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Abstract: A full-rank lattice in the Euclidean space is a discrete set formed by all integer linear
combinations of a basis. Given a probability distribution on Rn, two operations can be induced by
considering the quotient of the space by such a lattice: wrapping and quantization. For a lattice Λ, and
a fundamental domain D, which tiles Rn through Λ, the wrapped distribution over the quotient is
obtained by summing the density over each coset, while the quantized distribution over the lattice is
defined by integrating over each fundamental domain translation. These operations define wrapped
and quantized random variables over D and Λ, respectively, which sum up to the original random
variable. We investigate information-theoretic properties of this decomposition, such as entropy,
mutual information and the Fisher information matrix, and show that it naturally generalizes to the
more abstract context of locally compact topological groups.

Keywords: Fisher information; information geometry; lattices; mutual information; quantization;
topological groups; wrapped distributions

1. Introduction

Lattices are discrete sets in Rn formed by all integer linear combinations of a set of
independent vectors, and have found different applications, such as in information theory
and communications [1–3]. Given a probability distribution in Rn, two operations can be
induced by considering the quotient of the space by a lattice: wrapping and quantization.

The wrapped distribution over the quotient is obtained by summing the probability
density over each coset. It is used to define parameters for lattice coset coding, particularly
for AWGN and wiretap channels, such as the flatness factor, which is, up to a constant, the
L∞ distance from a wrapped probability distribution to a uniform one [4,5]. This factor
is equivalent to the smoothing parameter, used in post-quantum lattice-based cryptogra-
phy [6]. In the context of directional statistics, wrapping has been used as a standard way
to construct distributions on a circle and on a torus [7].

The quantized distribution over the lattice can be defined by integrating over each
fundamental domain translation, thus corresponding to the distribution of the fundamental
domains after lattice-based quantization is applied. Lattice quantization has different uses
in signal processing and coding: for instance, it can achieve the optimal rate-distortion
trade-off and can be used for shaping in channel coding [2]. A special case of interest
is when the distribution on the fundamental region is uniform, which amounts to high-
resolution quantization or dithered quantization [8,9].

In this work, we relate these two operations by remarking that the random variables
induced by wrapping and quantization sum up to the original one. We study information
properties of this decomposition, both from classical information theory [10] and from
information geometry [11], and provide some examples for the exponential and Gaussian
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distributions. We also propose a generalization of these ideas to locally compact groups.
Probability distributions on these groups have been studied in [12], and some information-
theoretic properties have been investigated in [13–15]. In addition to probability measures,
one can also define the notions of lattice and fundamental domains on them, thereby
generalizing the Euclidean case. We show that wrapping and quantization are also well
defined, and provide some illustrative examples.

2. Lattices, Wrapping and Quantization
2.1. Lattices and Fundamental Domains

A lattice Λ in Rn is a discrete additive subgroup of Rn, or, equivalently, the set
Λ = {α1b1 + ⋅ ⋅ ⋅ + αkbk ∣ α1, . . . , αk ∈ Z} formed by all integer linear combinations of a set of
linearly independent vector {b1, . . . , bk} ⊂ Rn, called a basis of Λ. A matrix B whose column
vectors form a basis is called a generator matrix of Λ, and we have Λ = BZk. The lattice
dimension is k, and, if k = n, the lattice is said to be full-rank; we henceforth consider full-
rank lattices. A lattice Λ defines an equivalence relation in Rn: x ∼ y ⇐⇒ x − y ∈ Λ. The
associated equivalence classes are denoted by x̄ or x+Λ. The set of all equivalence classes is
the lattice quotient Rn/Λ, and we denote the standard projection π∶Rn → Rn/Λ, π(x) = x̄.

LetD be a Lebesgue-measurable set of Rn and Λ a lattice. We say thatD is a fundamental
domain or a fundamental region of Λ, or that D tiles Rn by Λ, if (1) ⋃λ∈Λ(λ +D) = Rn, and
(2) (λ +D)∩ (λ̃ +D) = ∅, for all λ ≠ λ̃ in Λ (it is often only asked that this intersection has
Lebesgue measure zero, but we require it to be empty). Given a fundamental domain D,
each coset x̄ ∈ Rn/Λ has a unique representative in D, i.e., the measurable map π∣D ∶D →
Rn/Λ is a bijection. This fact suggests using a fundamental domain to represent the quotient.
Each fundamental domain contains exactly one lattice point, which may be chosen as the
origin. An example of a fundamental domain is the fundamental parallelotope with respect to
a basis {b1, . . . , bn}, namely P(Λ) := {x = α1b1 + ⋅ ⋅ ⋅ + αnbn ∣ α1, . . . , αn ∈ [0, 1[}. Another one
is the Voronoi region V(Λ) of the origin, given by the points that are closer to the origin
than to any other lattice point, with an appropriate choice for ties. It is a well-known fact
that every fundamental domain has the same volume, denoted by covol Λ := volD = ∣det B∣,
for any generator matrix B of Λ.

2.2. Wrapping and Quantization

Consider Rn with the Lebesgue measure µ, and P a probability measure such that
P ≪ µ. Then the probability density function (pdf) of P is p = dP

dµ , the Radon–Nikodym
derivative. For fixed full-rank lattice Λ and fundamental domain D, the wrapping of P by
Λ is the distribution Pπ := π∗P on Rn/Λ, given by Pπ(A) = P(π−1 A). For simplicity, we
identify Rn/Λ with D to regard Pπ as a distribution over D, and then we have π∶Rn → D
given by (y+λ)↦ y, for all y ∈ D, λ ∈ Λ. Using this identification, the wrapping has density
pπ = dPπ

dµ given by
pπ(y) = ∑

λ∈Λ
p(y + λ). (1)

A construction that is, in some sense, dual to wrapping is quantization. Note that each
fundamental domainD partitions the space as Rn = ⊔λ∈Λ(λ+D). The quantization function
is the measurable map Q∶Rn → Λ, given by (y + λ)↦ λ, for y ∈ D and λ ∈ Λ. The quantized
probability distribution of P on the discrete set Λ is PQ := Q∗P, given by PQ(A) := P(Q−1 A).
The probability mass function of the quantized distribution is then

pQ(λ) = ∫
D

p(y + λ)dy. (2)

Letting X be a vector random variable in Rn with distribution p, we define Xπ := π(X)
and XQ := Q(X) the wrapped and quantized random variables, respectively. By definition,
they are distributed according to pπ and pQ. Interestingly, they sum up to the original one:

X = Xπ +XQ, (3)
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since π +Q = idRn . Note also that Xπ + XQ has the same distribution as (Xπ , XQ), by
the bimeasurable bijection y + λ ↦ (y, λ). These factors, however, are not independent,
since, in general, p(y+λ) ≠ pπ(y)pQ(λ). The difference between p(x) and (pπ ⊗ pQ)(x) :=
pπ (π(x)) pQ (Q(x)) shall be illustrated in the following examples. Note that the expres-
sion for the quantized distribution depends on the choice of fundamental domain, while
the wrapped distribution does not, up to a lattice translation.

We say a random variable X over [0,∞) is memoryless if C̄(t) = C̄(t + s)/C̄(s) for all
t, s, where C̄(t) := P[X > t] is the tail distribution function. In particular, a memoryless
distribution satisfies C̄(y + λ) = C̄(y)C̄(λ) for all y ∈ D, λ ∈ Λ, which implies p = pπ ⊗ pQ.
The converse, however, is not true; for example, independence holds whenever p is constant
on each region λ +D, for λ ∈ Λ.

Example 1. The exponential distribution, parametrized by ν > 0, is defined as

p(x) = νe−νx
1[0,+∞[(x),

where 1A(x) takes value 1 if x ∈ A, and 0 otherwise. Choosing the lattice Λ = αZ, α ∈ R+, and
the fundamental domain D = [0, α[, one can write closed-form expressions for the wrapped and
quantized distributions:

pπ(y) = νe−νy

1− e−να
, y ∈ D and pQ(λ) = e−νλ(1− e−να), λ ∈ Λ ∩R+. (4)

Note that, in this special case, p = pπ ⊗ pQ, as a consequence of memorylessness. The wrapped
distribution with α = 2π, which amounts to a distribution on the unitary circle, is well studied
in [16].

Example 2. Consider the univariate Gaussian distribution

p(x) = 1√
2πσ2

exp
⎛
⎝
−(x − µ)2

2σ2

⎞
⎠

and the lattice Λ = αZ, with fundamental domainD = [− α
2 , α

2 [, α ∈ R+. The wrapped and quantized
distributions are given respectively by

pπ(y) = 1√
2πσ2

∑
i∈Z

e−
(y−µ+αi)2

2σ2 , y ∈ D and pQ(λ) = 1√
2πσ2 ∫

λ+ α
2

λ− α
2

e−
(x−µ)2

2σ2 dx, λ ∈ Λ.

The value α = 2π for the wrapped distribution on a unitary circle is usually considered in direc-
tional statistics [7]. Figure 1 illustrates the original, wrapped, quantized and product distribu-
tions for different zero-mean Gaussian distributions. As can be seen in the figure, in this case,
p(x) ≠ pπ(y)pQ(λ).
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Figure 1. Example of zero-mean Gaussian distributions and their corresponding wrapped, quantized
and product distributions, with Λ = Z and D = [−

1
2 , 1

2 [ for different variances: σ2
= 0.25 (blue), σ2

= 1
(orange), σ2

= 4 (green).
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A straightforward consequence of the decomposition (3) is

1. E[X] = E[Xπ]+E[XQ];
2. Var[X] = Var[Xπ]+Var[XQ]+Cov[Xπ , XQ]+Cov[XQ, Xπ],
where E[⋅], Var[⋅] and Cov[⋅, ⋅] denote, respectively, the expectation, the variance and the
cross-covariance operators.

We note that different types of discretization have also been studied, other then
integrating over a fundamental domain [17]. For instance, in [4,18,19], the discretized distri-
bution is defined by restricting the original pdf p(x) to the lattice Λ, and then normalizing:

DΛ,c(λ) := p(c + λ)
∑λ̃∈Λ p(c + λ̃)

, (5)

for a fixed c ∈ D. This discretization is nothing other than the conditional distribution of XQ
given that Xπ = c, expressed as pQ∣π(λ∣c) = p(c + λ)/pπ(c). Moreover, when p = pπ ⊗ pQ,
such as in the exponential distribution, cf. example 1, then DΛ,c(λ) = pQ(λ).

3. Information Properties
3.1. Information-Theoretic Measures

Let us consider a random variable X with distribution p and the induced wrapped
and quantized ones, respectively, Xπ ∼ pπ and XQ ∼ pQ. The mutual information between
Xπ and XQ is defined as the Kullback–Leibler divergence I(Xπ ; XQ) := DKL(p∥pπ ⊗ pQ),
and is a measure of how non-independent the marginal distributions pπ and pQ are [10].
Using the theorem of change of variables, we have

I(Xπ ; XQ) = EX[log p(X)

pπ⊗pQ(X)
]

= EX[log p(X)]−EX[log pπ(Xπ)]−EX[log pQ(XQ)]
= EX[log p(X)]−EXπ [log pπ(Xπ)]−EXQ[log pQ(XQ)]
= h(Xπ)+H(XQ)−h(X). (6)

Note that, from this decomposition, we have h(X) ≤ h(Xπ)+H(XQ).

Proposition 1. Let X be a real random variable, and Xπ and XQ the respective wrapped and
quantized random variables, using the lattice αZ. Denote µQ := E[XQ] and σ2

Q
:= Var[XQ]. If X

has support [0,∞), then the mutual information I(Xπ ; XQ) between Xπ and XQ is upper-bounded
by

I(Xπ ; XQ) < log(e(µQ + α/2))−h(X). (7)

If X has support R, then I(Xπ ; XQ) is upper-bounded by

I(Xπ ; XQ) < 1
2

log (2πeσ2
Q)+ 2 log e

exp (2π2α−2σ2
Q
)− 1

−h(X). (8)

Proof. First, h(Xπ) ≤ log α, since the uniform distribution maximizes entropy on a bounded
support. Then, note that the mean and variance of the integer-valued random variable
α−1XQ are α−1µQ and α−2σ2

Q, respectively. For (7), use that, for positive integer ran-

dom variables, H(XQ) < log(e(µQ/α + 1/2)), as in [20] (Theorem 8); for (8), the upper-
bound for integer-valued random variables from [20] (Theorem 10) gives us H(XQ) <
1
2 log (2πeα−2σ2

Q)+ 2 log e
exp(2π2α−2σ2

Q)−1
. Replacing the corresponding inequalities in (6) yields

the desired results.

The following lemma can be found in [2] (Appendix 3).

Lemma 1. h(Xπ) ≤ h(X).
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Proof. h(X) = h(Xπ)+H(XQ∣Xπ), and H(XQ∣Xπ) ≥ 0, since it is a discrete entropy.

Proposition 2. Let Λα := αΛ, α > 0, be a family of lattices, with fundamental domains Dα := αD.

1. If D is connected, and p is continuous and Riemann-integrable, then limα→0 I(Xπ ; XQ) = 0.
2. If 0 is an interior point of D, then limα→+∞ I(Xπ ; XQ) = 0.

Proof. For α → 0, the proof is an adaptation of [10] (Theorem 8.3.1). Since D is connected
and p is continuous, we can use the mean value theorem: for every λ ∈ Λ there exists
an xλ,α ∈ (λ +Dα) such that p(xλ,α)volDα = pQ(λ). Therefore, we can write H(XQ) =
−∑λ∈Λα

p(xλ,α) log (p(xλ,α))volDα − log (volDα), using that ∑λ∈Λα
p(xλ,α)volDα = 1. The

first term is an n-dimensional Riemann sum, and converges to h(X) when α → 0, while the
second term becomes arbitrarily small. Therefore, 0 ≤ I(Xπ ; XQ) ≤ H(XQ)+ log (volDα)−
h(X)→ 0, so I(Xπ ; XQ)→ 0.

For α → +∞, note that, from Lemma 1, I(Xπ ; XQ) ≤ H(XQ). However, by choosing α
sufficiently large, we can make pQ(0) = ∫Dα

p(x)dx arbitrarily close to 1, since 0 is in the
interior of Dα. Therefore, H(XQ) can be made arbitrarily small.

Example 3. In the case of the exponential distributions, as in Example 1, the distributions of Xπ

and XQ are independent, i.e., p = pπ ⊗ pQ, therefore I(Xπ ; XQ) = 0. The mutual information and
the corresponding upper bound (7) are plotted in Figure 2a, as function of the parameter ν.

Example 4. In the case of the univariate zero-mean Gaussian distributions, as in Example 2, one
can use (6) to numerically compute the mutual information I(Xπ ; XQ), as a function of the standard
deviation σ, and compare it with the upper bound (8) (Figure 2b). Interestingly, I(Xπ ; XQ) vanishes
as σ → 0 or σ → +∞, which is equivalent to choosing a lattice Λ = αZ with α → 0 or α → +∞,
cf. Proposition 2. The mutual information attains a maximum in σ ≈ 0.38, showing this is the value
for which Xπ and XQ are the least independent.

Mutual Information

Upper Bound

1 2 3 4
ν0.0

0.2

0.4

0.6

0.8

1.0

(a) Exponential distributions.

Mutual Information

Upper Bound
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σ0.0

0.1

0.2

0.3

0.4

0.5

(b) Zero-mean Gaussian distributions.

Figure 2. Mutual information I(Xπ ; XQ) and its upper bound.

3.2. Fisher Information

Let M = {pθ ∶ θ ∈ Θ} be a family of probability densities pθ ∶Rn → R+ smoothly
parametrized by θ in an open set Θ ⊂ Rd. The Fisher information matrix is defined as
the positive semi-definite matrix G(θ) with coefficients gij(θ) = Epθ

[∂i`θ∂j`θ], where
`θ(x) := log pθ(x). When M is a manifold satisfying certain regularity conditions [11],
and G is positive definite, it becomes a Riemannian manifold with the metric given by
gij(θ), called a statistical manifold. Let ⪯ denote the Loewner partial order for matrices, given
by A ⪯ B if, and only if, B − A is positive semi-definite. The following results justify the
name information matrix given to this quantity.

Proposition 3 ([11,21]). Let X be a random variable distributed according to a distribution
parametrized by θ, and G(θ) its information matrix. The following hold.
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1. Monotonicity: if F∶X → Y is a measurable function (i.e., a statistic) and GF(θ) is the
information matrix of F(X), then GF(θ) ⪯ G(θ), with equality if, and only if, F is a sufficient
statistic for θ.

2. Additivity: if X, Y are independent random variables, then the joint information matrix
satisfies G(X,Y)(θ) = GX(θ)+GY(θ).

Let X be a random variable on Rn, and Xπ and XQ its wrapped and quantized factors,
respectively. We denote their respective Fisher information matrices by G(θ), Gπ(θ) and
GQ(θ). By additivity, the Fisher information of pπ ⊗ pQ is G̃(θ) := Gπ(θ)+GQ(θ), and, by
monotonicity, we have both Gπ(θ) ⪯ G(θ) and GQ(θ) ⪯ G(θ). It follows immediately that

G̃(θ)
2

=
Gπ(θ)+GQ(θ)

2
⪯ G(θ). (9)

Example 5. In the family of exponential distributions, as in Example 1, the independence of Xπ

and XQ implies that the Fisher information matrix is additive. Indeed, for Λ = αZ:

G(ν) = 1
ν2 , Gπ(ν) = 1

ν2 +
α2

2(1− cosh(αν)) , and GQ(ν) = α2

2(cosh(αν)− 1) .

4. A Generalization to Topological Groups

A topological group is a topological space (G, τG) that is also a group with respect
to some operation ⋅ called product, and such that the inverse g−1 and product g ⋅ h are
continuous. As additional requisites, we ask G to be locally compact, Hausdorff and
second-countable (i.e., has a countable basis) [22]. Let BG be the the Borel σ-algebra of
G. Haar’s theorem says there is a unique (up to a constant) Radon measure on G that is
invariant by left translations—we will suppose a fixed normalization, and denote both the
measure and integration with respect to it by dg. The group G is said to be unimodular
if dg is also invariant by right translations. Since G is σ-compact, the Haar measure is
σ-finite [12].

Let Γ be a discrete subgroup of G, which is necessarily closed, since G is Hausdorff,
and countable, since G is second-countable. Let us also consider the quotient space of
left cosets G/Γ = {ḡ = gΓ ∣ g ∈ G} , which has a natural projection π∶G → G/Γ, given by
π(g) = ḡ. We call Γ a lattice if the induced Haar measure on G/Γ is finite and bi-invariant.
A particular case is when the quotient G/Γ is compact; then Γ is said to be a uniform lattice.
A cross-section is defined as a set D ⊂ G of representatives of G/Γ such that all cosets are
uniquely represented. A fundamental domain is a measurable cross-section. It can be shown
that Γ is a lattice if, and only if, it admits a fundamental domain. Furthermore, every
fundamental domain has the same measure [23,24].

Let P be a probability measure on the space (G,BG) that is absolutely continuous with
respect to the Haar measure dg. By the Radon–Nikodym theorem, we can define a density
function p = dP

dg ∈ L1(G), such that p ≥ 0 and P(A) = ∫A p(g)dg, for all A ∈ BG. The original
measure can be represented as P = p dg, and we consider the family of all such densities

P(G) = {p ∈ L1(G) ∣ p ≥ 0 dg-a.e., ∫ p dg = 1} .

Probability distributions on locally compact groups have been studied in [12], and
some information-theoretic properties have been investigated in [13–15]. The result that
allows us to consider wrapped distributions in this context is the Weil formula, taken as a
particular case of [24] (Theorem 3.4.6):

Theorem 1. For any f ∈ L1(G), the wrapping fπ ∈ L1(G/Γ), fπ(ḡ) := ∑λ∈Γ f (gλ) is well defined
dḡ-almost everywhere, belongs to L1(G/Γ), and

∫
G

f (g)dg = ∫
G/Γ

∑
λ∈Γ

f (gλ)dḡ. (10)
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As a consequence, for every probability density p ∈ P(G), we can consider its wrap-
ping pπ(ḡ) = ∑λ∈Γ p(gλ), which is L1(G/Γ), non-negative and is also a probability density:
∫G/Γ pπ dḡ = 1. The associated probability measure over (G/Γ,BG/Γ) is Pπ = pπ dḡ. This
notation, suggesting Pπ as the push-forward measure by π, is not a coincidence, since, from
Theorem 1,

π∗P(A) = ∫
G
1A(π(g))p(g)dg

= ∫
G/Γ

∑
λ∈Γ

1A(π(g))p(gλ)dḡ

= ∫
G/Γ

1A(ḡ)pπ(ḡ)dḡ = Pπ(A).

Analogously, given a fundamental domain D, it is possible to define a quantization
mapQ∶G → Λ byQ(gλ) = λ, for every g ∈ D, λ ∈ Γ, which is unique since G = ⊔g∈D gΓ. The
quantized probability distribution is the discrete probability measure PQ over Λ, defined
by the mass function pQ(λ) = ∫D p(gλ)dg, or as the push-forward measure Q∗P.

If X is distributed according to p, and Xπ = π(X) ∼ pπ , XQ = Q(X) ∼ pQ, then X =
Xπ ⋅XQ, again, as a consequence of g ↦ (π(g),Q(g)) being a measurable bijection whose
inverse is the product π(g) ⋅Q(g). Despite being an abstract definition, this framework
expands the scope of the previous approach, cf. examples below. In the following, let
Λ ⊂ Rn be a full-rank lattice, and Λs ⊂ Λ be a full-rank sublattice, as defined in Section 2.

Example 6. Let G = Rn and Γ = Λ. This recovers the approach from Section 2 as a particular case.

Example 7. Let G = Λ and Γ = Λs. A fundamental domain is a choice D = {d1, . . . , dk} of
k = ∣Λ/Λs∣ points, where each point corresponds to a coset λ̄ = (λ +Λs) ∈ Λ/Λs. Of particular
interest are Voronoi constellations [25,26] where the coset leaders are selected, with some choice
made for ties. Since Λ is discrete, the Haar measure is the counting measure µ(A) = ∣A∣, and
p∶Λ → [0, 1]. The wrapped and quantized distributions are pπ(λ̄) = ∑λs∈Λs p(λ + λs), and
pQ(λs) = ∑k

i=1 p(di + λs).

Example 8. Let G = Rn/Λs (a torus) and Γ = πs(Λ) (the projection of Λ to G). Then πs(Λ)
consists of a finite family of cosets λ̄1, . . . , λ̄k, for k = ∣Λ/Λs∣, and a choice of fundamental domain
D̄ is the projection of a fundamental domain D of Λ. There are some standard choices for the
distribution on G, such as a wrapping from the Euclidean space and the bivariate von Mises
distribution [7] (Section 11.4). Then, pπ(x̄) = ∑k

i=1 p(x̄ + λ̄i) and pQ(λ̄i) = ∫D̄ p(x̄ + λ̄k)dx̄, and,
in the particular case where p(x̄) = ∑λs∈Λs p(x + λs) is a Λs-wrapped distribution, they become
pπ(x̄) = ∑k

i=1∑λs∈Λs p(x + λs + λi) and pQ(λ̄i) = ∑λs∈Λs ∫D p(x + λs + λi)dx.

Example 9. Let G = Fn
q (a finite field) or G = Zn

q , and Γ = C (any linear block code). A fundamental
domain can be a finite set of points that tiles the space by C. The distributions then become finite
sums, such as in Example 7.

Example 10. Let G = SL(n,R), the Lie group of square matrices with determinant 1, and Γ =
SL(n,Z) (the subgroup of integer matrices). This is, in fact, a lattice, since for n = 2, vol(G/Γ) =√

2ζ(2) where ζ is the Riemann zeta function, and for n > 2 the finite covolume is calculated in [27],
where descriptions of fundamental domains are also given.

5. Conclusions

In this work, we have studied the decomposition of a random variable through
lattices into its wrapping and quantization terms. Generalization of examples and of
Proposition 1 to higher dimensions constitutes a work in progress. We have also proposed
a generalization of this decomposition to topological groups; in particular, this allows
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one to study information theory on such abstract spaces, which is another perspective for
future work.
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