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Abstract: The mass density, commonly denoted ρ(x, t) as a function of position x and time t, is
considered an obvious concept in physics. It is, however, fundamentally dependent on the con-
tinuum assumption, the ability of the observer to downscale the mass of atoms present within a
prescribed volume to the limit of an infinitesimal volume. In multiphase systems such as flow in
porous media, the definition becomes critical, and has been addressed by taking the convolution
[ρ](x, t) =

t
V(x,t) w(r, t) ρ(x + r, t) dV(r, t), involving integration of a local density ρ(x + r, t) multi-

plied by a weighting function w(r, t) over the small local volume V(r, t), where [·] is an expectation
and r is a local coordinate. This weighting function is here formally identified as the probability
density function p(r|t), enabling the construction of densities from probabilities. This insight is
extended to a family of five probability densities derived from p(u, x|t), applicable to fluid elements
of velocity u and position x at time t in a fluid flow system. By convolution over a small geometric
volume V and/or a small velocimetric domain U , these can be used to define five corresponding
fluid densities. Three of these densities are functions of the fluid velocity, enabling a description
of fluid flow of higher fidelity than that provided by ρ(x, t) alone. Applying this set of densities
within an extended form of the Reynolds transport theorem, it is possible to derive new families of
integral conservation laws applicable to different parameter spaces, for the seven common conserved
quantities (fluid mass, species mass, linear momentum, angular momentum, energy, charge and
entropy). The findings considerably expand the set of known conservation laws for the analysis of
physical systems.

Keywords: probability density function; Eulerian description; velocimetric domain; fluid densities;
Reynolds transport theorem; conservation laws

1. Introduction

The Reynolds [1] transport theorem provides a generalized integral conservation law for
any conserved quantity in a body of fluid (fluid volume), moving through a defined region of
space (control volume). This is commonly used to formulate conservation laws for seven impor-
tant conserved quantities in fluid flow systems: fluid mass, species mass, linear momentum,
angular momentum, energy, charge and entropy [2,3]. By application to a differential fluid
element, the theorem can also be connected to corresponding differential equations for each
phenomenon [2–7]. Extensions of the Reynolds transport theorem have also been given for
moving and smoothly-deforming control volumes [2,3,8], domains with discontinuities [8,9],
irregular and rough domains [10,11], two-dimensional domains [12–16], and differentiable
manifolds or chains in the formalism of exterior calculus [17–19]. These formulations all
involve one-parameter (temporal) mappings of the conserved quantity induced by a velocity
vector field in geometric space. An analogous spatial averaging theorem, based on spatial rather
than time derivatives of the fluid volume, has also been presented (e.g., [20–23]).

A recent generalized form of the Reynolds transport theorem [24] gives a multivariate
mapping of the density of a conserved quantity in a generic coordinate space, induced by
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a vector or tensor field. In contrast to a transport theorem, which examines the integral
curves (pathlines) described in time by a velocity vector field, the extended theorem
provides parameterized univariate or multivariate integral curves connecting different
locations within a coordinate space—or in other words, a transformation theorem. This
can be used, for example, to examine different positions in a velocity space connected
by a velocity gradient tensor field, different positions in a spectral space connected by a
velocity-wavenumber tensor field, or different positions in a velocity-chemical species space
connected by velocity and concentration gradient tensor fields [24,25]. The generalized
framework also yields new Liouville equations for the conservation of probability, and new
Koopman and Perron-Frobenius operators for the evolution of observable or probability
densities [24].

The aim of this work is to examine the formulation of different fluid densities required
for the extended Reynolds transport theorems in different Eulerian coordinate spaces,
including volumetric space, velocimetric space and velocivolumetric (phase) space. The
analysis starts from a family of five probability density functions (pdfs), which by convo-
lution are used to define corresponding fluid densities in the different spaces, and then
the generalized densities of any conserved quantity in the fluid. Applying these densities
within the extended Reynolds framework, we derive new families of integral conservation
laws for the different coordinate spaces, analogous to those derived from the traditional
Reynolds transport theorem [2,3]. An extended version of this analysis is also available [26].
Applied broadly to different types of spaces, the findings considerably expand the set of
known conservation laws for the analysis of fluid flow systems.

2. The Velocivolumetric Eulerian Description

Fluid flow systems are most commonly analysed using the Eulerian description of
continuum mechanics, in which each local property is defined as a function of Cartesian
coordinates x ∈ Ω ⊂ R3 and time t ∈ R as the fluid moves past, where Ω is a three-
dimensional volumetric space. This description enables the definition of local variables
of extensive quantities such as the velocity vector u(x, t), the mass density ρ(x, t) and the
mass concentration ρc(x, t) of the cth chemical species, and also of intensive quantities such
as the temperature T(x, t) and pressure P(x, t).

In this study, we adopt an extended velocivolumetric Eulerian description of a fluid
flow or dynamical system, in which each local property is specified as a function of the
instantaneous fluid velocity u ∈ D ⊂ R3, position x ∈ Ω ⊂ R3 and time t ∈ R as the
fluid moves past, where D is a three-dimensional velocity domain. This treatment is
analogous to the phase space description used in physics, enabling a more comprehensive
treatment of the velocity dependence of physical quantities. We further consider two
choices for the integration of any continuum variable ψ(u, x, t) over the velocivolumetric
domainD×Ω: (i) the geometric approach of integrating first overD(x, t) and then Ω(t), or
(ii) the velocimetric approach of integrating over Ω(u, t) and then D(t). The set of ordered
triples (u, x, t) for a fluid flow system can in principle be mapped into either of these
representations, enabling an equivalence in the mathematical treatment of the volumetric
and velocimetric domains, despite their very different physical interpretations.

3. A Hierarchy of Densities
3.1. Probability Density Functions

We start from a family of five pdfs, to provide the foundation for the velocivolumetric
description of fluid flow systems:

(a) A volumetric pdf p(x|t) : Ω×R→ R+
0 [m−3];

(b) A velocimetric pdf p(u|t) : D ×R→ R+
0 [(m s−1)−3];

(c) A velocivolumetric (phase space) pdf p(u, x|t) : D ×Ω×R→ R+
0 [m−3 (m s−1)−3];

(d) A conditional velocimetric pdf p(u|x, t) : D ×Ω×R→ R+
0 [(m s−1)−3]; and
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(e) A conditional volumetric pdf p(x|u, t) : Ω×D ×R→ R+
0 [m−3];

Philosophically, these pdfs can be interpreted as measurable frequency distributions, or
more broadly as Bayesian probability distributions subject to the sum and product rules
of probability theory [27]. Defining dV = dxdydz for an infinitesimal volume element and
dU = dudvdw for an infinitesimal velocity element, the five pdfs will by definition satisfy
the nine relations:

1 =
y

Ω(t)
p(x|t) dV, 1 =

y

D(t)
p(u|t) dU,

1 =
y

Ω(t)

y

D(x,t)
p(u, x|t) dU dV=

y

D(t)

y

Ω(u,t)
p(u, x|t) dV dU,

p(x|t) =
y

D(x,t)
p(u, x|t) dU, p(u|t) =

y

Ω(u,t)
p(u, x|t) dV,

p(u|x, t) =
p(u, x|t)
p(x|t) , p(x|u, t) =

p(u, x|t)
p(u|t) ,

1 =
y

D(x,t)
p(u|x, t) dU, 1 =

y

Ω(u,t)
p(x|u, t) dV

(1)

The integration pathways between these five pdfs are illustrated in the relational diagram
in Figure 1. As evident from the definitions, p(x|t) is well-known in fluid mechanics,
for example in the Liouville equation, while p(u, x|t) is the most fundamental of the set,
forming the basis of the other four pdfs. The pdf p(u|t) is quite strange, being integrated
over position but not velocity, and therefore represents the aggregated probability density
of all fluid flow elements in Ω with the same velocity.

1
[−]

p(x|t)
[m−3]

p(u|t)
[(m s−1)−3]

p(u, x|t)
[m−3 (m s−1)−3]

p(u|x, t)
[(m s−1)−3]

p(x|u, t)
[m−3]

denom.

numer.

denom.

numer.

t

D(x,t)
dU

t

Ω(u,t)
dV

t

D(x,t)
dU

t

Ω(u,t)
dV

t

Ω(t)
dV

t

D(t)
dU

Figure 1. Relational diagram between the pdfs defined in this study [26].

3.2. Fluid Densities

The family of five pdfs are now used to define corresponding fluid mass densities,
four of which are not usually encountered in the analysis of fluid flow systems:

(a) A volumetric fluid density ρ : Ω×R→ R+
0 , (x, t) 7→ ρ(x, t) [kg m−3];

(b) A velocimetric fluid density д : D ×R→ R+
0 , (u, t) 7→ д(u, t) [kg (m s−1)−3];

(c) A velocivolumetric (phase space) fluid density ζ : D × Ω × R → R+
0 , (u, x, t) 7→

ζ(u, x, t) [kg m−3 (m s−1)−3];

(d) A conditional velocimetric fluid density η : D ×Ω×R → R+
0 , (u, x, t) 7→ η(u, x, t)

[kg (m s−1)−3]; and

(e) A conditional volumetric fluid density ξ : D ×Ω × R → R+
0 , (u, x, t) 7→ ξ(u, x, t)

[kg m−3];

The density д uses the Cyrillic “de” character, from the transliteration of “density”.
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Considering a fluid volume of fixed fluid mass M, the five fluid densities are defined
to satisfy the following nine relations analogous to (1):

M =
y

Ω(t)
ρ(x, t) dV, M =

y

D(t)
д(u, t) dU,

M =
y

Ω(t)

y

D(x,t)
ζ(u, x, t) dU dV=

y

D(t)

y

Ω(u,t)
ζ(u, x, t) dV dU,

ρ(x, t) =
y

D(x,t)
ζ(u, x, t) dU, д(u, t) =

y

Ω(u,t)
ζ(u, x, t) dV,

η(u, x, t) =
ζ(u, x, t) M

ρ(x, t)
, ξ(u, x, t) =

ζ(u, x, t) M
д(u, t)

,

M =
y

D(x,t)
η(u, x, t) dU, M =

y

Ω(u,t)
ξ(u, x, t) dV

(2)

The integration pathways between the fluid densities are illustrated in the relational dia-
gram in Figure 2.

M
[kg]

ρ(x, t)
[kg m−3]

д(u, t)
[kg (m s−1)−3]

ζ(u, x, t)
[kg m−3 (m s−1)−3]

η(u, x, t)
[kg (m s−1)−3]

ξ(u, x, t)
[kg m−3]

denom.

numer.

denom.

numer.

t

D(x,t)
dU

numer.

t

Ω(u,t)
dV

numer.

t

D(x,t)
dU

t

Ω(u,t)
dV

t

Ω(t)
dV

t

D(t)
dU

Figure 2. Relational diagram between the fluid densities defined in this study [26].

In studies of multiphase systems such as flow in porous media, the definition of Eule-
rian continuum variables is complicated by the presence of phase boundaries, which break
the continuum assumption. To address this, numerous authors define an expected local
fluid density [ρ(x, t)] by integration of the density ρ(x + r, t) multiplied by a weighting
function w(r, t) over a small finite fluid volume V(r, t), where [·] is the volumetric expec-
tation and r ∈ Ω is the local coordinate vector (e.g., [28–30]). This avoids the problems
caused by taking a fluid volume to its infinitesimal limit. The weighting function w(r, t)
satisfies the properties of the pdf p(r|t), and is here formally identified as such. From this
insight, and also considering a small velocimetric domain U with local coordinate s ∈ D
for velocity averaging, as well as the small fluid mass domain m in either representation,
the five fluid densities can be defined from their underlying pdfs by the convolutions:

[ρ](x, t) =
w

m(x,t)
p(r|t) dm(x + r, t) =

y

V(x,t)
p(r|t) ρ(x + r, t) dV(r, t)

〈д〉(u, t) =
w

m(u,t)
p(s|t) dm(u + s, t) =

y

U (u,t)
p(s|t) д(u + s, t) dU(s, t)

[〈ζ〉](u, x, t) =
w

m(u,x,t)
p(s, r|t) dm(u + s, x + r, t)

=
y

V(x,t)

y

U (u,x+r,t)
p(s, r|t) ζ(u + s, x + r, t) dU(s, x + r, t) dV(s, r, t)

=
y

U (u,t)

y

V(u+s,x,t)
p(s, r|t) ζ(u + s, x + r, t) dV(u + s, r, t) dU(s, r, t)

〈η〉(u, x, t) =
w

m(u,x,t)
p(s|x, t) dm(u + s, x, t) =

y

U (u,x,t)
p(s|x, t) η(u + s, x, t) dU(s, x, t)

[ξ](u, x, t) =
w

m(u,x,t)
p(r|u, t) dm(u, x + r, t) =

y

V(u,x,t)
p(r|u, t) ξ(u, x + r, t) dV(u, r, t)

(3)
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where 〈·〉 is a local velocimetric expectation, and dm is an infinitesimal element of fluid
mass. Note that if each pdf is assumed uniformly distributed over its domain, each expected
fluid density reduces to the product of its underlying pdf and the fluid mass, as required
by dimensional considerations. The expectation notations in (3) are now dropped.

3.3. Generalized Densities

Using the generalized fluid densities, we can construct five generalized densities of
any conserved extensive quantity carried by a fluid:

(a) Volumetric densities α : Ω×R→ R+
0 , (x, t) 7→ α(x, t) [qty m−3];

(b) Velocimetric densities β : D ×R→ R+
0 , (u, t) 7→ β(u, t) [qty (m s−1)−3];

(c) Velocivolumetric (phase space) densities ϕ : D ×Ω×R→ R+
0 , (u, x, t) 7→ ϕ(u, x, t)

[qty m−3 (m s−1)−3];

(d) Conditional velocimetric densities θ : D × Ω × R → R+
0 , (u, x, t) 7→ θ(u, x, t)

[qty (m s−1)−3]; and

(e) Conditional volumetric densities ε : D×Ω×R→ R+
0 , (u, x, t) 7→ ε(u, x, t) [qty m−3];

where “qty” denotes the units of the conserved quantity. These are defined by the relations:

α(x, t) = ρ(x, t) α(x, t), β(u, t) = д(u, t) β̆(u, t),

ϕ(u, x, t) = ζ(u, x, t) ϕ̆(u, x, t), θ(u, x, t) = η(u, x, t) θ̆(u, x, t),

ε(u, x, t) = ξ(u, x, t) ε̆(u, x, t)

(4)

where α, β̆, ϕ̆, θ̆ and ε̆ [qty kg−1] are specific densities, representing the quantity carried
per unit fluid mass. For precision, these are labeled by an underline to indicate position
dependence (a function of x), or a breve accent to indicate velocity dependence (a function
of u). However, the fluid velocity u does not require these designations, being already
velocity-dependent.

The family of generalized densities will satisfy a set of integral relations analogous
to (2), equating to the total integrated quantity Q(t) [qty] rather than the total fluid mass M.
The integral connections between generalized densities can also be plotted in a relational
diagram analogous to Figure 2.

4. The Generalized Reynolds Transport Theorem and Example Systems

Recently, a generalized extension of the Reynolds transport theorem was presented
for the multivariate mapping of the density of a conserved quantity in a generic coordinate
space, induced by a vector or tensor field [24]. For the generalized density ψ of a conserved
quantity in an n-dimensional domain Ω within an n-dimensional space M, described by the
global Cartesian coordinate vector X ⊂ Rn and parameter vector C ⊂ Rm, this reduces to:

d
w

Ω(C)

ψ dnX =

[
∇C

w

Ω(C)

ψ dnX
]
· dC =

[ w

Ω(C)

[
∇Cψ +∇X ·

(
ψ V

)]
dnX

]
· dC, (5)

where V = (∇CX)> is a smooth vector or tensor field (a function of C), ∇X is the gradient
with respect to X, ∇C is the gradient with respect to C, and dnX is a volume element in Ω.
This is applicable to all spaces containing the density field ψ(V , C) of a conserved quantity,
not just the volumetric spaces usually considered in fluid mechanics.

We now apply (5) to three example formulations, also reported in [26]. In the following,
we adopt the following specific quantities in (4): specific mass of fluid 1 [–], specific mass
χc of chemical species c [kgc kg−1], specific linear momentum (fluid velocity) u [m s−1],
specific angular momentum r× u [m2 s−1] (where r is the local lever arm radius [m]),
specific energy e [J kg−1], specific charge z [C kg−1] and specific entropy s [J K−1 kg−1]. We
also use the following terms: rate of change of mass Ṁc of species c, total force ∑ F, total
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torque ∑ T, total energy E, heat flow rate Q̇in, rate of work Ẇin, total charge Z, electrical
current I, charge zc on species c, total entropy S, entropy production σ̇ and non-fluid
entropy flow rate Ṡn f .

4.1. Volumetric-Temporal Formulation

Consider the traditional example of a volumetric space Ω with coordinates X = x,
time parameter C = t and generalized density α(x, t) = ρ(x, t) α(x, t). The field is
V = ∂x/∂t = u, the velocity field. Equation (5) gives:

DQ
Dt

=
dQ
dt

=
d
dt

y

Ω(t)

α dV =
y

Ω(t)

[
∂α

∂t
+∇x · (αu)

]
dV (6)

where D/Dt is the substantial or material derivative, in this case equivalent to the total
derivative d/dt. Equation (6) is the standard Reynolds transport theorem [1–3,8,9]. The
integral conservation laws obtained from (6) are listed in Table 1 (e.g., [2–7]).

Table 1. Conservation Laws for the Volumetric-Temporal Formulation [2–7].

Conserved Quantity Density = ρ α Integral Equation

Fluid mass ρ 0 =
t

Ω(t)

[
∂ρ

∂t
+∇x · (ρ u)

]
dV

Species mass ρ χc Ṁc =
t

Ω(t)

[
∂ρ χc

∂t
+∇x · (ρ χc u)

]
dV

Linear momentum ρ u ∑ F =
t

Ω(t)

[
∂ρ u
∂t

+∇x · (ρ u u)
]

dV

Angular momentum ρ (r× u) ∑ T =
t

Ω(t)

[
∂ρ (r× u)

∂t
+∇x · (ρ (r× u) u)

]
dV

Energy ρ e
DE
Dt

= Q̇in + Ẇin =
t

Ω(t)

[
∂ρ e
∂t

+∇x · (ρ e u)
]

dV

Charge (in solution) ρ z
DZ
Dt

= I + ∑c zc Ṁc =
t

Ω(t)

[
∂ρ z
∂t

+∇x · (ρ z u)
]

dV

Entropy ρ s
DS
Dt

= σ̇+Ṡn f =
t

Ω(t)

[
∂ρ s
∂t

+∇x · (ρ s u)
]

dV

4.2. Velocimetric-Temporal Formulation

Consider a velocimetric space D with coordinates X = u, time parameter C = t
and generalized density β(u, t) = д(u, t) β̆(u, t). The field is V = ∂u/∂t = u̇, the local
acceleration vector field. Equation (5) gives:

DQ
Dt

=
dQ
dt

=
d
dt

y

D(t)
β dU =

y

D(t)

[
∂β

∂t
+∇u · (βu̇)

]
dU (7)

Equation (7) provides a new velocimetric-temporal formulation of the Reynolds transport
theorem [24]. The integral conservation laws obtained from (7) for the seven conserved
quantities are listed in Table 2. Since these integrals are equal to the total rate of change
of the conserved quantity dQ/dt, they equate to the same source-sink terms as for the
volumetric-temporal formulation (Table 1).
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Table 2. Conservation Laws for the Velocimetric-Temporal Formulation.

Conserved Quantity Density = д β̆ Integral Equation

Fluid mass д 0 =
t

D(t)

[
∂д
∂t

+∇u · (д u̇)
]

dU

Species mass д χ̆c Ṁc =
t

D(t)

[
∂д χ̆c

∂t
+∇u · (д χ̆c u̇)

]
dU

Linear momentum д u ∑ F =
t

D(t)

[
∂д u
∂t

+∇u · (д u u̇)
]

dU

Angular momentum д (r̆× u) ∑ T =
t

D(t)

[
∂д (r̆× u)

∂t
+∇u · (д (r̆× u) u̇)

]
dU

Energy д ĕ
DE
Dt

= Q̇in + Ẇin =
t

D(t)

[
∂д ĕ
∂t

+∇u · (д ĕ u̇)
]

dU

Charge (in solution) д z̆
DZ
Dt

= I + ∑c zc Ṁc =
t

D(t)

[
∂д z̆
∂t

+∇u · (д z̆ u̇)
]

dU

Entropy д s̆
DS
Dt

= σ̇+Ṡn f =
t

D(t)

[
∂д s̆
∂t

+∇u · (дs̆ u̇)
]

dU

4.3. Time-Independent Velocimetric-Spatial Formulation

Finally, consider a time-independent velocivolumetric space D×Ω with velocity coor-
dinates X = u, spatial parameter C = x and generalized density ϕ(u, x) = ζ(u, x) ϕ̆(u, x).
The field is V = (∇xu)> = G>, the velocity gradient tensor field. Equation (5) gives:

∇xα = ∇x

y

D(x)

ϕ dU =
y

D(x)

[
∇x ϕ +∇u · (ϕ G>)

]
dU (8)

The integral conservation laws obtained from (8) for the seven identified conserved quanti-
ties are listed in Table 3. These relations are of different character to those in Tables 1 and 2,
giving new expressions for the spatial gradient of each generalized density α = ρα.

Table 3. Conservation Laws for the Time-Independent Velocimetric-Spatial Formulation.

Conserved Quantity Density = ζ ϕ̆ Integral Equation

Fluid mass ζ ∇xρ =
t

D(x)

(
∇xζ +∇u · (ζ G>)

)
dU

Species mass ζ χ̆c ∇x(ρχc) =
t

D(x)

(
∇x(ζ χ̆c) +∇u · (ζ χ̆c G>)

)
dU

Linear momentum ζ u ∇x(ρu) =
t

D(x)

(
∇x(ζ u) +∇u · (ζ u G>)

)
dU

Angular momentum ζ (r̆× u) ∇x(ρ(r× u)) =
t

D(x)

(
∇x(ζ (r̆× u)) +∇u · (ζ (r̆× u) G>)

)
dU

Energy ζ ĕ ∇x(ρe) =
t

D(x)

(
∇x(ζ ĕ) +∇u · (ζ ĕ G>)

)
dU

Charge (in solution) ζ z̆ ∇x(ρz) =
t

D(x)

(
∇x(ζ z̆) +∇u · (ζ z̆ G>)

)
dU

Entropy ζ s̆ ∇x(ρs) =
t

D(x)

(
∇x(ζ s̆) +∇u · (ζ s̆ G>)

)
dU

5. Conclusions

This study examines the formulation of different fluid densities required by a gen-
eralized Reynolds transport theorem for different coordinate spaces [24], based on a ve-
locivolumetric Eulerian description of fluid flow. The family of five pdfs p(u, x|t), p(x|t),
p(u|t), p(u|x, t) and p(x|u, t) are used by convolution to define corresponding fluid densi-
ties ζ(u, x, t), ρ(x, t), д(u, t), η(u, x, t) and ξ(u, x, t). These in turn can be used with specific
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quantities to define generalized densities of any conserved quantity in the fluid. Applying
these densities within the extended Reynolds framework, we derive new families of integral
conservation laws for seven important conserved quantities in the volumetric, velocimetric
and time-independent velocivolumetric formulations. The analyses substantially expand
the scope of known conservation laws for the analysis of fluid flow systems.
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