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Abstract: Data for complex plasma–wall interactions require long-running and expensive computer
simulations of codes like EIRENE or SOLPS. Furthermore, the number of input parameters is large,
which results in a low coverage of the (physical) parameter space. Unpredictable occasions of
outliers create a need to conduct the exploration of this multi-dimensional space using robust analysis
tools. We restate the Gaussian-process (GP) method as a Bayesian adaptive exploration method for
establishing surrogate surfaces in the variables of interest. On this basis, we complete the analysis by
the Student-t process (TP) method in order to improve the robustness of the result with respect to
outliers. The most obvious difference between both methods shows up in the marginal likelihood for
the hyperparameters of the covariance function where the TP method features a broader marginal
probability distribution in the presence of outliers.

Keywords: Gaussian process; Student-t process; Bayesian optimization; plasma-wall interaction
simulation

1. Introduction

Simulations of particles from fusion plasmas escaping confinement and interacting
with the vessel wall are extremely costly in terms of computer power and time. Conse-
quently, results from ion-solid interaction simulations, e.g., sputter rates from the software
EIRENE/FZ Jülich [1], lack real time ability and fail to provide the fast numerical access
needed, e.g., by gradient-based methods traveling through multi-dimensional parameter
space while searching for extremal structures. With already acquired data as a starting
basis, the method of surrogate modelling provides fast and easy access for numerical opti-
mization methods. In the present case, the shape of utility functions used for the selection
of the next optimal point [2] is relatively benign. In situations where this is not the case, the
detrimental effect of spurious peaks in the utility function can partly be be avoided using
modified acquisition strategies [3]. The EIRENE program employs at its heart a Monte
Carlo method, by which it may be assumed to produce results with uncertainty margins
that follow a Gaussian distribution. However, the code itself involves tables of source rates
for particles, energies and momentum which may introduce some nonlinear behaviour at
least to the variance of the results.

It has been known for a long time that a Student-t distribution offers the possibility
of making the analysis more robust with respect to outliers [4,5]. In this paper, we follow
this trail and investigate the Student-t process method as a surrogate surface emulator
in competition with the Gaussian process method [6]. Introduced by Rasmussen et al. in
Chapter 9.9 of his landmark publication “Gaussian Processes for Machine Learning” [6],
the derivation and application of a Student-t process as a surrogate emulator was examined
many times. Already, Yu et al. in 2007 [7] placed the TP-method on a solid foundation
with correct data error handling, while Shah et al. [8] approached the same marginal
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likelihood by integrating an inverse Wishart process prior over the covariance kernel of the
Gaussian Process.

In order to investigate the differences between the GP- and TP-method, we set up
artificial test cases in one and two dimensions. The problem we want to tackle for the
sputter rates caused by fusion plasmas takes place in a four-dimensional physics parameter
set, so we have to transfer the results of the test cases derived with artificial data to analysis
of real world data. As a side effect, the changes to the program for adaptation to the
TP-method are validated by our well established algorithm emulating surrogate surfaces.
Finally, we present results for fusion plasma sputter rates in a two-dimensional subspace of
a four-dimensional parameter space.

2. Gaussian Process Method

The problem of predicting function values in a multi-dimensional space supported by
given data is a regression problem for a non-trivial function of unknown shape. The matrix
X = (x1, x2, ..., xN) consisting of N input data vectors xi of dimension Ndim is given. The
target data y = (y1, ..., yN)

T is blurred by Gaussian noise of variance ∆ij = σd
2
i δij. Quantity

of interest is the target value f∗ at test input vector x∗ and is generated by a function f (x)
which shall satisfy y = f (x) + ε, with 〈ε〉 = 0 and 〈ε2〉 = σ2

d . As a statistical process, it is
fully defined by its covariance function, which is the place where we incorporate all the
properties which we would like our (hidden) problem-describing function to have. For the
functional form of the covariance we choose a Gaussian type exponent with the negative
squared value of the distance between two input data vectors xp and xq.

k(xp, xq) = σ2
f exp

{
−1

2

∣∣∣∣ xp − xq

λ

∣∣∣∣2
}

. (1)

The neighborhood of the two data vectors should be of relevance for the smoothness
of the result, which is mimicked by a length scale λ in the denominator to represent the
long range dependence of the two vectors. Moreover, since the Gaussian process method
defines a distribution over functions, the width of this distribution will have some influence
on our result as well. This shall be comprised by the signal variance σ2

f . The covariance of
the input data is abbreviated as Kij = k(xi, xj) and the vector of covariances between test
input vector and a single input data is (k∗)i = k(x∗, xi). Finally, in addition to the above
estimation of the variance of a distinct data point with σ2

di
, provided e.g., by the EIRENE

MC-simulations, we consider an overall noise in the data by a variance σ2
n . Starting with no

further information about the hyperparameters, we assume Gaussian priors with N (1,1).
Summing up the analysis from previous papers [6,9], the probability distribution for a

single function value f∗ at test input x∗ is

p( f∗|X, y, x∗) ∝ N
(

f̄∗, var( f∗)
)

, (2)

with mean
f̄∗ = kT

∗

(
K + σ2

n∆
)−1

y , (3)

and variance
varGP ( f∗) = k(x∗, x∗)− kT

∗

(
K + σ2

n∆
)−1

k∗ . (4)

The hyperparameters θT = (λ, σf , σn) determine the result of the Gaussian process
method. Since we do not know a priori which setting is useful, we marginalize over them
numerically by employing the marginal likelihood

log pGP (y|θ) = const− 1
2

yT
[
K(θ) + σ2

n∆
]−1

y− 1
2

log
∣∣∣K(θ) + σ2

n∆
∣∣∣ . (5)
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3. Student-t Process Method

With the formulae from the above section at hand, it is easy to reformulate the analysis
for the Student-t Process method, where we strictly follow the papers of Yu [7] and Shah [8].
The marginal likelihood reads

log pT P (y|ν, θ) ∼ −ν + N
2

log

{
1 +

yT[K(θ) + σ2
n∆
]−1y

ν− 2

}
− 1

2
log
∣∣∣K(θ) + σ2

n∆
∣∣∣ . (6)

In the following, we choose ν = 3 to resemble Cauchy distributions.
While the mean of a test function value remains the same as in Equation (3), the

variance becomes

varT P ( f∗) =
1 + yT[K(θ) + σ2

n∆
]−1y

1 + N
· varGP ( f∗) . (7)

Here, the most important difference to the Gaussian process shows up, i.e., the depen-
dence of the variance on the target data. It may be regarded as a crucial disadvantage of
the GP-method that its results are based on the input mesh only, so the outcome depends
on the experimentalist’s setup of the input parameters, e.g., at which locations in space the
measurements will be taken. On the other hand, the Student-t process also involves the
measurement results, which ultimately provide the capability of this data analysis method
to ignore outliers.

4. One- and Two-Dimensional Test Cases

We start with a one-dimensional test case by mapping the first N = 20 Sobol data as
input to a range [−1,1] on the x-axis and use a sin-model with two full periods for this
range to generate the respective target data. The input was chosen to be drawn from Sobol
data [10,11] in order to provide a quasi-random sample which is space-filling on a given
region of interest. Uncertainty is introduced by adding Gaussian noise with standard
deviation σd = 0.2.

Figure 1 shows the results with the GP-method and the TP-method on the left and
right panels, respectively. In the absence of outliers both methods give the same answer in
Figure 1a,b. However, with two outliers at hand (two randomly chosen data points were
raised by just multiplying with a factor of three), the surrogate from the GP-method (see
Figure 1c) tries to follow each target value slavishly, which results in a smaller hyperpa-
rameter λ, equivalent to a bumpier behaviour. On the contrary, within the TP-method the
outliers are more or less ignored but lead to a larger variance of the surrogate still clearly
following a sin-function (see Figure 1d).

It is informative to have a look at the marginal likelihood for the hyperparameters θ.
Since there are three hyperparameters, we employ two two-dimensional plots for (λ, σn) in
Figure 1e,f and (λ, σf ) in Figure 1g,h, where the respectively lacking third hyperparameter
σf /σn for the first/second plot is kept constant in terms of its expectation value from
integration over the marginal likelihood Equations (5) and (6), respectively. The most
important differences are seen for (λ, σf ), i.e., Figure 1g,h. In comparison with the GP-
case, for λ values around 0.05, the Student-t result shows a broader structure in σf , and
for σf around 0.5 an additional structure which comprises λ-values between [0.10,0.25].
The contributions in the marginal likelihood for this broad bump attributed to the larger
λ-values between [0.10,0.25] are responsible for the smooth functional behaviour.

In order to examine these findings more thoroughly, in Figure 2, we focus on two set-
tings of the hyperparameters deduced from the extremal structures in Figure 1h of the
Student-t process. In the left panel, starting with Figure 2a for λ = 0.05, σf = 1.5, σn = 1,
a strong obedience to the target data is enforced. Therefore, the surfaces of the marginal
likelihood, computed with either σf = 1.5 (Figure 2c) or σn = 1 (Figure 2e), get pinned down
to a relatively small λ-variation. The situation changes in the right panel with λ = 0.18,
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σf = 0.7, σn = 2.6, where we get broad structures for λ’s around 0.2 in connection with a
somewhat more relaxed functional behaviour in Figure 2b.
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Figure 1. N = 20 data points. Left panel (a,c,e,g): Gaussian process (GP). Right panel (b,d,f,h): Student-
t process (TP). (a,b): Normally distributed data following a sin-model. (c,d): Normally distributed
data following a sin-model, but 5th and 15th data point were multiplied by a factor of three
to simulate outliers. (e,g): GP-hyperparameter surfaces for data with outliers, 〈λ〉 = 0.1 ± 0.2,
〈σf 〉 = 1.2 ± 0.3, 〈σn〉 = 2.1 ± 1.2; (f,h): TP-hyperparameter surfaces for data with outliers,
〈λ〉 = 0.3 ± 0.6, 〈σf 〉 = 1.2 ± 0.7, 〈σn〉 = 1.9 ± 1.0.
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From the above, it is clear that an MAP-solution would fail completely in the presence
of outliers, because such an approach would focus on the maximum of the probability
distribution at max λ = 0.051 and max σf = 1.61, thereby disregarding all contributions
from the PDF for larger λ along with smoother surrogates. Consequently, only the full
exploitation of the marginal likelihood Equation (6) empowers the result to resemble
the sin-function.
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Figure 2. Surrogate model from Student-t process for N = 20 data points with two outliers for
two settings of the hyperparameters in the extremal structures of Figure 1h. (a): λ = 0.05, σf = 1.5,
σn = 1 with respective hyperparameter surfaces (c,e). (b): λ = 0.18, σf = 0.7, σn = 2.6 with respective
hyperparameter surfaces (d,f).

Next, we compare GP vs. TP in two dimensions (see Figure 3). A total of N = 40
target data are generated by the above double period sin-function just by expanding the
x-dependence to x = (x1, x2)

T . Without outliers, the resulting surrogate surface (Figure 3a)
is the same for GP and TP, revealing a mono-modal structure in hyperparametric space
(Figure 3b) along with well defined expectation values with more or less concise variances,
〈λ〉 = 0.3 ± 0.04, 〈σf 〉 = 1.3 ± 0.3, 〈σn〉 = 0.7 ± 0.4. It is certain that the MAP-approach
would come to the same result for the surrogate surface.

The situation changes with outliers (Noutlier = 4). The GP-surrogate (Figure 3c) fails
completely and features a bump in the marginal likelihood (Figure 3c) which is confined
around small λ-values below 0.1 and σf ∼ 1.4. Compared with this, the TP-surrogate
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in Figure 3e resembles the sin model function where the mono-modal structure in the
marginal likelihood widens (see Figure 3f), as already seen in the one-dimensional case.
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Figure 3. Two dimensional sin-model data. Surrogate model from Student-t process for first N = 40
Sobol data points with added noise of σd = 0.2. (a,b): GP, no outliers, 〈λ〉 = 0.3 ± 0.04, 〈σf 〉 = 1.3 ± 0.3,
〈σn〉 = 0.7 ± 0.4; (c,d): GP, four outliers, 〈λ〉 = 0.06 ± 0.04, 〈σf 〉 = 1.5 ± 0.2, 〈σn〉 = 1.4 ± 0.9; (e,f): TP,
four outliers, 〈λ〉 = 0.06 ± 0.04, 〈σf 〉 = 1.5 ± 0.2, 〈σn〉 = 1.4 ± 0.9. Blue dots and their footprints (open
squares) in the base are the input data, while the red dots/squares in (c,f) represent the four outliers.

5. Results for Ion-Solid Interaction Simulations

Finally, we employ the data-analyzing tools characterized above to sputter rates gener-
ated by the ion-solid interaction simulations in a fusion plasma with EIRENE software [1].
To simulate these data, a total of 14 physics parameters are to be set on input. The most
important parameters are those regarding electron density n and electron temperature T,
both at two locations within the plasma, i.e., plasma center {n0,T0} and at the so-called
pedestal {nped,Tped} located at the plasma edge next to the separatix (last magnetic field line
closed within the vessel). To begin with, we set up a test case with N = 3 × 3 × 3 × 3 = 81
EIRENE sputter rate data as function of these four parameters {T0, Tped, n0, nped} (results
shown in Figure 4a).
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Figure 4. (a): EIRENE sputter rate results with errorbars shown in a two-dimensional subspace
of parameters {n0 T0} for max[Tped] = 8 keV and min[nped] = 0.56× 1014/cm3. (b): Blue mesh:
Surrogate surface based on initial N = 81 EIRENE data. Red mesh: Surrogate surface based on a total
of N = 151 EIRENE data. Hyperparameter surfaces of {λ, σf } for the results with N = 151 data: (c): GP;
(d): TP.

In order to improve this apparently not very informative result on only a 34 grid,
we calculate the GP surrogate on a 54-grid and take the 34 data, being the worst in terms
of variance, feed them back to EIRENE and take the resulting second N2 = 81-data set
(containing 11 doublets from initial one). This results in the initial one adding up to a total of
Ntot = 151 data points. One can think of this as an iterative step, keeping the computation
effort of the costly EIRENE runs low. The surrogate surfaces for the initial data set with
N = 81 EIRENE data (blue mesh) and the full data set with Ntot = 151 (red mesh) are shown
in Figure 4b, with the errorbars for the same nine data points as in Figure 4a. As can be
seen, the iterative step reduces the uncertainty in the target by a factor of 3.6 (and misfit
by factor of three). Moreover, while the surrogate surface (blue mesh) based on initial
N = 81 EIRENE data shows only a maximal structure at T0 = 3 keV smeared out around
n0 = 1.26× 1014/cm3, the TP-surrogate surface (red mesh) has a clear maximum at T0 = 3
keV and n0 = 1.20× 1014/cm3. The lower panel of Figure 4 shows the marginal likelihood
surfaces for the hyperparameters λ, σf for the results with N = 151 data. Since the TP-
method (Figure 4d) shows a broader shape compared to the GP-method (Figure 4c), it may
be inferred from the chapters above that the four-dimensional parameter space contains
results for the sputter rates which do not fully obey a normally distributed uncertainty.

6. Conclusions

Exploring surrogate surfaces in multi-dimensional spaces has been proven to be
employed advantageously by the Gaussian process (GP) method. For experimental data
suffering from outliers, it is also known that the marginal posterior distribution can be
made robust by acquiring, e.g., the Cauchy function instead of deferring to the Gaussian
form. As shown in this paper, utilizing the Student-t process (TP) method can be performed
by only a few and simple changes to an already well-established implementation of a
GP-algorithm. The most important difference between both methods shows up in the
marginal likelihood for the hyperparameters of the covariance function which—in the
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presence of outliers—becomes broader in the TP case compared to GP. The Bayesian
method is to explore hyperparameter space by marginalization and let the data decide
regarding the posterior probability distribution. However, with the basic assumption of
normally distributed data, the GP method slavishly follows each data point within its
variance, thereby generating a surrogate surface which irredeemably deteriorates in the
presence of outliers. In a real world situation with occasionally faulty measurements, the
TP-method offers the possibility of ignoring heavily distorted data by featuring a broader
marginal probability distribution. Eventually, the TP-method improves the overall result
for surrogate surfaces in comparison with Gaussian Processes and adds robustness with
respect to outliers.
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