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Abstract: The entropic dynamics (ED) approach to quantum mechanics is ideally suited to address
the problem of measurement because it is based on entropic and Bayesian methods of inference that
have been designed to process information and data. The approach succeeds because ED achieves a
clear-cut separation between ontic and epistemic elements: positions are ontic, while probabilities
and wave functions are epistemic. Thus, ED is a viable realist ψ-epistemic model. Such models are
widely assumed to be ruled out by various no-go theorems. We show that ED evades those theorems
by adopting purely epistemic dynamics and denying the existence of an ontic dynamics at the
subquantum level.

Keywords: entopic dynamics; quantum measurement; realist psi-epistemic models; psi-ontology
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1. Introduction

A measurement is a physical process like any other and, therefore, its analysis should
cause no difficulties once a proper understanding of the relevant dynamics has been
achieved [1]. Nevertheless, the problem of quantum measurement has historically been
a source of endless controversy. It is intimately associated with most of those features of
quantum mechanics (QM) that make it so strange and fascinating (see, e.g., [2–5]). Does
the quantum state reflect incomplete information or is it something real and ontic ? If the
latter, can wave functions undergo a physical collapse during measurement? Alternatively,
if no collapses ever occur, and wave functions always obey the linear Schrödinger equation,
how could quantum measurements ever yield definite outcomes? How does one negotiate
the interface between the microscopic quantum world and the macroscopic classical world
of the measuring device? Do at least some privileged variables represent something real
with definite values at all times? Or, alternatively, are the values of all observables created
during the act of measurement? If so, how can one ever say that anything real exists when
nobody is looking?

Our first goal here is to address the problem of measurement from the perspective
of entropic dynamics (ED) [6,7]. The ED approach to QM is ideally suited to tackle the
questions above because it is based on entropic and Bayesian methods of inference that have
been designed to process information and data. (For a more detailed presentation, see [8].)
The success of the ED approach hinges on a clear ontological and epistemic commitment.
In ED, the positions of particles enjoy the privileged role of being the only ontic variables,
and all measurements are ultimately position measurements. In contrast, probabilities and
wave functions are fully epistemic in nature.

Indeed, while the position of a particle can be measured directly, other generic ob-
servables are treated very differently; they are never actually “measured”. The system of
interest is coupled to an ancillary system, and the “value” of a generic observable is only
indirectly inferred from the observed position of the ancilla’s “pointer” variable. Thus,
positions reflect real properties with definite values that are not created by the act of mea-
surement and, as we shall see, all other observables turn out to be epistemic because they
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reflect the properties of the wave function [9,10]. This explains how it is that their values
are “created” by the act of measurement.

Models such as ED that invoke ontic variables while the wave function remains an
epistemic object are described as “realist ψ-epistemic models”. In contrast, the various
descendants of Bohr’s Copenhagen interpretation that deny a definite quantum reality are
dubbed “anti-realist ψ-epistemic models”, while models such as the de Broglie–Bohm and
many-worlds models are called “realist ψ-ontic models”.

A number of powerful no-go theorems exist—the so-called ψ-ontology theorems [5]—
that rule out large families of ψ-epistemic “ontological” models [11–13] because they
disagree with QM (e.g., [11,14–25]. (The term ‘ontological models’ has been proposed as an
improved way to refer to the old ‘hidden-variable models’. The new term recognizes that
some “hidden” variables, such as positions, are observable and, therefore, not at all hidden.)
These no-go theorems have been interpreted as strong evidence in favor of “realist ψ-ontic
models”. However, ψ-epistemic models remain highly appealing, not least because they
trivially explain the infamous wave function collapse as a mere updating of probabilities
in the light of new data. Remarkably, fully developed realist ψ-epistemic models such as
ED are scarce [5]. To my knowledge, ED is the only such model that provides a detailed
reconstruction of the formalism of QM and claims to reproduce not just a fragment of
quantum phenomena but QM in its totality.

A second goal of this paper is to analyze how ED evades the consequences of ψ-
ontology theorems. Ontological models assume the existence of ontic variables. We
shall argue that they also implicitly assume the existence of some ontic dynamics at the
subquantum level. (The details of the dynamics need not be specified, and therein lies
the power and generality of the ψ-ontology theorems.) ED, on the other hand, makes a
commitment to ontic variables while denying them ontic dynamics; ED is a purely epistemic
dynamics of probabilities. There is no implication that particles move as they do because
they are pushed around by other particles or guided by an ontic pilot wave. Wave functions
guide our expectations about where particles might be found, but there is no mechanism
that accounts for any causal influence on the particles themselves. ED is a mechanics without
a mechanism.

Section 2 contains a brief overview of ED. In Section 3, I discuss the direct measurement
of microscopic positions, including their amplification to achieve observability at the
macroscopic level [9]. Then, in Section 4, I discuss how the use of more elaborate devices
allows us to define other non-position observables. I show how their “measurement” is
ultimately reduced to the direct measurement of positions, and I derive the associated Born
rule [9,26]. The special case of the von Neumann measurements provides an interesting
extension [10]. Thus far, these sections have reviewed our previous work on this subject. In
Section 5, I present new material that addresses the question of how ED manages to evade
the various ψ-ontology theorems.

2. Brief Review of Entropic Dynamics

To set the context for the rest of the paper, we review the main ideas that form the
foundation of entropic dynamics. For a detailed account, see [6–8]. Here is a brief summary:

Ontological clarity: Particles have definite but unknown positions {xA} collectively
denoted by x. These are the ontic microstates. (A is a composite index, A = (n, a), where
n = 1 . . . N labels the particles and a = 1, 2, 3 the three spatial coordinates.) The particles
follow continuous trajectories and the goal is to predict the probability ρ(x) of the positions
x on the basis of some limited information.

ED is a dynamics of probabilities: The probability of a step from x to a neighboring
x′, P(x′|x), is found by maximizing its entropy relative to a prior that enforces short steps
and subject to appropriate constraints that introduce directionality and correlations. The
main constraint involves a function φ(x) that plays three separate roles: first, it is related to
a constraint in the maximization of entropy; second, if the probabilities ρ(x) are considered
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as generalized coordinates, then φ(x) is the momentum that is canonically conjugate to
them; and third, φ(x) is the phase of the quantum wave function, ψ = ρ1/2eiφ/h̄.

Entropic time: The epistemic dynamics of probabilities inevitably lead to an epistemic
notion of time. The construction of time involves the introduction of the concept of an
instant, the notion that the instants are suitably ordered, and a convenient definition of
duration. By its very construction, there is a natural arrow of entropic time.

The evolution of probabilities is found by the accumulation of the short steps de-
scribed by P(x′|x). This results in a continuity equation that is local in configuration space
but leads to non-local correlations in physical space,

∂tρt(x) = −∂A

(
ρtvA

)
where vA = mAB∂Bφ . (1)

Notation: ∂A = ∂/∂xA; mAB = mnδAB is the mass tensor, mn are the particle masses,
and mAB = δAB/mn is the inverse mass tensor.)

Symplectic structure: For a suitable choice of a functional H̃[ρ, φ], the continuity
Equation (1) can be written in Hamiltonian form,

∂tρt(x) =
δH̃

δφ(x)
, (2)

which suggests choosing (ρ, φ) as a pair of canonically conjugate variables. The epistemic
phase space (or e-phase space) {ρ, φ} has a natural symplectic structure with symplectic
two-form Ω.

Information geometry: The e-phase space is assigned a metric structure with metric
tensor G based on the information metric of the statistical manifold {ρ} of probabilities
ρ(x). The joint presence of symplectic and metric structures implies the existence of
a complex structure and suggests the introduction of wave functions ψ = ρ1/2eiφ/h̄ as
complex coordinates. (For a discussion of the subtleties concerning the correct choice of the
spaces that are cotangent to the manifold {ρ} and of the metric structure associated with
e-phase space {ρ, φ}, see [7].)

The epistemic dynamics that preserve the symplectic structure in the sense of vanish-
ing Lie derivative, £HΩ = 0, obey Hamilton’s equations,

∂tρ(x) =
δH̃

δφ(x)
, ∂tφ(x) = − δH̃

δρ(x)
. (3)

If we further require the preservation of the metric structure, £HG = 0, and of the normal-
ization of probabilities we find that H̃ is constrained to be bilinear in ψ and ψ∗,

H̃[ψ, ψ∗] =
∫

d3N xd3N x′ ψ∗(x)Ĥ(x, x′)ψ(x′) , (4)

which implies that (3) can be rewritten as a linear Schrödinger equation,

ih̄
dψ(x)

dt
=
∫

d3N x′ Ĥ(x, x′)ψ(x′) . (5)

The particular form of the Hamiltonian kernel Ĥ(x, x′) is determined by requiring that it
reproduce the ED evolution of probabilities, Equation (1). In standard notation we find

ih̄∂tψ = ∑n
−h̄2

2mn
∇2

nψ + V(x)ψ . (6)

Entropic dynamics are the purely epistemic dynamics of (ρ, φ) or, equivalently, of ψ;
there is no underlying ontic dynamics of x. Compared to other models of QM, ED is fairly
conservative in that it confers ontic status to configurational variables such as position
and a clear epistemic status to probabilities, phases, and wave functions. However, ED is
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radically non-classical in that it denies the ontic status of dynamics and of all observables
(energy, momentum, etc.) except position.

Hilbert space: To conclude the reconstruction of QM, we can take full advantage of
the linearity of (6) and introduce Hilbert spaces and the Dirac notation:

|ψ〉 =
∫

d3N x |x〉ψ(x) , ψ(x) = 〈x|ψ〉 , and Ĥ(x, x′) = 〈x|Ĥ|x′〉 . (7)

3. Measuring Position: Amplification

All measurements are position measurements. The measurement of the position of
a microscopic particle is conceptually straightforward because the particle already has a
definite position x. The issue of inferring x is not different from the way data information is
handled in any other Bayesian inference problem. There is, however, the technical problem
of amplifying microscopic details so they can become macroscopically observable. This
is usually handled with a detection device set up in an initial unstable equilibrium. For
example, QM allows us to calculate the probability P(a|x) that a particle at x will ionize
a neighboring atom located at a. In a bubble chamber, the ionized atom will trigger the
formation of a bubble centered at a; in a photographic emulsion, the ion will trigger the
formation of a silver crystallite centered at a. More generally, the particle activates the
amplifying system by inducing a cascade reaction that leaves the amplifier in a definite
macroscopic final state described by some “pointer” variable a.

The goal of the amplification process is to allow us to infer the microscopic position x
from the observed macroscopic position a of the pointer variable. Incidentally, the latter is
just a classical variable in the sense that its dynamics can, to an excellent approximation, be
described by the classical limit of quantum theory [27]. Once the likelihood function P(a|x)
is given, the value x can be inferred following a standard application of Bayes rule,

P(x|a) = P(x)
P(a|x)
P(a)

. (8)

In practice, life is more complicated, and the likelihood function will be distorted and
smeared by spurious correlations and noise. Successful measurement always involves, of
course, a skilled experimentalist who will design the device so that those unwanted effects
will be minimized and controlled.

The point of these considerations is to emphasize that the measurement of position is
conceptually straightforward and that there is nothing intrinsically quantum mechanical
about the amplification process.

4. “Measuring” Other Observables and the Born Rule

Position is easy because it is an ontic quantity. Next, we tackle observables other
than position: how they are defined and how they are measured [9,26]. For notational
convenience, we initially consider the case of a single particle that lives on a lattice; the
measurement of its position leads to a discrete set xk of possible outcomes. The translation
from continuous to discrete positions is straightforward,

ψ(x) = ρ1/2(x)eiφ(x)/h̄ becomes ψk = p1/2
k eiφk/h̄ , (9)

and
ρ(x) d3x = |〈x|ψ〉|2 d3x becomes pk = |〈xk|ψ〉|2 . (10)

If the state is
|ψ〉 = ∑k ck|xk〉 then pk = |〈xk|ψ〉|2 = |ck|2 . (11)

Since position is the only ontic quantity, it is not strictly necessary to define other observ-
ables except that they turn out to be convenient to discuss more complex experiments
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in which the particle is subjected to additional interactions, such as magnetic fields or
diffraction gratings, before it reaches the position detectors.

The fact that measurements are dynamical processes means that the interactions within
a complex measurement deviceM are described by a linear and unitary evolution ÛM
given by a Hamiltonian ĤM. The particle will be detected with certainty at position xk
provided it was initially in a state |sk〉 such that

ÛM|sk〉 = |xk〉 . (12)

Since the set {|xk〉} is orthonormal and complete, the corresponding set {|sk〉} is also
orthonormal and complete,

〈sj|sk〉 = δjk and ∑k |sk〉〈sk| = Î . (13)

To find the effect of the complex deviceM on a generic (normalized) initial state |ψ〉,
we express it in the {|sk〉} basis,

|ψ〉 = ∑k ck|sk〉 , (14)

where ck = 〈sk|ψ〉. The state |ψ〉 evolves through M according to ÛM so that when it
reaches the actual position detectors the new state is

ÛM|ψ〉 = ∑k ckÛM|sk〉 = ∑k ck|xk〉 . (15)

According to the Born rule for position measurements, Equation (11), the probability
of finding the particle at the position xk is

pk = |ck|2 = |〈sk|ψ〉|2 . (16)

In words: The probability that the particle in the initial epistemic state |ψ〉 is later found
at position xk is |ck|2, and the (suitably amplified) position xk plays the role of a discrete
pointer variable. (The generalization to continuous variables spaces is straightforward [26]).
The argument above illustrates the main idea, but it also raises the inevitable question:
What, if anything, has been “measured” here? [1]. The answer is tricky.

Note that the particle in the initial epistemic state |ψ〉 has been detected in an ontic
state xk as if it had earlier been in the epistemic state |sk〉. This process is usually described
in a slightly different language that unfortunately obscures the distinction between the
ontic nature of xk and the epistemic nature of |xk〉 (or, more generally, of the amplitude
ψk = 〈xk|ψ〉). It is said that the particle is detected in state |xk〉 as if it had earlier been in the state
|sk〉. One can further obscure the language by de-emphasizing the inner workings of the
complex device, forgetting the dynamics and treating the detector as a black box. The result
is a more concise but more misleading statement: the particle has been “detected” in the state
|sk〉. Continuing along the same lines leads us to adopt the language that is standard in
QM textbooks: the probability that the particle in state |ψ〉 is “detected” in state |sk〉 is |〈sk|ψ〉|2,
which reproduces Born’s rule for a generic measurement deviceM. However, by now, the
real meaning of what has been ‘detected’ lies buried deep underground.

The same complex detectorM can be used to “measure” all operators of the form

M̂ = ∑k αk|sk〉〈sk| (17)

where the eigenvalues αk are arbitrary (possibly complex!) scalars. Note that when we say
we have detected the particle at xk as if it had earlier been in state |sk〉, we are absolutely
not implying that the particle was in the particular epistemic state |sk〉—this is just a figure
of speech. The actual epistemic state was |ψ〉 not |sk〉. When the system is “detected in
|sk〉” the standard language is that the outcome of the measurement is the eigenvalue αk,
which establishes the eigenvector-eigenvalue connection. It is then clear that the “outcome”
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αk was not a pre-existing value, and it is in this sense that one says that the value αk was
“created by the act of measurement”.

This point deserves to be stated more explicitly: sentences such as “the particle has
momentum ~p ” or “the particle has energy E” are to be recognized as mere linguistic
shortcuts that convey information about various components of the wave function before
the particle enters the complex detector. Therefore, strictly speaking, there is no such thing
as the momentum or the energy of the particle: the momentum and the energy are not
properties of the particle but properties of special epistemic states.

In the standard language one refers to the operator M̂ as representing an “observ-
able” and it is common to attribute to its eigenvalues and eigenvectors the status of being
ontic—that is, of having actual physical properties. This is not mere abuse of language; in
the ED framework, it is just plain wrong. Since what one is actually doing is inferring prop-
erties of the wave function from measurements of position, a more appropriate terminology
would be to refer to M̂ as an “inferable” [10].

To summarize: In the standard interpretation of quantum mechanics, Born’s rule for
generic measurements is a postulate. In ED, it is the natural consequence of unitary time
evolution and the hypothesis that all measurements are ultimately position measurements.

An Illustration: Von Neumann Measurements

So far, we have just discussed measurements that rely on the direct detection of
the position of the particle (and its subsequent amplification). One can substantially
enlarge the class of useful experiments by considering complex setups in which one infers
properties of one system indirectly by measuring the position of another system—the
pointer variable—with which the system has interacted. Nothing in this section is original
material; it is included merely as a purely pedagogical illustration of the fact that all
measurements are position measurements.

The system of interest is composed of one or many particles; its ontic state is x = {xn},
and its epistemic state is |ψ〉. The pointer device is also a particle; its ontic state is X, and its
epistemic state is |π〉. The interaction between the system and the pointer is modelled by
the Hamiltonian

ĤM = −g(t)P̂M̂ , (18)

where M̂ = ∑k αk|sk〉〈sk| is the operator to be “measured”, and P̂ is the operator that
generates translations of the pointer states,

e−iP̂α/h̄|X〉 = |X + α〉 . (19)

The function g(t) measures the strength of the interaction. We make the usual assumptions:
(a) that

∫
g(t)dt = 1; (b) that g(t) vanishes before and after the measurement; and (c) that

while the measurement lasts, g(t) is large enough that ĤM is a good approximation to the
full Hamiltonian.

The pointer is set to its initial “ready” position near Xi = 0 with some uncertainty σπ ,

|π〉 = NX

∫
dXi e−X2

i /4σ2
π |X〉 , (20)

where NX = (2πσ2
π)
−3/4 is a normalization constant. The initial state of the system is

|ψ〉 = ∑k ck|sk〉. As a result of the interaction, the system and pointer evolve according to

UM|ψπ〉 = exp
(
− i

h̄

∫
ĤMdt

)
|ψ〉|π〉 = exp

(
i
h̄

P̂M̂
)
|ψ〉|π〉 , (21)

and become entangled. Using (18)–(21), we find

UM|ψπ〉 = NX ∑k ck

∫
dX f e−(X f−αk)

2/4σ2
π |sk〉|X f 〉 , (22)
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which shows that the probability of the pointer position X has been shifted from an initial
Gaussian centered at Xi ≈ 0 to a final mixture of Gaussians centered at X f ≈ αk,

Pr(X f ) = ∑k |ck|2
1

(2πσ2
π)3/2

e−(X f−αk)
2/2σ2

π . (23)

When σπ is small and the Gaussian distributions are neatly resolved, we have a “strong” or
“von Neumann” measurement. The conclusion is that measuring the final pointer position
X f allows us to infer the eigenvalue αk. (See the Appendix A for more details.)

When the Gaussian distributions overlap significantly, the measurement is said to be
“weak”. Such weak measurements do not allow us to infer the eigenvalues αk, but they can
nevertheless still be useful because they allow us to infer other quantities such as the phase
or even the wave function itself (for more on this see [10] and references therein).

5. Evading the No-Go Theorems

The no-go theorems that rule out large families of realistic ψ-epistemic models are
formulated in a framework of “ontological models” that originates with Bell [11]. The idea
is that prior to an actual measurement, the system undergoes some sort of preparation
procedure P , and the result of the measurementM is to yield outcomes labeled k (inferred
from either xk or X f in the previous section). The goal is to find the probability p(k|M,P)
of an outcome k for given P andM.

In realist models, the ontic state of the system is denoted by variables λ. In ED,
for example, λ consists of the particle and pointer positions x and X, while in the de
Broglie–Bohm model, λ consists of both x, X, and ψ. It is assumed that the preparation
procedure P may determine ψ completely, but it need not yield complete control over
λ—P , it only determines the probability distribution, p(λ|P). Thus, as the system enters
the measuring deviceM, we are not only uncertain about the future outcome k but also of
the initial values λi just beforeM. This means that the relevant probability to be discussed
is the joint distribution p(k, λi|M,P), and the probability of the outcome k is given by
marginalizing over λi, ∫

dλi p(k, λi|M,P) = p(k|M,P) . (24)

So far, we have just used the rules of probability theory, which, being of universal applica-
bility, also apply to QM. The desired goal is to find realist models such that the distribution
on the right of (24) matches the predictions of QM such as Equation (16).

To proceed further, we write (24) as∫
dλi p(λi|M,P)p(k|M,P , λi) = p(k|M,P) (25)

and consider the two factors on the left separately. Concerning the first factor, p(λi|M,P),
we shall assume that the distribution of λi is settled by the earlier choice of preparation
P and is independent of whatever choice one might later make for the measurement
deviceM,

p(λi|M,P) = p(λi|P) . (26)

This is a statement of causality [14]: conditional on P , λi is independent of the later choice
ofM.

The crucial assumption that defines what [12,13] call an “ontological model” concerns
the second factor, the response function p(k|M,P , λi). The assumption is that the distribu-
tion of outcomes depends only on the ontic state λi after the preparation P but before the
deviceM and on the actual measurement performed,

p(k|M,P , λi) = p(k|M, λi) . (27)
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This assumption does not necessarily violate QM. For example, in the de Broglie–Bohm
model, λi = (xi, Xi, ψ),

p(k|M,P , λi) = p(k|M,P , xi, Xi, ψ) = p(k|M, xi, Xi, ψ) , (28)

which states that, conditional on the information about P that is codified into ψ, all other
details about P not already conveyed by ψ are irrelevant.

However, in a ψ-epistemic ontological model ψ is not included in λ. The assumption
there is that conditional on λi, for any choice ofM, the outcome k is completely independent
of all details about P , including any information that might be codified into the epistemic
ψ. It is these ψ-epistemic ontological models that are shown by all the no-go theorems [5,11–25] to
disagree with QM.

ED satisfies the causality assumption (26) but violates (27), and, therefore, ED is not an
ontological model in the sense of [11–13], which makes ED immune to all the no-go theorems.
More explicitly, the situation with ED is the following: the ontic variables are positions of
particles and/or pointers, λ = (x, X), and the information about the preparation procedure
P is fully conveyed by the wave function ψ(xi)π(Xi). Then, the causality assumption,
Equation (26), reads

p(λi|M,P) = p(xi, Xi|ψ) = |ψ(xi)π(Xi)|2 , (29)

where λi = (xi, Xi) are position values before entering the deviceM. Next, since ED is a
purely epistemic dynamics, conditional on the epistemic wave function the distribution of k is
independent of the ontic variables (xi, Xi)—the latter have no causal influence on the future
outcome k. Thus, instead of (27), in ED the response function p(k|M,P , λi) is

p(k|M,P , xi, Xi) = p(k|M, ψ, π) . (30)

Substituting (29) and (30) into (25) yields

p(k|M,P) = p(k|M, ψ, π) (31)

which agrees with the probability predicted by quantum mechanics. (See the Appendix A
for further details.)

It is worth emphasizing the difference between response functions in ontological
models, Equation (27), and in ED, Equation (30): ontological models assume that all the
information about the preparation that is relevant for the measurement is carried by the
ontic variables λi. This means that lurking in the background there is an implicit assumption
that ontic dynamics exist that relate the earlier values of λi as the system entersM to the
later values λ f that result in the outcome k. The power of the no-go theorems lies in the
fact that the details of the ontic dynamics remain unspecified—the ontic dynamics could be
deterministic or stochastic, they could be local or non-local, and so on—but they assume
that some ontic dynamics must exist.

ED, on the other hand, makes a commitment to ontic states without making the
associated commitment to an ontic dynamics; only the epistemic variables (ψ, π) appear on
the right hand side of (30). In ED, the epistemic wave functions do not guide the particles;
they only guide our expectations about where particles might be found. ED represents
epistemic mechanics without an ontic mechanism.

Remark 1. Beyond the general framework of ontological models, the various no-go theorems depend
on additional assumptions. It is these additional assumptions that have been offered as possible
loopholes (see, e.g., [5]). We emphasize that ED by-passes the issue of additional assumptions and
evades the ontological models framework at the deeper level of the epistemic vs. ontic nature of the
dynamics.
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Remark 2. In [13], ψ-epistemic models are defined as those that fail to be ψ-ontic. This definition
would in principle allow ψ-epistemic models based on exotic probability theories [5]. The ED
approach shows that such generalizations are not necessary; there is no need for exotic or even
quantum probabilities, for quantum logic, for excess ontological baggage, or for retrocausality. ED is
ψ-epistemic in that ψ(x) is directly related to the probabilities ρ(x), that is, to knowledge and beliefs,
and to the conjugate momenta φ(x) that codify the information that updates those probabilities.

Remark 3. The ideas above could have been formulated in a more general setting of preparations
that only determine a density matrix and measurements that are described by positive operator
valued measures (POVMs). However, such increased generality has no effect on the conclusions and
would only serve to obscure the main ideas.

6. Conclusions

The solution of the problem of measurement within the ED framework hinges on
two points: first, entropic quantum dynamics is a theory of inference. The issue of an
unacceptable dichotomy of two modes of evolution—continuous unitary evolution versus
discrete wave function collapse—is resolved. The two modes of evolution correspond to
two modes of updating—either by a continuous maximization of an entropy or a discontin-
uous application of Bayes’ rule—both of which, within the entropic inference framework,
are unified into a single entropic updating rule [8,28].

The second point is the privileged role of position—particles (and also pointer vari-
ables) have definite positions and therefore their premeasurement values are merely re-
vealed and not created by the act of measurement. Other “inferables” are introduced as a
matter of linguistic convenience to describe more complex experiments. These inferables
turn out to be attributes of the epistemic wave functions and not of the ontic particles; their
“values” are indeed “created” by the dynamical process of measurement.

ED unscrambles Jaynes’ proverbial omelette by imposing a clear-cut separation be-
tween its ontic and epistemic elements. ED is a conservative theory in that it attributes a
definite ontic status to things such as particles (or fields) and a definite epistemic status
to probabilities and wave functions without invoking exotic probabilities; it is radically
non-classical in that it denies the ontic status of dynamics and of all observables except
position.
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Appendix A

Here, we offer a more detailed analysis of Equation (31).

The direct measurement of position

The outcomes of the measurement are k = xk; there is no pointer variable X, and the
corresponding π(X) can be omitted. The product of (29) and (30) is

p(λi|M,P)p(k|M,P , λi) = |ψ(xi)|2 p(k|M, ψ) = |ψ(xi)|2|〈sk|ψ〉|2 (A1)



Phys. Sci. Forum 2022, 1, 36 10 of 11

where we used (16). Then, (25) is

p(k|M,P) =
∫

d3xi |ψ(xi)|2|〈sk|ψ〉|2 = |〈sk|ψ〉|2 , (A2)

which agrees with the prediction of quantum mechanics.

The indirect or von Neumann measurement

The outcomes of the measurement are k = (αk, X f ). The object of interest is the
eigenvalue αk, Equation (17). The product of (29) and (30) is

p(λi|M,P)p(k|M,P , λi) = |ψ(xi)π(Xi)|2 p(αk, X f |M, ψ, π) (A3)

Using (16) and (22), the second factor on the right is

p(αk, X f |M, ψ, π) = |〈sk, X f |ÛM|ψπ〉|2 = |〈sk|ψ〉|2 N2
Xe−(X f−αk)

2/2σ2
π (A4)

substituting into (25) gives

p(αk, X f |M,P) =
∫

d3xidXi |ψ(xi)|2|π(Xi)|2|〈sk|ψ〉|2N2
Xe−(X f−αk)

2/2σ2
π

= |〈sk|ψ〉|2N2
Xe−(X f−αk)

2/2σ2
π . (A5)

Marginalizing over X f gives

p(αk|M,P) = |〈sk|ψ〉|2 , (A6)

which is the correct prediction according to quantum mechanics.
Equation (A6) gives the correct probability but does not by itself describe the result

of a measurement. The latter consists of inferring the value αk from the data X f that is
actually observed. The relevant probability, p(αk|M,P , X f ), is given by Bayes theorem,

p(αk|M,P , X f ) =
p(αk, X f |M,P)

p(X f |M,P) . (A7)

Using (A5), the result is

p(αk|M,P , X f ) =
|〈sk|ψ〉|2e−(X f−αk)

2/2σ2
π

∑k′ |〈sk′ |ψ〉|2 e−(X f−αk′ )
2/2σ2

π
. (A8)

When σπ is sufficiently small and the Gaussians are well resolved, Equation (A8) tells us
that with high probability we shall find values of X f concentrated at one of the discrete
values αk. For X f ≈ αk, we find,

p(αk|M,P , X f ) ≈ 1 , (A9)

which means that a measurement of the pointer X f allows for the immediate inference of α.
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