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Abstract: Bayesian imaging algorithms are becoming increasingly important in, e.g., astronomy,
medicine and biology. Given that many of these algorithms compute iterative solutions to high-
dimensional inverse problems, the efficiency and accuracy of the instrument response representation
are of high importance for the imaging process. For this reason, point spread functions, which make
up a large fraction of the response functions of telescopes and microscopes, are usually assumed
to be spatially invariant in a given field of view and can thus be represented by a convolution. For
many instruments, this assumption does not hold and degrades the accuracy of the instrument
representation. Here, we discuss the application of butterfly transforms, which are linear neural
network structures whose sizes scale subquadratically with the number of data points. Butterfly
transforms are efficient by design, since they are inspired by the structure of the Cooley–Tukey Fast
Fourier transform. In this work, we combine them in several ways into butterfly networks, compare
the different architectures with respect to their performance and identify a representation that is
suitable for the efficient respresentation of a synthetic spatially variant point spread function up to a
1% error.

Keywords: response functions; spatially variant point spread functions; convolution; Bayesian
imaging; butterfly matrices; Toeplitz matrices; sparse representations; neural networks

1. Introduction

Images of astronomical objects are the result of measurements by physical instruments
and intricate postprocessing. In this procedure, instrument responses play an important
role as they build the connection between the signal, i.e., the quantity of interest and
the observables. Unfortunately, instrument responses are often non-trivial and hard to
model in a simple and numerically efficient form. Examples for such instruments are the
X-ray Observatories eROSITA [1] and Chandra [2]. Both are challenging to compute due
to their inhomogeneous behavior in terms of space and energy. In order to efficiently
make statistical field inferences, for example, by using NIFTy [3–5], a Python software
package for Numerical Information Field Theory [6–9], these responses need to be fast
and differentiable. One promising candidate for the efficient representation of instrument
responses are butterfly transforms, a linear neural network structure inspired by the
structure of the Fast Fourier Transform (FFT) algorithm, whose size scales withO(N log N).

In many cases, the measurement equation for some data d, taken with an instrument
response R of the signal s assuming additive noise n, can be formulated as d = R(s) + n.
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Regarding photographic instruments this response R is a linear map that can be separated
into two operations D and O. Here, D is describing the measurement process of the detector,
while O represents the optical properties of the instrument. The latter is also referred to as
point spread function (PSF). Since computers are used for the analysis of the experiments
performed, the continuous signal space is approximated by a discrete pixelation and thus
all operators can be represented as matrices.

If O can be approximated by a circulant matrix, a matrix consisting of cyclic permu-
tations of the same row vector a, its matrix multiplication with any vector simplifies to
a discrete convolution with a, meaning that it is spatially invariant and homogeneous,
respectively. In many physically relevant cases, this homogeneity can approximately be
assumed for a given observed area of the instrument. Additionally, the convolution theo-
rem states that a convolution corresponds to a point-wise multiplication in Fourier space.
Consequently, convolutional responses can be represented in an efficient way, due to the
fact that one only has to store one N-entry vector instead of a N2 matrix, as well as due to
the efficiency one gains by replacing a discrete Fourier transformation by the Fast Fourier
Transformation (FFT).

Often this assumption only holds up to a certain degree and in a limited field of
view. For spatially variant PSFs and thus non-circulant responses efficient representations
are urgently needed. In their paper about learning fast linear transforms algorithms [10],
Dao et al. proposed a way to learn fast linear transformation algorithms using so-called
butterfly factorizations, which are closely related to the butterfly transforms introduced in
this paper. They were able to learn several fast linear transformations, e.g., FFT, discrete sine
transform, etc., and showed that their approach can be applied as an efficient replacement
of generic matrices in machine learning pipelines. We propose using butterfly transforms
to represent spatially variant PSFs in order to build likelihoods for instruments such as
eROSITA, Chandra, and many more.

In this paper, we present a way to parameterize butterfly transforms, combine them
into networks and compare different network architectures in terms of their efficiency and
accuracy. Section 2 describes how butterfly transformations are parameterized and how
they are inspired by the structure of the Cooley–Tukey–FFT algorithm. Section 3 gives a
short introduction to information field theory and Section 4 describes different designs of
likelihoods. In Section 5, we define a metric in order to compare different butterfly network
architectures with respect to their capability to represent the synthetic response defined in
Section 6. The final results can be found in Section 7.

2. Methods
2.1. Fast Fourier Transformation

Due to the convolution theorem, Fourier transformation is one of the key elements of
convolutional processes and thus the algorithm of FFT is highly relevant for the represen-
tation of instrument responses on regular grids. The main idea of the FFT is to split the
sum in the discrete Fourier transform (DFT) into two sums, over even and odd indices [11].
By using the mathematical properties of the N-th primitive root ωN = e

−2πi
N , it can be

shown that

f̂k =
1√
2

f̂ even
k +

1√
2

ωk
N f̂ odd

k and f̂k+ N
2
=

1√
2

f̂ even
k − 1√

2
ωk

N f̂ odd
k . (1)

This means that an N-sized Fourier transform can be separated into two N/2-sized
Fourier transforms along the even and odd indices [12]. The components f̂ even

k and f̂ odd
k

can then be used to calculate fk and fk+ N
2

. Putting together the relations in Equation (1)
yields. (

f̂k
f̂k+N/2

)
=

1√
2

(
1 1
1 −1

)(
f̂ even
k

ωk
N f̂ odd

k

)
. (2)
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The two smaller Fourier transforms can be separated in the same way, resulting in
a divide and conquer algorithm. Assuming that the initial value of N is a power of 2,
this splitting can be applied log2(N) times. Inspired by machine learning language, these
iterations are called layers in the following. With N additions in each of these layers,
the total computational complexity is about O(N log2 N). Comparing this to a regular
DFT with its computational complexity of O(N2) (N components with N summands ) the
amount of saved time in the FFT algorithm is significant.

2.2. Butterfly Transform and Convolution

The data-flow diagram visualizing the algorithm of Equation (2) is often called a
butterfly diagram, due to its appearance (see Figure 1). Therefore, the abstraction of the
FFT algorithm, resulting in a similar data-flow diagram, is called butterfly transform in
the following. As the butterfly diagrams always connect to two components, most of the
descriptions used in the following concerning their parameterization are 2-dimensional, to
keep the notation simple.

f̂k

f̂k+ N
2

f̂ even
k

ωk
N f̂ odd

k

(a) Butterfly diagram (b) Butterfly pictogram

Figure 1. Comparison of: (a) butterfly diagram—blue lines indicate an addition, the orange line
indicates subtraction; (b) pictogram of a butterfly with similar appearance.

In order to generalize the FFT while preserving its efficient structure, we decompose
the operations in Equation (2) into a diagonal operator Φ and a mixing operator Θ as given
in the following.

Φ =

(
1 0
0 ωN

)
, Θ =

1√
2

(
1 1
1 −1

)
, and thus

(
f̂k

f̂k+N/2

)
= Θ Φ

(
f̂ even
k
f̂ odd
k

)
. (3)

For each component, we introduce free parameters that control how the operation
deviates from an ordinary FFT. A general representation of Θ is obtained by parameterizing
it by the sine and cosine of an angle θ,

Θθ =

(
cos θ sin θ
sin θ − cos θ

)
. (4)

To preserve the generality of the transformation within one layer, the θs for different
connected pairs, denoted by the index k in Equation (3), are independent. That means
that for an N-size transformation there are N/2 θs, in each layer, regulating the interaction
between two connected data points. Considering this parameterization, we get the Θ from
Equation (3), i.e., the one for an FFT, by inserting θ = π

4 . The operator Φ and an additional
operator Γ are parameterized as

Φφ =

(
eiφ1 0
0 eiφ2

)
, φj ∈ R and Γγ =

(
eγ1 0
0 eγ2

)
, γj ∈ R . (5)

This parameterization of Φ makes it possible to recover the correct phases for an FFT,
but also to change them in an arbitrary way. The combination of Θ and Φ is sufficient to
represent an entire FFT transform. To obtain an even more general transformation, the
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diagonal operator Γ is introduced, which accounts for the real-valued amplitudes. This
leads to a loss of unitarity for γ1, γ2 6= 0 in the combined transformation of Γ, Φ and Θ.

Now, we can build a generic butterfly-structured transformation B, using the layered
structure of an FFT as a guiding example. The subscript of the operators refers to the layer
in the FFT algorithm and thus implies that the correct components are connected.

B = Γ0Φ0Θ0 . . . ΓjΦjΘj . . . Γn−1Φn−1Θn−1 . (6)

Given this butterfly transformation and the structure of a convolution operation, based
on the convolutional theorem, a butterfly convolution-like operator O can be formulated as

O = B†ΛB . (7)

In this equation the Λ operator corresponds to the Fourier transformed PSF. Usually
physically reasonable PSFs are real valued in position space and thus complex-valued
in harmonic space. Therefore, the Λ operator is defined as a diagonal operator, with
complex values,

Λλ =

(
eλ1 0
0 eλ2

)
, λj ∈ C . (8)

B†, in Equation (7), denotes the adjoint of B. For some experiments, the parameters
of B and B† were strictly coupled, called mirrored architecture in the following. For
others, the parameters were independent, denoted by different indices, resulting in a
non-mirrored architecture:

O = B†
1ΛB2 . (9)

Since the butterfly structure is strongly related to the FFT, it would make sense to treat
multidimensional butterfly transformations in the same way as multidimensional Fourier
transformations. Therefore, butterfly transformations can be applied to each dimension
separately. However, in this work the 2D application is slightly modified, in a way that
the mixing operator Θ is applied to each axis separately (For the first axis all columns are
transformed with the same θs, whereas for the second axis all rows transformations share
the same θs.), but after this axis-wise Θ transformation the operators Φ and Γ are applied
as diagonal operators. Another approach is to reduce the number of dimensions to one (in
this case, as we are dealing with images, from 2D to 1D) and just perform one butterfly
transform to this one dimension. For the case of 2-dimensional inputs the dimensionality
reduction can be easily done by concatenating all the column vectors to one long vector,
which will be called flattening from now on. These two different approaches differ in the
number of layers needed by the butterfly algorithm as well as in the number of parameters
per layer.

3. Information Field Theory

To reach a better understanding for the area of use for the efficient responses, a brief
introduction to information field theory (IFT) [9] will be given. Information field theory
is the application of information theory to physical fields. Probably the most important
relation within information theory is Bayes’ Theorem,

P(s|d) = P(d, s)
P(d) =

P(d|s)P(s)
P(d) , (10)

which connects a posterior with the likelihood, the prior, and the evidence. The likelihood
can be computed from the noise statistic P(n|s) and the measurement equation, here in the
form P(d|s, n) = δ(d− R(s)− n). Thus, the likelihood is
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P(d|s) =
∫

dnP(d|s, n)P(n|s)

=
∫

dn δ(d− R(s)− n)P(n|s) = P(n = d− R(s)|s) .
(11)

The prior P(s) is chosen with respect to the physical knowledge one has about the
observed quantity or situation. The evidence P(d) =

∫
dsP(d|s)P(s) is needed for the

proper normalization of the posterior P(s|d). The information Hamiltonian is defined as
the negative logarithm of the probability,H(d, s) = − ln[P(d, s)]. Due to the properties of
the logarithm and the product rule of probabilities the information Hamiltonian, H is an
additive quantityH(d, s) = H(d|s) +H(s). Assuming Gaussian priors for signal, G(s, S),
and noise, G(n, N), and using Equation (11) the Hamiltonians simplify to

H(s) = − ln[G(s, S)] = − ln
[

1√
2πS

exp (−1
2

s†S−1s)
]
=

1
2

ln |2πS|+ 1
2

s†S−1s ,

H(d|s) = − ln[G(n, N)] =
1
2

ln |2πN|+ 1
2
(d− R(s))†N−1(d− R(s)) .

(12)

One way to find an estimate for the signal s is to maximize the probability P(s|d). This
can be achieved by minimizing the joint Hamiltonian H(d, s), with respect to the signal
s. This is the maximum a posteriori (MAP) approximation. There are also ways to find
an estimate for a signal with uncertainty quantification like metric Gaussian variational
inference (MGVI) [13] or geometric variation inference (geoVI) [14]. As a minimization
algorithm, Newton-CG [15] was used throughout all experiments. If the measurement
process follows Poisson statistics, which is the case for realistic photographic measurements,
a Poissonian likelihood model has to be used instead of a Gaussian likelihood model.

4. Parallel and Serial Likelihoods

Models for inference processes in NIFTy are built in a forward way, as so-called
generative models. This means that a model of the physical signal is created first, followed
by the instrument response, and finally by synthetic data. Applying the IFT formalism,
described in Section 3, to a generative model with a butterfly convolution operator as a
response yields a likelihood with dependencies on the signal s and the response parameters
θ, φ, γ, and λ.

In addition to being able to use butterfly convolution operators with mirrored, non-
mirrored, flat, and 2D configurations, they can be combined into a network built in parallel
or in series. For the case of n multiple butterfly convolution operators in series, the response
operator in Equation (12) is

R(s, θ, φ, γ, λ) = O1 . . . Ons , (13)

while in the case of n butterfly convolution operators applied in a parallel architecture

R(s, θ, φ, γ, λ) = (O1 + · · ·+ On)s . (14)

Before using a butterfly network in an imaging application, the response R needs
to be trained on signal-data pairs of the instrument. Using these signal-data pairs, the
joint HamiltonianH(d, s, θ, φ, γ, λ) is minimized with respect to the response parameters
θ, φ, γ, and λ, resulting in a MAP approximation of the instrument. The initial values for
these parameters, θ̃, φ̃, γ̃, and λ̃, are chosen such that all Oi correspond to a convolution
with a delta peak (θ̃ = π/4 , γ̃ = 0, λ̃ = 1, and φ̃ according to the needed phases, see
Section 2.1). The prior distribution of the parameters is assumed to be Gaussian, with
means at the initial values and unit variance. The final goal of the minimization is to obtain
an efficient digital twin of the real physical instrument.
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Once a butterfly response is trained, it can be used for imaging with the corresponding
instrument. For this, the response parameters are fixed to the inferred values θ, φ, γ, and λ,
resulting in a response operator, which is linear in the signal s. The selection of a suitable
generative model for s depends on the observation of interest. In order to obtain an estimate
for the physical signal s, the inference algorithms MGVI or geoVI can be used.

5. Evaluation of the Response Approximation

Before using a trained butterfly response in an inference algorithm, it must be certified
that the mapping done by the response representation is sufficiently accurate. Therefore,
we compare the action caused by a signal, here a point source at position z, s(x) = δ(x− z),
of the to-be-learned or simulated response with the butterfly response by their absolute
difference. This will be called response approximation error

E(s) = abs
[

R sim.(s)− R but.(s)
]

. (15)

To keep the evaluation simple, unit brightness point sources at all signal domain
locations z ∈ Ω are considered. In order to quantify the total error with respect to all
mapping errors, we calculate the 2-norm (‖s‖2 =

√
∑x∈Ω |sx|2) of the 4D matrix Ez =

E[δ(x− z)], containing the error images for all posible z-values and normalize it by dividing
with the 2-norm of the matrix Rz = Rsim.[δ(x− z)], containing all true simulated responses
resulting in the the total error ζ̂:

ζ̂ =
‖E‖2

‖Rsim.‖2
. (16)

6. Synthetic Response

In order to investigate whether and to which degree butterfly networks are capable
of approximating spatially variant PSFs, they were trained to approximate a synthetic
response. This synthetic response can be regarded as the convolution of the signal s, which
is a point source located at the position z, s(x) = δ(x− z), with a rotational symmetric PSF
with a position dependent shape,

(Rs)y =
∫

Ω
PSF(y− x, x)s(x) dx . (17)

For the PSF a zero centered Gaussian was chosen,

PSF(x, z) = G(ρ, σ2) =
1√

2πσ2
exp

(
− ρ2

2σ2(z)
)

, (18)

with ρ = ‖x‖2, where x is the coordinate vector of the image plane and ‖x‖2 =
√

x2
1 + x2

2 is
its length. The dependence on the position z of the point source is encoded in the variance
σ2(z) of the Gaussian. To keep this spatial dependency simple, only the distance from the
center of the image c to the point source z, r = ‖c− z‖2, influences the shape of the PSF. As
this absolute value depends on the image resolution, r will be normalized by the maximal
distance within the image, r̂ = r/rmax, to get a relative measure for the distance being
in the interval [0, 1]. As indicated, the variance σ2 is a function of this relative distance r̂
between the point source at z and the image center c,

σ2(r̂) = a · r̂2 + ε . (19)

The two parameters are set to a = 0.01 and ε = 10−5. Following the Equation (19),
larger distances r̂ lead to larger values of the variance σ2. This means that point sources
with smaller values of r̂ are convolved with a sharper Gaussian, while point sources being
at far distance from the center are convolved with broader Gaussians (see Figure 2). This
results in an spatially variant PSF, which can be used to examine the expressiveness of the
butterfly architecture.
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Figure 2. 25 signal responses R(s) for point sources at different positions. For simplicity we used
periodic boundaries for the kernels, which will be properly adressed in the future. The colors show
the resulting brightness values.

7. Results

In search of a butterfly network capable of representing spatially variant point spread
functions, various architectures were compared, in terms of their ability to represent the
synthetic response, differing in their number of butterfly convolution operators (BCOs),
mirrored (mr) or non-mirrored (nmr) architecture, flat or 2D network design, serial or
parallel built likelihood (see Table 1). All of these networks were trained to approximate the
synthetic response described in Section 6 until the optimization was sufficiently converged
(300 Newton steps). As training data, a set of all possible PSFs within the given pixelation
of 16× 16 was used. The signals were fixed to be point sources with brightness values 40
at the corresponding positions and the noise covariance N was set to be diagonal with
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entries of 10−6. In order to get a better understanding of the influence of some of these
properties on the total approximation behaviour, the networks are regarded separately and
with respect to their final total approximation error ζ̂ in Table 1.

Table 1. Parameters and results for all seven network architectures. The density is here defined
as the ratio of the number of parameters and the number of entries in a full matrix representation
(164 = 65,536). A lower density indicates a higher efficiency of the representation.

Network Name Net1 Net2 Net3 Net4 Net5 Net6 Net7

# BCOs 1 2 3 3 3 3 3
architecture mr mr mr nmr mr nmr nmr
design flat flat flat flat 2D 2D flat
likelihood serial serial serial serial serial serial parallel
ζ̂ in % 7.96 3.14 2.00 1.04 2.45 1.50 6.86
# parameters 5632 11,264 16,896 32,256 7872 14,208 32,256
Density in % 8.59 17.19 25.78 49.22 12.01 21.68 49.22

The comparison of the ζ̂ value of Net1, Net2, and Net3 with 1, 2, and 3 BCOs, but
otherwise the same properties, shows that a higher number of BCOs lowers the total error
and thus increases the approximation capability. The second property of interest is the
kind of architecture used, mirrored or non-mirrored. Therefore the ζ̂ value of Net3, with its
mirrored architecture, is compared to the one of Net4, with its non-mirrored architecture,
while their other properties are equivalent. This shows that the non-mirrored architecture is
performing better than the mirrored one. The same conclusion can be drawn by comparing
ζ̂ of Net5 and Net6, which also only differ in their state of mirroring. In a similar way the
flattened and the 2D application can be examined. Since Net3 and Net5 only differ in this
property, their error values suggest that the flat application is superior to the 2D application
with respect to reconstruction capability. This is confirmed by regarding the error of Net4
and Net6, which are in a similar relationship.

Since more BCOs, flattening, and a non-mirrored architecture increase the number of
parameters and thus lead to more degrees of freedom, it is assumed that these architectures
are more flexible and can approximate the true response in a better way.

For the overall efficiency of the various networks it is not only important to approxi-
mate the synthetic response in a optimal way, but also to keep the number of parameters,
and thus the network density (Network density is here defined as the ratio of network
parameters and number of entries in a full matrix representation.), as low as possible (see
Figure 3). In the examined cases, sparser architectures tend to perform worse in comparison
to architectures with more parameters. Overall Net4 approximates the synthetic reponse
best with an 1% error. Net6, however, has only 44% of the parameters of Net4 and is
therefore less dense. This goes hand in hand with a slightly increased approximation
error by an absolute value of 0.46% (see Table 1). In the end, the number of parameters of
butterfly networks still scales with O(N log N). This means that they become less dense
with increasing resolution.
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Dependence of the total approximation error on the number of free parameters

Net1 [1 layer, mirrored, flat]
Net2 [2 layer, mirrored, flat]
Net3 [3 layer, mirrored, flat]
Net4 [3 layer, non-mirrored, flat]
Net5 [3 layer, mirrored, 2D]
Net6 [3 layer, non-mirrored, 2D]
Net7 [3 layer, non-mirrored, flat parallel]

Figure 3. Total approximation error ζ̂ with respect to the number of parameters in the network. A
combination of low error and low number of parameters is important for a good efficiency of the
corresponding network.

8. Discussion

The need for efficient response representations in imaging led to the development of
the models presented in this work, which were inspired by earlier research on butterfly ma-
trices [10]. The efficient structure of butterfly matrices, inherited of Fast Fourier Transforms
(FFT), results in a subquadratic algorithm scaling with O(N log N) that is capable of repre-
senting an expensively simulated synthetic response up to 1% error. To this end, Net4, a
butterfly convolutional network with three butterfly convolution operators (BCOs) in series,
non-mirrored architecture, and flat application is used, which is differentiable and thus suit-
able for the application as a response in generative models for measurement data. In order
to improve the computational performance regarding support of GPUs and parallelization,
more advanced machine learning platforms such as TensorFlow [16] or PyTorch [17] could
be considered. After sufficient training, the corresponding butterfly network can be used
to perform high-fidelity imaging using information field theory. Additonally, other fields
of application with a connection to slightly inhomogeneous processes are imaginable. All
in all, the method to represent instrument response functions introduced in this work is
promising to improve imaging with complex photographic instruments and thus should
be considered in further research.
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