is consistent with
the fundamental principles of quantum mechanics: supersymmetry. It consists of adding
supercharges, which are fermionic generators QI and QI , for I = 1, . . . ,N . These can be
thought of as square roots of translations, as (here, QI are left-handed Weyl spinors, QJ

are right-handed, {·, ·} is the anticommutator, and σµ = (12, σi) where the σi are the Pauli
matrices) {QI , QJ} = 2PµσµδI J . With each generator being a spinor, there are actually 4N
supercharges in the theory.

In a supersymmetric theory, the supercharges QI relate fields with different statistics
(bosons and fermions). When N = 1, there is essentially one fermionic superpartner for
each boson; conversely, their spins differ by 1

2 .
We consider the caseN = 2 (i.e., 8 supercharges) throughout this note, and we general-

ize the construction of the standard model above by taking a gauge algebra
g = gln1

⊕ · · · glnr , and massless matter fields transforming in various bifundamental
representations. This can be encoded into a graph Q, with the simple summands of g as
vertices and matter fields as edges. A fundamental consequence of supersymmetry is that
once the graph Q is given, one needs only to supplement it with the gauge couplings (one
real number per node) to fully specify the theory. Regarding the building blocks listed in
Section 2.1, we also need to know that:

(α) The gauge bosons are part of vector multiplets, which contain spin 1
2 gauginos and one

complex scalar field φ in the adjoint representation of the gauge algebra.
(β) The matter fermions are part of hypermultiplets, which contain a pair of complex

scalar fields (H, H) that transforms in a representation of the form R ⊕ R of the
gauge algebra.

When confronted with a QFT, the first question to ask is about the vacuum, around
which one can then use perturbation theory (represented pictorially by Feynman diagrams).
In theories with large amounts of symmetry, there can be several degenerate vacua, and in
fact in the present case there are infinitely many. The emphasis on scalar fields above is
due to the following observation: they are the only fields that can take a non-zero value in
the vacua without breaking Poincaré invariance. Because of sypersymmetry, the space of
vacua turns out to be an algebraic varietyM, called the vacuum moduli space, parametrized by
the gauge invariant combinations of scalar fields φ and (H, H). The part that is parametrized by



Phys. Sci. Forum 2022, 5, 42 6 of 9

(H, H) only is called the Higgs branch, denotedMH , while the part that is parametrized
by φ only is called the Coulomb branch, denotedM4d

C (the reason for the superscript will
become clear in Section 3).

2.3. Higgs Branches, Quiver Varieties, and Beyond

In this section, we focus on the Higgs branchMH . The structure of the hypermultiplets
shows that a configuration of VEVs for (H, H) corresponds to a representation of the
double quiver Q# with a dimension given by the gauge algebra g. Due to supersymmetry,
the vacuum equations take the form of the vanishing of the moment map (6), while the
requirement of gauge invariance is reflected mathematically in the GIT quotient in (7).
Therefore, the Higgs branch is identified with the quiver variety discussed in Section 1.4.

The Higgs branchMH of a 4d N = 2 quiver gauge theory whose gauge group is
a product of unitary groups U(vi) is therefore specified by a graph Q and a dimension
vector v, which satisfy the constraints listed in Section 1.4. A straightforward but vast
generalization is obtained by considering different types of gauge groups: SU(vi), Sp(vi),
and SO(vi), but also discrete groups or mixtures thereof. It is also known that certain QFTs
with N = 2 supersymmetry can be defined that cannot be described using the vector mul-
tiplets and hypermultiplets as above; however, the notion of the Higgs branch is still well
defined. This is the case for some of the so-called class S theories, built from compactifying
a six-dimensional theory on a Riemann surface [7], or for the Argyres–Douglas theories [8].

In all cases,MH is a singular complex variety that admits a stratification into sym-
plectic leaves. One prototypical example is shown in Figure 4: the nilpotent cone of sl(4,C)
is stratified by the various nilpotent orbits. Physically, for the gauge theories this strati-
fication represents the different phases, which differ by how broken the gauge group is
in a given vacuum; the mechanism of partially breaking the gauge invariance using the
vacuum expectation value of scalar fields is well known in particle physics as the Higgs
mechanism—hence the name of that branch. It is, in general, challenging to compute this
stratification. In the next section, we use physical insight to present a partial solution to
that problem.

a3

a1

a1

A3

12

10

8

6

0

M3d
C

(
1 2 3 1

)
= O[4](sl(4,C))

M3d
C


1 2 2

1
 = O[3,1](sl(4,C))

M3d
C


1 2 1

1
 = O[2,2](sl(4,C))

M3d
C


1 1 1

1
 = O[2,1,1](sl(4,C))

M3d
C

(
1

)
= O[1,1,1,1](sl(4,C))

1 1

1

1

1

1

1 1 1

1

Figure 4. Hasse diagram of nilpotent orbits of sl(4,C) obtained via quiver subtraction, with the
complex dimension of each leaf. The quivers at each step are shown on the right, while the pieces
that are subtracted to move from one variety to its singular subvariety are drawn in red.
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3. The Magnetic Side
3.1. Three-Dimensional Coulomb Branches and Magnetic Quivers

At the end of Section 2.2, we have introduced the Coulomb branchM4d
C . The geometry

ofM4d
C is quite different from that ofMH , whileMH is a singular version of a hyperKähler

manifold—a symplectic singularity [9],M4d
C is a singular version of a so-called special Kähler

manifold [10]. However, the two structures are close enough: the cotangent bundle of a
special Kähler manifold carries a hyperKähler structure [11]. One way this can be realized
physically is to compactify the 4d theory on a small circle, i.e., placing the theory onR1,2×S1

and letting the inverse radius 1/R of S1 be large compared to the observation energy scale.
In this way, one reaches a 3d theory whose Coulomb branchM3d

C , defined analogously
as in 4d, is a symplectic singularity. The Higgs branch of that 3d theory is identical to the
Higgs branch of the 4d theory, so no superscript is needed there. Using this process, we
have defined for any graph Q and good vector v a symplectic singularityM3d

C (Q, v). The
precise mathematical definition of that space has been constructed in [12,13] based on the
expectations from physics [14–16].

While the Higgs branch is parametrized by fields that carry a kind of electric charge
under the various gauge groups, the 3d Coulomb branch is paramatrized by gauge field
configuration that corresponds to magnetic monopoles [17,18]. This explains the termi-
nology according to whichMH is the electric side of the moduli space whileMC is its
magnetic side.

We now turn to the other crucial notion of this short note. Given a symplectic singu-
larity S, we say that (Q, v) is a magnetic quiver for S if S =M3d

C (Q, v). It turns out there
is a conjectured algorithm, called quiver subtraction [19–22], that provides the singularity
structure of S if a magnetic quiver (Q, v) is known. The evidence for the correctness of
this algorithm relies on various dualities in string theory. As an illustration, we apply
this algorithm to the nilpotent cone of sl(n,C) given as in Figure 2, recovering the usual
stratification into nilpotent orbits. An illustration for n = 4 is shown in Figure 4.

The simplest incarnation of the concept of magnetic quiver is the so-called 3d mirror
symmetry [23] for unitary quivers. When two theories defined by (Q1, v1) and (Q2, v2) are
a 3d mirror, we have

MH(Q1, v1) =M3d
C (Q2, v2) and M3d

C (Q1, v1) =MH(Q2, v2) . (9)

The two leftmost quivers in Figure 2 form such a mirror pair, while the rightmost
quiver represents a self-mirror theory. A natural question, when confronted with a mirror
pair, is the relation between the Higgs branches of both theories. It is conjectured that this
coincides with the notion of symplectic duality put forward in [24].

3.2. The Scope of Magnetic Quivers

The definition of magnetic quiver given in the previous paragraph does not require
S to be the Higgs branch of a quiver gauge theory; the notion is more general and can
be applied in an abstract mathematical setting (see, e.g., [25–27] for the use of magnetic
quivers in the context of hyperKähler implosion spaces).

Conversely, even within the realm of Higgs branches one can go much beyond Naka-
jima quiver varieties, as we saw in Section 2.3. It turns out one can often still find magnetic
quivers for these Higgs branches [28–34], thus opening a window into the geometry of the
moduli space, and various deductions about deformations and the renormalization group
flow. Another subtlety arises when the Higgs branch is not an irreducible variety. In that
case, it might be necessary to provide several magnetic quivers, along with quivers for the
intersections of the irreducible varieties.

The consequences of the two spaces, Higgs and Coulomb, that can be associated with
quivers are still to be fully understood and are the subject of intense investigation.
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