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Abstract: Cosmological experiments often employ Bayesian workflows to derive constraints on
cosmological and astrophysical parameters from their data. It has been shown that these constraints
can be combined across different probes, such as Planck and the Dark Energy Survey, and that
this can be a valuable exercise to improve our understanding of the universe and quantify tension
between multiple experiments. However, these experiments are typically plagued by differing sys-
tematics, instrumental effects, and contaminating signals, which we collectively refer to as ‘nuisance’
components, which have to be modelled alongside target signals of interest. This leads to high
dimensional parameter spaces, especially when combining data sets, with &20 dimensions of which
only ∼5 correspond to key physical quantities. We present a means by which to combine constraints
from different data sets in a computationally efficient manner by generating rapid, reusable, and
reliable marginal probability density estimators, giving us access to nuisance-free likelihoods. This
is possible through the unique combination of nested sampling, which gives us access to Bayesian
evidence, and the marginal Bayesian statistics code MARGARINE. Our method is lossless in the
signal parameters, resulting in the same posterior distributions as would be found from a full nested
sampling run over all nuisance parameters, and typically quicker than evaluating full likelihoods.
We demonstrate our approach by applying it to the combination of posteriors from the Dark Energy
Survey and Planck.

Keywords: Bayesian analysis; normalizing flows; Kullback–Leibler; cosmology

1. Introduction

Bayesian inference is a cornerstone of modern cosmology and astrophysics. It is
frequently employed to derive parameter constraints on key signal parameters from data
sets such as the Dark Energy Survey (DES, [1,2]), Planck [3], REACH [4], and SARAS2 [5],
among others. Often, experiments are sensitive to different aspects of the same physics,
and by combining constraints across probes we can improve our understanding of the
Universe or reveal tensions between different experiments.

However, this can become a computationally expensive task as many experiments
feature systematic, instrumental effects, as well as contamination from other physical sig-
nals that need to be modelled alongside the signal or parameters of interest. For individual
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experiments, this can lead to high dimensional problems with &20 parameters of which
the majority can be considered ‘nuisance’ parameters. The problem is compounded when
combining different data sets with different models for common nuisance components and
different systematics or instrumental effects that have to be modelled.

In this work, we demonstrate that we can use density estimators, such as kernel density
estimators [6,7] and masked autoregressive flows [8], to rapidly calculate reliable and
reusable representations of marginal probability densities and marginal Bayesian summary
statistics for key signal or cosmological parameters. This gives us access to the nuisance-free
likelihood functions and allows us to combine parameter constraints from different data sets
in a computationally efficient manner given marginal posterior samples from the different
experiments. We use the publicly available code (https://github.com/htjb/margarine
(accessed on 26 October 2022)) MARGARINE [9] to generate density estimators.

In Section 2, we mathematically demonstrate that the application of MARGARINE to
the problem of combining the marginal posteriors from two data sets is equivalent to
running a full nested sampling run including all ‘nuisance’ parameters. We define in this
section the nuisance-free likelihood. Section 3 briefly discusses the methodology behind
MARGARINE with reference to a previously published work [9]. Finally, we show the results
of combining samples from DES and Planck in Section 4 and conclude in Section 5.

2. Theory
2.1. Notation

Given a likelihood L(Θ) ≡ P(D|Θ,M) representing the probability of data D given
some modelMwith parameters Θ, Bayesian inference proceeds by defining a prior π(Θ) ≡
P(Θ|M), and then through Bayes theorem computing a posterior distribution P(Θ) ≡
P(Θ|D,M) for the purposes of parameter estimation and an evidence Z ≡ P(D|M) in
order to perform model comparison. In our notation, we suppress model dependence, but
where we wish to refer to the likelihoods derived from different datasets, we denote this with a
subscript so for example LA(Θ) ≡ P(DA|Θ,M), and LB(Θ) ≡ P(DB|Θ,M).

In our setting, the parameter vector is split into two sub-vectors Θ = (θ, α), where
θ are parameters of scientific interest, and α are nuisance parameters, including for the
purposes of data analysis. Such situations are common in astrophysics, where for example
θ might be parameters governing the Universe’s evolution, whilst α might be associated
with instrument calibration and foreground removal [3,4]. The α parameters are generally
“marginalised out” and not considered further in final or future analyses.

2.2. Definitions

With this notation established, the Bayes theorem version (including nuisance parame-
ters) takes the form

L(θ, α)× π(θ, α) = P(θ, α)×Z , (1)

where we have placed the inputs of inference (likelihood and prior) on the left-hand side,
and the outputs (posterior and evidence) on the right. The evidence is as usual equivalent
to the (fully-)marginalised likelihood Z =

∫
L(θ, α)π(θ, α)dθdα.

We may marginalise any probability distribution so can straightforwardly define the
nuisance marginalised posterior and prior by integrating over α

P(θ) =
∫
P(θ, α)dα, π(θ) =

∫
π(θ, α)dα. (2)

The nuisance marginalised version of Bayes theorem Equation (1) takes the form

L(θ)× π(θ) = P(θ)×Z . (3)

https://github.com/htjb/margarine
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HereZ is the original evidence, whilstL(θ) is non-trivially the nuisance-free likelihood

L(θ) ≡
∫
L(θ, α)π(θ, α)dα∫

π(θ, α)dα
=
P(θ)Z
π(θ)

, (4)

where the above is motivated by marginalising over α of the full Bayes theorem Equation (1)
and substituting the definitions in Equations (2) and (4) recovers the marginalised Bayes
theorem Equation (3).

The nuisance-free likelihood Equation (4) is straightforward to compute in our frame-
work since we (uniquely) have NS-computed evidence Z combined with MARGARINE

trained distributions P(θ) and π(θ) [9] (see Section 3).
We now explain why Equation (4) is a useful definition

Theorem 1. Let LA(θ, αA) and LB(θ, αB) be two likelihoods with distinct datasets, each with their
own nuisance parameters. The nuisance-free likelihoods LA(θ), LB(θ) form a lossless compression
in θ. This means that we can recover the same (marginal) inference in combination that we would
have made when performing a combined analysis with all nuisance parameters:

LA(θ, αA)LB(θ, αB)πAB(θ, αA, αB) = PAB(θ, αA, αB)ZAB, (5)

⇒ LA(θ)LB(θ)π(θ) = PAB(θ)ZAB, (6)

if their respective priors πA(θ, αA) and πB(θ, αB) satisfy the marginal consistency relations:

π(θ) =
∫

πA(θ, αA)dαA =
∫

πB(θ, αB)dαB, (7)∫
πAB(θ, αA, αB)dαA = πB(θ, αB),

∫
πAB(θ, αA, αB)dαB = πA(θ, αA). (8)

This process is represented graphically in Figures 1 and 2.

Proof. Integrating the combined Bayes theorem Equation (5) with respect to αB, applying
the definition of the marginal posterior Equation (2) on the right-hand side, and drawing
out terms independent of αB on the left, yields

LA(θ, αA)
∫
LB(θ, αB)πAB(θ, αA, αB)dαB = PAB(θ, αA)ZAB. (9)

From the definition of a nuisance-free likelihood Equation (4), and the marginal
consistency Equation (8), we can say that the integral on the left-hand side becomes:∫

LB(θ, αB)πAB(θ, αA, αB)dαB

=
∫
LB(θ, αA, αB)πAB(θ, αA, αB)dαB [LB(θ, αB) ≡ LB(θ, αA, αB)sinceLBindep ofαA]

= LB(θ, αA)
∫

πAB(θ, αA, αB)dαB [Using Equation (4) forLB] (10)

= LB(θ)
∫

πAB(θ, αA, αB)dαB [LB(θ, αA) ≡ LB(θ) since LB indep of αA]

= LB(θ)πA(θ, αA). [Using marginal consistency Equation (8)]

Substituting Equation (10) back into Equation (9) we find

LA(θ, αA)LB(θ)πA(θ, αA) = PAB(θ, αA)ZAB. (11)
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Proceeding with a similar manipulation to Equation (10), marginalising with respect
to αA, and applying the definition of the nuisance-free likelihood LA(θ) Equation (4) and
the marginal prior consistency Equation (7) we recover Equation (6)

LA(θ)LB(θ)π(θ) = PAB(θ)ZAB.

Nested Sampling
with θ, αA and αB

LA(θ, αA) LB(θ, αB)

LA(θ, αA)LB(θ, αB)

πAB(θ, αA, αB)

ZAB {θ}PAB {αA, αB}PAB

Figure 1. A graphical representation of combining constraints from different data sets via a full
nested sampling run over both cosmological and nuisance parameters (Equation (5)).

Nested Sampling

L(θ, α) π(θ, α)

Z {θ, α}P {θ, α}π

MARGARINE

π(θ)

P(θ)

L(θ)

LA(θ, αA) πA(θ, αA)

Nested Sampling
+ MARGARINE

LA(θ) π(θ)

LB(θ, αB) πB(θ, αB)

Nested Sampling
+ MARGARINE

LB(θ)

LA(θ)LB(θ)

Nested Sam-
pling with θ

ZAB {θ}PAB

Figure 2. A graphical representation of combining constraints from two data sets via MARGARINE

(Equation (6)). Left of the dashed line illustrates the derivation of a nuisance-free likelihood function
for one experimental data set.

2.3. Discussion

Equation (5) represents Bayes theorem for the combined likelihood of both datasets
LAB(θ, αA, αB) = LA(θ, αA)LB(θ, αB), using the combined prior πAB(θ, αA, αB). We as-
sume the combined prior is marginally consistent, Equations (7) and (8), which is reason-
able, merely demanding that the priors are identical in the parameter spaces where they
overlap. In practice, this would usually be achieved by assuming separability between
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signal and nuisance parameter spaces π(θ, α) = π(θ)π(α), but Equations (7) and (8) are a
slightly less restrictive requirement and therefore more general.

The upshot of this is that if you have performed inference for two datasets separately,
such that you are able to compute the nuisance-free likelihoods with MARGARINE, you may
discard the nuisance parameters for the next set of analyses when you combine the datasets.

3. Methods

MARGARINE was first introduced in [9] and uses density estimation to approximate
probability distributions such as P(θ) and π(θ) given sets of representative samples. The
code was developed initially to calculate marginal Kullback–Leibler (KL) divergences [10]
and Bayesian model dimensionalities (BMD) [11] however as discussed in Section 2 it can
be used to calculate the nuisance-free likelihoods. This in turn means that we can use
MARGARINE alongside an implementation of the nested sampling algorithm to sample the
product LA(θ)LB(θ). In this manner, MARGARINE allows us to combine constraints on
common parameters across different data sets.

We refer the reader to [9] for a complete discussion of how MARGARINE works; how-
ever, we discuss briefly the density estimation here. MARGARINE uses two different types
of density estimators to model posterior and prior samples, namely masked autoregressive
flows (MAFs, [8]) and kernel density estimators (KDEs, [6,7]).

MAFs transform a multivariate base distribution, the standard normal, into a target
distribution via a series of shifts and scaling, which are estimated by autoregressive neural
networks. To improve the performance of the MAF the samples representing the target
distribution, in our case P(θ) and π(θ), are transformed into a Gaussianized space. We
implement the MAFs using TENSORFLOW and the KERAS backend [12].

KDEs use a kernel to approximate the multivariate probability density of a series
of samples. In our case, the kernel is Gaussian and the probability density is a sum of
Gaussians centred on the sample points with a given bandwidth. Again, we transform the
target samples into a Gaussianized parameter space allowing the KDE to better capture the
distribution. The KDEs are implemented with SCIPY in MARGARINE [6,7,13].

Since both types of density estimator build approximations to the target distribution
using known distributions, the approximate log probabilities of the target distribution can
be easily calculated.

The evaluation of normalised log probabilities for the marginal posterior and marginal
prior allows us to calculate the nuisance-free likelihoods, as discussed, along with marginal
Kullback–Leibler divergences

D(P||π) =
∫
P(θ) log

P(θ)
π(θ)

dθ, (12)

which quantifies the amount of information gained when moving from the marginal prior
to posterior.

4. Cosmological Example

It has previously been demonstrated that MARGARINE is capable of replicating com-
plex probability distributions and approximating marginal Bayesian statistics such as the
KL divergence and the BMD [9]. Here, we demonstrate the theory discussed in Section 2
by combining samples from the Dark Energy Survey (DES) Year 1 posterior [1] and Planck
posterior [3] using MARGARINE to estimate nuisance-free likelihoods. DES surveys super-
novae, galaxies, and large-scale cosmic structures in the universe in an effort to measure
dark matter and dark energy densities and model the dark energy equation of state. In
contrast, Planck mapped the anisotropies in the cosmic microwave background (CMB) and
correspondingly provided constraints on key cosmological parameters.

The constraints from DES and Planck have previously been combined using a full nested
sampling run over all parameters including a multitude of ‘nuisance’ parameters in a computa-
tionally expensive exercise [14]. This corresponds to the flow chart in Figure 1 and the previous
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analysis gives us access to the combined DES and Planck evidence, which is found to have a
value of log(Z) = −5965.7± 0.3. In Figure 3, we show the DES, Planck, and joint posteriors
for the six cosmological parameters derived in this work using MARGARINE and the flow chart
in Figure 2. The constrained parameters are the baryon and dark matter density parameters,
Ωbh2 and Ωch2, the angular size of the sound horizon at recombination, θMC, the CMB optical
depth, τ, the amplitude of the power spectrum, As, and the corresponding spectral index, ns.
These make up the set θ = (Ωbh2, Ωch2, θMC, τ, As, ns). We use the nested sampling algorithm
POLYCHORD in our analysis [15,16].

We use a uniform prior that is defined to be three sigma around the Planck posterior
mean. This is done to improve the efficiency of our nested sampling run. However, we sub-
sequently have to re-weight the samples and correct the evidence for the difference between
the priors used here and in the previous full nested sampling run [14] for comparison. If
we define

ZA =
∫
L(θ)πA(θ)dθ, ZB =

∫
L(θ)πB(θ)dθ, (13)

where A is our uniform prior space and B is our target prior space from the previous
work [14], then

ZB =
∫
L(θ)πB(θ)dθ =

∫
L(θ)πA(θ)

πB(θ)

πA(θ)
dθ = ZA

〈
πB(θ)

πA(θ)

〉
PA

(14)

giving

ZB = ZA

〈
πB(θ)

πA(θ)

〉
PA

. (15)

Following similar arguments, we can transform our posteriors by re-weighting the
distributions with the following

w(i)
B = w(i)

A
πB(θ

(i))

πA(θ(i))
. (16)

We see from the figure and corresponding table that with our joint analysis we are
able to derive a log-evidence that is approximately consistent with that found in [14]
validating the theory discussed and its implementation with MARGARINE. We note that the
re-weighting described above relies on the calculations of the two prior log probabilities
for which we use MARGARINE, and currently do not have an estimate of the error for.
As a result, the error in the combined evidence, ZB, is given by the error in ZA from the
nested samples and is likely underestimated. Using MARGARINE [9] we can also derive the
combined KL divergence, also reported in Figure 3, which we find is consistent with the
result in the literature ofD = 6.17± 0.36 [11]. Similarly, we derive marginal KL divergences
for the DES and Planck cosmological parameters using MARGARINE. A full discussion of
the implications of combining the two data sets for our understanding of cosmology can be
found in the literature (e.g., [11,14]).

By reducing the number of parameters that need to be sampled, we significantly
reduce the nested sampling runtime. For POLYCHORD the runtime scales as the cube of
the number of dimensions [17]. This can be seen by assessing the time complexity of the
algorithm, where T ∝ nlive × 〈T{L(θ)}〉 × 〈T{Impl.}〉 × D(P||π). Here nlive scales with
the number of dimensions, d, as does the Kullback–Leibler divergence. For POLYCHORD,
the specific implementation time complexity factor, 〈T{Impl.}〉, representing the impact
of replacing dead points with higher likelihood live points on the runtime, scales linearly
with d. Together this gives T ∝ d3 × 〈T{L(θ)}〉. Therefore, by using nuisance-free likeli-
hoods and sampling over 6 parameters rather than 41 parameters (cosmological plus 20
nuisance parameters for DES and 15 different nuisance parameters for Planck) we reduce
the runtime by a factor of (41/6)3 ≈ 319 with further improvements in 〈T{L(θ)}〉. Using
MARGARINE, 〈T{L(θ)}〉 is typically reduced since analytic likelihoods are computationally
more expensive than emulated likelihoods.
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DES −278.62 ± 0.15 6.32+1.40
−0.29

Planck −5689.95 ± 0.21 7.28+2.05
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Joint −5966.4 ± 0.1 5.34+1.62
−0.40
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Ω
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Figure 3. The combined posterior (in grey) found when combining the constraints on the cosmological
parameters from DES and Planck using MARGARINE. For DES and Planck, we calculate the marginal
KL divergences using MARGARINE, whereas the Bayesian evidence is calculated using ANESTHETIC.
The joint evidence and joint KL divergence are calculated with a combination of the two codes and
are found to be approximately consistent with those found in the literature [11,14]. Note that the
error on the joint evidence is likely underestimated as it relies on evaluations of log probabilities
for various distributions, for which MARGARINE does not currently provide errors. The figure was
produced with ANESTHETIC [18].

5. Conclusions

In the paper, we demonstrated the consistency between combining constraints from
different experiments in a marginal framework using density estimators and the code
MARGARINE with a full nested sampling run over all parameters, including those describing
‘nuisance’ components of the data. We have shown this consistency mathematically and
with a cosmological example. For the combination of Planck and DES, we found Bayesian
evidence and KL divergence that were consistent with previous results [11,14].

The analysis in this paper is only possible because (a) we were able to estimate densities
in the (much smaller) cosmological parameter space θ using MARGARINE, and (b) because
we have evidence, Z , from our original nested sampling runs. It is this unique combination
that allowed us to compress away or discard nuisance parameters once they have been
used. We note also that working in the marginal space results in a compression that is
lossless in information on θ as it recovers an identical marginal posterior and total evidence
as is found during a full Bayesian inference. Finally, through the nuisance-free likelihood
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we can significantly reduce the dimensionality of our problems and since it is faster to
emulate a likelihood rather than analytically evaluate, MARGARINE offers a much more
computationally efficient path to combined Bayesian analysis.

In principle, our work paves the way for the development of a publicly available
library of cosmological density estimators modelled with MARGARINE that can be combined
with new data sets using the proposed method in a more efficient manner than currently
implemented techniques. However, the work has implications outside of cosmology in any
field where multiple experiments probe different aspects of the same physics.
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