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Abstract: This paper presents recent methodological advances for performing simulation-based
inference (SBI) of a general class of Bayesian hierarchical models (BHMs) while checking for model
misspecification. Our approach is based on a two-step framework. First, the latent function that
appears as a second layer of the BHM is inferred and used to diagnose possible model misspecification.
Second, target parameters of the trusted model are inferred via SBI. Simulations used in the first step
are recycled for score compression, which is necessary for the second step. As a proof of concept,
we apply our framework to a prey–predator model built upon the Lotka–Volterra equations and
involving complex observational processes.

Keywords: Bayesian inference; Bayesian hierarchical models; simulation-based inference

1. Introduction

Model misspecification is a long-standing problem for Bayesian inference: when the
model differs from the actual data-generating process, posteriors tend to be biased and/or
overly concentrated. In this paper, we are interested the problem of model misspecification
for a particular, but common, class of Bayesian hierarchical models (BHMs): those that
involve a latent function, such as the primordial power spectrum in cosmology (e.g., [1]) or
the population model in genetics (e.g., [2]).

Simulation-based inference (SBI) only provides the posterior of top-level target pa-
rameters and marginalizes over all other latent variables of the BHM. Alone, it is therefore
unable to diagnose whether the model is misspecified. Key insights regarding the issue
of model misspecification can usually be obtained from the posterior distribution of the
latent function, as there often exists an independent theoretical understanding of its values.
An approximate posterior for the latent function (a much higher-dimensional quantity
than the target vector of parameters) can be obtained using SELFI (simulator expansion
for likelihood-free inference, [1]), an approach based on the likelihood of an alternative
parametric model, constructed by linearizing model predictions around an expansion point.

This paper presents a framework that combines SELFI and SBI while recycling the
necessary simulations. The simulator is first linearized to obtain the SELFI posterior of the
latent function. Next, the same simulations are used for data compression to the score
function (the gradient of the log-likelihood with respect to the parameters), and the final
SBI posterior of target parameters is obtained.

2. Method
2.1. Bayesian Hierarchical Models with a Latent Function

In this paper, we assume a given BHM consisting of the following variables: ω ∈
RN (vector of N target parameters), θ ∈ RS (vector containing the values of the latent
function θ at S support points), Φ ∈ RP (data vector of P components), and ω̃ ∈ RN
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(compressed data vector of size N). We typically expect N ∼ O(5− 10) target parameters,
S ∼ O(102 − 103) support points; P can be any number and as large as O(107) for complex
data models. We further assume that ω and θ are linked by a deterministic function T ,
usually theoretically well-understood and numerically cheap. Therefore, the expensive and
potentially misspecified part of the BHM is the probabilistic simulator linking the latent
function θ to the data Φ, P (Φ|θ). The deterministic compression step C linking Φ to ω̃ is
discussed in Section 2.4.

2.2. Latent Function Inference with SELFI

The first part of the framework proposed in this paper is to infer the latent function θ
conditional on observed data ΦO. This is an inference problem in high dimension (S, the
number of support points for the latent function θ), which means that usual SBI frameworks,
allowing a general exploration of parameter space, will fail and that stronger assumptions
are required. SELFI [1] relies upon the simplification of the inference problem around an
expansion point θ0.

The first assumption is a Taylor expansion (linearization) of the mean data model
around θ0. Namely, if Φ̂θ ≡ E[Φθ] is the expectation value of Φθ, where Φθ are simula-
tions of Φ given θ (i.e., Φθ x P (Φ|θ)), we assume that

Φ̂θ ≈ f0 +∇f0 · (θ− θ0) ≡ f(θ), (1)

where f0 ≡ Φ̂θ0 is the mean data model at the expansion point θ0, and ∇f0 is the gradient
of f0 at the expansion point (for simplification, we note ∇f0 = ∇θf0, where the gradient is
taken with respect to θ). The second assumption is that the (true) implicit likelihood of the
problem is replaced by a Gaussian effective likelihood: P (ΦO|θ) ≡ exp

[
ˆ̀
θ(θ)

]
with

− 2ˆ̀
θ(θ) ≈ log|2πC0|+ [ΦO − f(θ)]ᵀC−1

0 [ΦO − f(θ)], (2)

where C0 is the data covariance matrix at the expansion point θ0.
The SELFI framework is fully characterized by f0, C0, and ∇f0, which, if unknown,

can be evaluated through forward simulations only. The numerical computation requires
N0 simulations at the expansion point (to evaluate the empirical mean f0 and empirical
covariance matrix C0), and Ns simulations in each direction of parameter space (to evaluate
the empirical gradient∇f0 via first-order forward finite differences). The total is N0 + Ns ×
S simulations; N0 and Ns should be of the order of the dimensionality of the data space P,
giving a total cost of O(& P(S + 1)) model evaluations.

To fully characterize the Bayesian problem, one requires a prior on θ, P (θ). Any
prior can be used if one is ready to use numerical techniques to explore the posterior (such
as standard Markov Chain Monte Carlo), using the linearized data model and Gaussian
effective likelihood. However, a remarkable analytic result with SELFI is that, if the prior is
Gaussian with a mean equal to the expansion point θ0, i.e.,

− 2 log P (θ) ≡ log|2πS|+ (θ− θ0)
ᵀS−1(θ− θ0), (3)

then the effective posterior is also Gaussian:

− 2 log P (θ|ΦO) ≈ log|2πΓ|+ (θ− γ)ᵀΓ−1(θ− γ). (4)

The posterior mean and covariance matrix are given by

γ ≡ θ0 + Γ (∇f0)
ᵀ C−1

0 (ΦO − f0), (5)

Γ ≡
[
(∇f0)

ᵀ C−1
0 ∇f0 + S−1

]−1
(6)

(see [1] Appendix B, for a derivation). They are fully characterized by the expansion
variables θ0, f0, C0, and ∇f0, as well as the prior covariance matrix S.
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2.3. Check for Model Misspecification

The SELFI posterior can be used as a check for model misspecification. Visually
checking the reconstructed γ and Γ can yield interesting insights, especially if the latent
function has some properties (such as an expected shape, periodicity, etc.) to which the
data model may be sensitive if misspecified (see Section 4.2).

If a quantitative check for model misspecification is desired, we propose using the
Mahalanobis distance between the reconstruction γ and the prior distribution P (θ), defined
formally by

dM(θ,θ0|S) ≡
√
(θ− θ0)

ᵀS−1(θ− θ0). (7)

The value of dM(γ,θ0|S) for the SELFI posterior mean γ can be compared to an ensemble
of values of dM(θω,θ0|S) for simulated latent functions θω = T (ω), where samplesω
are drawn from the prior P (ω).

2.4. Score Compression and Simulation-Based Inference

Having checked the BHM for model misspecification, we now address the second
part of the framework, aimed at inferring top-level parametersω given observations. SBI
is known to be difficult when the dimensionality of the data space P is high. For this
reason, data compression is usually necessary. Data compression can be thought of as
an additional layer at the bottom of the BHM, made of a deterministic function C acting
on Φ. In practical scenarios, data compression shall preserve as much information about
ω as possible, meaning that compressed summaries C (Φ) shall be as close as possible to
sufficient summary statistics of Φ, i.e., P (ω|C (Φ)) = P (ω|Φ).

Here, we propose to use score compression [3]. We make the assumption (for com-
pression only, not for later inference) that P (Φ|ω) is Gaussian distributed: P (ΦO|ω) ≡
exp

[
ˆ̀
ω(ω)

]
where ˆ̀

ω(ω) = ˆ̀
θ(T (ω)) (see Equation (2)). The score function ∇ω ˆ̀

ω0 is
the gradient of this log-likelihood with respect to the parametersω at a fiducial pointω0
in parameter space. Using as fiducial point the values that generate the SELFI expansion
point (i.e., ω0 such that θ0 = T (ω0)), a quasi maximum-likelihood estimator for the
parameters is ω̃O ≡ ω0 + F−1

0 ∇ω ˆ̀
ω0, where the Fisher matrix F0 and the gradient of

the log-likelihood are evaluated atω0. Compression of ΦO to ω̃O yields N compressed
statistics that are optimal in the sense that they preserve the Fisher information content of
the data [3].

In our case, the covariance matrix C0 is assumed not to depend on parameters
(∇ωC0 = 0), and the expression for C (Φ) is therefore

C (Φ) = ω̃ ≡ω0 + F−1
0

[
(∇ωf0)

ᵀC−1
0 (Φ− f0)

]
. (8)

The Fisher matrix of the problem further takes a simple form:

F0 ≡ −E
[
∇ω∇ω ˆ̀

ω0(ω)
]
= (∇ωf0)

ᵀC−1
0 ∇ωf0. (9)

We therefore need to evaluate

∇ωf0 = ∇f0 ·
∂T (ω)

∂ω

∣∣∣∣
ω=ω0

. (10)

Importantly, in Equations (8)–(10), C0 and ∇f0 have already been computed for latent
function inference with SELFI. The only missing quantity is the second matrix in the
right-hand side of Equation (10), that is, ∇ωT0, the gradient of T evaluated at ω0. If
unknown, its computation (e.g., via finite differences) does not require any more simulation
of Φ. It is usually easy, as there are only N directions in parameter space and T is the
numerically cheap part of the BHM. We note that, because we have to calculate F0, we can
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easily get the Fisher–Rao distance between any simulated summaries ω̃ and the observed
summaries ω̃O,

dFR(ω̃, ω̃O) ≡
√
(ω̃− ω̃O)

ᵀF0(ω̃− ω̃O), (11)

which can be used by any non-parametric SBI method.
We specify a prior P (ω) (typically peaking at or centered on ω0, for consistency

with the assumptions made for data compression). Having defined C , we now have a full
BHM that mapsω (of dimension N) to compressed summaries ω̃ (of size N) and has been
checked for model misspecification for the part linking θ to Φ. We can then proceed with
SBI via usual techniques. These can include likelihood-free rejection sampling, but also
more sophisticated techniques such as DELFI (e.g., [4,5]) or BOLFI (e.g., [6–8]).

3. Lotka–Volterra BHM
3.1. Lotka–Volterra Solver

The Lotka–Volterra equations describe the dynamics of an ecological system in which
two species interact, as a pair of first-order non-linear differential equations:

dx
dt

= αx− βxy, (12)

dy
dt

= δxy− γy. (13)

where x(t) is the number of prey at time t, and y(t) is the number of predators at time t.
The model is characterized byω = (α, β, γ, δ), a vector of four real parameters describing
the interaction of the two species.

The initial conditions of the problem {x(0), y(0)} = {x0, y0} are assumed to be exactly
known. Throughout the paper, timestepping and number of timesteps are fixed: ti = i∆t
for i ∈ J0, S/2K.

The expression T is an algorithm that numerically solves the ordinary differential
equations. For simplicity, we choose an explicit Euler method: for all i ∈ J0, S/2− 1K,

x(ti+1) = x(ti)× [1 + α− βy(ti)]× ∆t, (14)

y(ti+1) = y(ti)× [1 + δx(ti)− γ]× ∆t. (15)

The latent function θ(t) is a concatenation of x(t) and y(t) evaluated at the timesteps of
the problem. The corresponding vector is θ ≡

{
{x(ti)}0≤i<S/2,{y(ti)}0≤i<S/2

}
of size S.

3.2. Lotka–Volterra Observer
3.2.1. Full Data Model

To go from θ to Φ, we assume a complex, probabilistic observational process of prey
and predator populations, later referred to as “model A” and defined as follows.

Signal. The (unobserved) signal sz is a delayed and non-linearly perturbed observa-
tion of the true population function for species z ∈ {x, y}, modulated by some seasonal
efficiency ez(t). Formally, sx(0) = x0, sy(0) = y0, and for i ∈ J0, S/2− 1K,

sx(ti+1) = ex(ti)
[

x(ti)− px(ti)y(ti) + qx(ti)
2
]
, (16)

sy(ti+1) = ey(ti)
[
y(ti) + px(ti)y(ti)− qy(ti)

2
]
. (17)

These equations involve two parameters: p accounts for hunts between ti and ti+1 (tem-
porarily making prey more likely to hide and predators more likely to be visible), and q
accounts for the gregariousness of prey and independence of predators. The free functions
ex(t) and ey(t), valued in [0, 1], describe how prey and predators are likely to be detectable
at any time, accounting, for example, for seasonal variation (hibernation, migration).
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Noise. The signal sz is subject to additive noise, giving a noisy signal uz(t) = sz(t) +
nD

z (t) + nO
z (t), where the noise has two components:

• Demographic Gaussian noise with zero mean and variance proportional to the true un-
derlying population, i.e., nD

x (t) x G [0, rx(t)] and nD
y (t) x G [0, ry(t)]. The parameter

r gives the strength of demographic noise.

• Observational Gaussian noise that accounts for observer efficiency, coupling prey and
predators such that

(
nO

x (t)
nO

y (t)

)
x G

[(
0
0

)
, s
(

y(t) t
√

x(t)y(t)
t
√

x(t)y(t) x(t)

)]
. (18)

The parameter s gives the overall amplitude of observational noise, and the parameter
t controls the strength of the non-diagonal component (it should be chosen such that
the covariance matrix appearing in Equation (18) is positive semi-definite).

Censoring. Finally, observed data are a censored and thresholded version of the
noisy signal: for each timestep ti, Φz(ti) = mz(ti) ×min[uz(ti), Mz], where Mz is the
maximum number of prey or predators that can be detected by the observer, and mz is a
mask (taking either the value 0 or 1). Masked data points are discarded. The data vector
is Φ =

{
{Φx(ti)},

{
Φy(ti)

}}
. It contains P ≤ S elements depending on the number of

masked timesteps for each species z (formally, P = ∑S/2−1
i=0

(
δ

mx(ti),1
K + δ

my(ti),1
K

)
, where δK

is a Kronecker delta symbol).
All of the free parameters (p, q, r, s, t, Mx, My) and free functions (ex(t), ey(t), mx(t),

my(t)) appearing in the Lotka–Volterra observer data model described in this section are
assumed known and fixed throughout the paper. Parameters used are x0 = 10, y0 = 5,
p = 0.05, q = 0.01, r = 0.15, s = 0.05, t = 0.2.

3.2.2. Simplified Data Model

In this section, we introduce “model B”, a simplified (misspecified) data model linking
θ to Φ. Model B assumes that underlying functions are directly observed, i.e., sz(t) = z(t).
It omits observational noise, such that uz(t) = sz(t) + nD

z (t). In model B, parameters
p, q, s, and t are not involved, and the value of r (strength of demographic noise) can
be incorrect (we used r = 0.105). Finally, model B fails to account for the thresholds:
Φz(t) = mz(t)uz(t).

4. Results

In this section, we apply the two-step inference method described in Section 2 to the
Lotka–Volterra BHM introduced in Section 3. We generate mock data ΦO from model A,
using ground truth parametersωgt = (αgt, βgt, γgt, δgt) = (0.55, 0.2, 0.2, 0.05). We assume
that ground truth parameters are known a priori with a precision of approximately 3%. Con-
sistently, we choose a Gaussian prior P (ω) with meanω0 = (0.5768, 0.1963, 0.1968, 0.0484)
and diagonal covariance matrix diag(0.01732, 0.00592, 0.00592, 0.00152).

4.1. Inference of Population Functions with SELFI

We first seek to reconstruct the latent population functions x(t) and y(t), conditional
on the data ΦO, using SELFI. We choose as an expansion point the population functions
simulated from the mean of the prior on ω, i.e., θ0 = T (ω0). We use N0 = 150 and
Ns = 100; the computational workload is therefore a fixed number of 10, 150 simulations
for each model. It is known a priori and perfectly parallel.

We adopt a Gaussian prior P (θ) and combine it with the effective likelihood to obtain
the SELFI effective posterior P (θ|ΦO). Figure 1 (left panels) shows the inferred population
functions γ in comparison with the prior mean and expansion point θ0 and the ground truth
θgt. The figure shows 2σ credible regions for the prior and the posterior (i.e., 2

√
diag(S)
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and 2
√

diag(Γ), respectively). The full posterior covariance matrix Γ for each model is
shown in the rightmost column of Figure 1.
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Figure 1. SELFI inference of the population function θ given the observed data ΦO, used as a check
for model misspecification. Left panels: the prior mean and expansion point θ0 and the effective
posterior mean γ are represented as yellow and green/red lines, respectively, with their 2σ credible
intervals. For comparison, simulations T (ω) withωx P (ω), and the ground truth θgt are shown
in grey and blue, respectively. Middle and right panels: the prior covariance matrix S and the
posterior covariance matrix Γ, respectively. The first row corresponds to model A (see Section 3.2.1)
and the second row to model B (see Section 3.2.2).

4.2. Check for Model Misspecification

The inferred population functions allow us to check for model misspecification. From
Figure 1, it is clear that model B fails to produce a plausible reconstruction of population
functions: model B breaks the (pseudo-)periodicity of the predator population function
y(t), which is a property required by the model. In the bottom left-hand panels, the red
lines differ in shape from fiducial functions T (ω) (grey lines), and the credible intervals
exclude the expansion point. On the contrary, with model A, the reconstructed population
functions are consistent with the expansion point. The inference is unbiased, as the ground
truth typically lies within the 2σ credible region of the reconstruction.

As a quantitative check, we compute the Mahalanobis distance between γ and P (θ)
(Equation (7)) for each model. We find that dM(γ,θ0|S) is much smaller for model A than
for model B (5.35 versus 12.54). The numbers can be compared to the empirical mean
among our set of fiducial populations functions, 〈dM(T (ωn),θ0|S)〉 = 9.43.

At this stage, we therefore consider that model B is excluded, and we proceed further
with model A.

4.3. Score Compression

As T is numerically cheap, we get ∇ωT0 via sixth-order central finite differences
around ω0, then obtain ∇ωf0 using Equation (10). This does not require any further
evaluation of the data model P (Φ|θ), as ∇f0 has already been computed.

Using Equations (8) and (9), we compress ΦO and obtain ω̃O = (0.7050, 0.2287, 0.1471, 0.0415).
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4.4. Inference of Parameters Using Likelihood-Free Rejection Sampling

As a last step, we infer top-level parameters ω given compressed summaries ω̃O.
As the problem studied in this paper is sufficiently simple, we rely on the simplest so-
lution for SBI, namely likelihood-free rejection sampling (sometimes also known as ap-
proximate Bayesian computation, e.g., [9]). To do so, we use the Fisher–Rao distance
between simulated ω̃ and observed ω̃O, which comes naturally from score compression
(see Equation (11)), and we set a threshold ε = 2. We draw samples from the prior P (ω),
simulate ω̃, then accept ω as a sample of P (ω|ω̃O) if dFR(ω̃, ω̃O) < ε, and reject it
otherwise.

In Figure 2, we find that the inference of top-level parameters is unbiased, with the
ground truthωgt (dashed lines) lying within the 2σ credible region of the posterior. We
observe that the data correctly drive some features that are not built into the prior, for
instance, the degeneracy between α and γ, respectively, the reproduction rate of prey and
the mortality rate of predators.
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Figure 2. Simulation-based inference of the Lotka–Volterra parameters ω = (α, β, γ, δ) given the
compressed observed data ω̃O. Plots in the lower corner show two-dimensional marginals of the
prior P (ω) (yellow contours) and of the SBI posterior P (ω|ω̃O) (green contours), using a threshold
ε = 2 on the Fisher–Rao distance between simulated ω̃ and observed ω̃O, dFR(ω̃, ω̃O). Contours
show 1, 2, and 3σ credible regions. Plots on the diagonal show one-dimensional marginal distributions
of the parameters, using the same color scheme. Dotted and dashed lines denote the position of
the fiducial point for score compressionω0 and of the ground truth parameters ωgt, respectively.
The scatter plots in the upper corner illustrate score compression for pairs of parameters. There, red
dots represent some simulated samples. Larger dots show some accepted samples (i.e., for which
dFR(ω̃, ω̃O) < ε), with a color map corresponding to the value of one component of ω̃. In the color
bars, pink lines denote the mean and 1σ scatter among accepted samples of the component of ω̃, and
the orange line denotes its value in ω̃O.
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5. Conclusions

One of the biggest challenges in statistical data analysis is checking data models
for misspecification, so as to obtain meaningful parameter inferences. In this work, we
described a novel two-step simulation-based Bayesian approach, combining SELFI and
SBI, which can be used to tackle this issue for a large class of models. BHMs to which
the approach can be applied involve a latent function depending on parameters and
observed through a complex probabilistic process. They are ubiquitous, e.g., in astrophysics
and ecology.

In this paper, we introduced a prey–predator model, consisting of a numerical solver
of the Lotka–Volterra system of equations and of a complex observational process of
population functions. As a proof of concept, we applied our technique to this model and to
a simplified (misspecified) version of it. We demonstrated successful identification of the
misspecified model and unbiased inference of the parameters of the correct model.

In conclusion, the method developed constitutes a computationally efficient and easily
applicable framework to perform SBI of BHMs while checking for model misspecification.
It allows one to infer the latent function as an intermediate product, then to perform
score compression at no additional simulation cost. This study opens up a new avenue
to increase the robustness and reliability of Bayesian data analysis using fully non-linear,
simulator-based models.
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