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Abstract: In previously published articles, our research group has developed the Haphazard Intentional
Sampling method and compared it to the Rerandomization method proposed by K.Morgan and D.Rubin.
In this article, we compare both methods to the pure randomization method used for the Epicovid19
survey, conducted to estimate SARS-CoV-2 prevalence in 133 Brazilian Municipalities. We show that
Haphazard intentional sampling can either substantially reduce operating costs to achieve the same
estimation errors or, the other way around, substantially improve estimation precision using the
same sample sizes.

Keywords: haphazard intentional sampling; rerandomization; pure randomization; optimal sam-
pling design

1. Introduction

Traditional sampling with face-to-face interviews usually demands large staff and
infrastructure and expensive field operations to cover a representative group of the popula-
tion of interest. Even then, pure (or stratified) randomized experiments do not guarantee
efficient control over specific sets of covariates, and there may be large divergences between
sample and population statistics. To address this problem, Lauretto et al. [1,2] and Fos-
saluza et al. [3] developed the Haphazard Intentional Sampling method, an approach that
combines intentional sampling, using methods of numerical optimization for an appropri-
ate objective function, with random disturbances ensuring good decoupling properties.
The word haphazard was used by Dennis Lindley to distinguish the decoupling effect from
the tool used to obtain the desired decoupling, namely, randomization; for further details,
see [1,3,4]. For a fixed sample size, this technique aims at diminishing the distance between
sample and population regarding specific covariates of interest or, the other way around,
minimizing the sample size needed to achieve good enough expected agreement between
sample and population regarding specific covariates of interest. The Mahalanobis distance
is the natural choice for the statistical model at hand, but other Lp distances, or convex
combinations thereof, will be used as approximations useful for numerical computation,
as explained in the following sections. This method can be applied in several contexts,
such as allocations of treatment and control groups in medical trials [2] or in statistical
sampling problems [5]. In this method, a weight factor, λ, adjusts the weight of the random
perturbation relative to the deterministic objective function of the optimization problem.
In practical problems, the weight factor λ can be calibrated in such a way that, on the
one hand, it is small enough to generate only slightly sub-optimal solutions and, on the
other hand, it is large enough to break potential confounding effects that could introduce
spurious statistical biases in the study.
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In this paper, the performance of the Haphazard intentional sampling method is com-
pared to pure random sampling and to the Rerandomization methods proposed by Morgan
and Rubin [6]. As a benchmark, we use an artificial sampling problem concerning infer-
ences about the prevalence of Sars-CoV-2, using covariates from public data sets generated
by the 2010 Census of the Brazilian Institute of Geography and Statistics (IBGE). Pending
analyses of this benchmark study, real epidemiological applications shall be developed in
the near future. Sampling procedures of the three aforementioned methods were repeatedly
applied to the benchmark problem, in order to obtain performance statistics regarding how
well generated samples represent the population.

2. Haphazard Intentional Sampling Method

In this section, we present the formulation of the Haphazard intentional sampling
method presented by Lauretto et al. [1,2]. Let X denote a matrix in Rn×d, where n is the
number of candidate sampling units and d is the number of covariates of interest. An
allocation consists of assigning to each unit a group chosen from a set of possible groups,
G = {0, 1, 2, ...g}. We denote by w an allocation vector in Gn, assigning each unit to a
group. For simplicity, we assume only two groups, that is, G = {0, 1}, the control and
treatment groups, or the unsampled and sampled units. We also assume that the number
of units assigned to each group is previously defined. That is, integers n1 and n0 exist
such that n1 + n0 = n, 1wt = n1 and 1(1−w)t = n0. 1 denotes a vector of ones with the
proper size; therefore, the scalar product 1wt is the sum of the scalar components of w. The
goal of the allocation problem is to generate an allocation, w, that, with high probability,
approximately minimizes the imbalance between groups with respect to a loss function,
L(w, X).

The Mahalanobis distance is the metric of choice for statistical models based on
the multivariate normal distribution; for further details, see Stern [7] (Section 6.2). The
Mahalanobis distance between the covariates of interest in each group is defined as follows.
Let A be an arbitrary matrix in Rn×m. Furthermore, define A∗ := AL, where L is the
lower triangular Cholesky factor [8] of the inverse of covariance matrix of A; that is,
Cov(A)−1 = LLt.

For an allocation w, let A∗1 and A∗0 denote the averages of each column of A∗ over
units allocated to, respectively, groups 1 and 0 according to the row vector w:

A∗1 := (1/n1)wA∗ and A∗0 := (1/n0)(1−w)A∗ . (1)

The Mahalanobis distance between the average of the column values of A in each
group specified by w is defined as:

M(w, A) := m−1‖A∗1 −A∗0‖2 , (2)

where m denotes the number of columns of A.

2.1. Pure Intentional Sampling Formulation

Under the Mahalanobis loss function, a pure intentional sampling procedure consists
of generating an allocation w that minimizes the following optimization problem:

minimize M(w, X)
subject to 1wt = n1

1(1−w)t = n0
w ∈ {0, 1}n

(3)

The formulation presented in Equation (3) is a Mixed-Integer Quadratic Programming
Problem (MIQP) [9], that can be computationally very expensive. The hybrid loss function,
H(w, A), is a surrogate function for M(w, A) built using a linear combination of L1 and
L∞ norms; see Ward and Wendell [10]:
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H(w, A) := m−1
(
‖A∗1 −A∗0‖1 +

√
m ‖A∗1 −A∗0‖∞

)
(4)

The minimization of H(w, A) yields the Mixed-Integer Linear Programming Problem
(MILP) defined in the next equation, which is computationally much less expensive than
the MIQP problem (3); see Murtagh [11] and Wolsey and Nemhauser [9].

minimize H(w, X)
subject to 1wt = n1

1(1−w)t = n0
w ∈ {0, 1}n

(5)

Statistical inference based on pure intentional sampling is vulnerable to malicious
manipulation, unconscious biases, and many other confounding effects. In the Frequentist
School of statistics, the use of intentional allocation is anathema, whereas in the Bayesian
School, it has been the subject of long-standing debates. The solution presented in this paper
is a compromise aiming to achieve the effective performance of intentional sampling but
using moderate randomization to avoid systematic confounding effects. Lauretto et al. [1]
and Fossaluza et al. [3] give a thorough discussion of the motivation and history of the
ideas leading to the Haphazard intentional sampling method.

2.2. Haphazard Formulation

The Haphazard intentional sampling method consists of extending the pure intentional
sampling method, formulated in Equation (5), as a MILP optimization problem, with the
introduction of a noisy component. Let Z be an artificially generated random matrix in
Rn×k, with elements that are independent and identically distributed according to the
standard normal distribution. For a given tuning parameter, λ ∈ [0, 1], the Haphazard
method, aims to solve the following optimization problem:

minimize (1− λ) H(w, X) + λ H(w, Z)
subject to 1wt = n1

1(1−w)t = n0
w ∈ {0, 1}n

(6)

The parameter λ controls the amount of perturbation that is added to the surrogate
loss function, H(w, X). If λ = 0, then w∗ is the deterministic optimal solution for H(w, X),
corresponding to the pure intentional sampling. If λ = 1, then w∗ is the optimal solution
for the artificial random loss, H(w, Z), corresponding to a completely random allocation.
By choosing an intermediate value of λ (as discussed in Section 3.2), one can obtain w∗ to
be a partially randomized allocation such that, with a high probability, H(w∗, X) is close to
the minimum loss.

3. Case Study

The artificial data set used for the simulations carried in this study are inspired by
Epicovid19 [12], a survey conducted by the Brazilian Institute of Public Opinion and
Statistics (IBOPE) and the Federal University of Pelotas (UFPel) to estimate SARS-CoV-2
infection prevalence in 133 Brazilian municipalities. Our study is supplemented by data
from the 2010 Brazilian census conducted by IBGE, giving socio-economic information by
census sector. Sectors are the minimal units by which census information is made publicly
available. Typically, each sector has around 200 households. Furthermore, households in a
sector form a contiguous geographic area with approximately homogeneous characteristics.

The first step of the sampling procedure of Epicovid19 study consisted of randomly
selecting a subset of census sectors of each surveyed municipality. As a second step, at
each of the selected sectors, a subset of households was randomly selected for a detailed
interview concerning socio-economic characteristics and SARS-CoV-2 antibody testing.
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Our benchmark problem is based on the original Epicovid19 study, where we evaluate the
impact of alternative census sector sampling procedures on the estimation of the response
variable, namely, SARS-CoV-2 prevalence. In order to simulate outcomes for alternative
sector selections, we used an auxiliary regression model for this response variable, as
explained in the sequel.

3.1. Auxiliary Regression Model for SARS-CoV-2 Prevalence

The auxiliary regression model for SARS-CoV-2 prevalence had the Epicovid19 esti-
mated infection rates adjusted for the spread of the pandemic in subsequent months and
corrected for underreporting due to lack of intensive testing in Brazil. As explanatory
variables, this auxiliary model used 15 socio-demographic covariates, including income,
ethnicity, age, sanitation condition, etc. The parameters of this auxiliary regression model
were estimated using standard regression packages available at the R statistical environ-
ment. Since the response variable is simulated by this auxiliary regression model, its
covariates and their weight coefficients in the regression can be taken as a valid representa-
tivity target, that is, the Haphazard and Rerandomization methods will try to make sector
selections that resemble the population characteristics corresponding to these 15 covariates.

The auxiliary model was a logit link regression, specified by selecting three of the most
relevant predictive variables, namely, average income, population percentage with zero
income, and percentage of households with two or more bathrooms (a standard indirect
measure of wealth used by IBGE):

ln(pi/(1− pi)) = ηi = β̂0 + β̂1xi,1 + β̂2xi,2 + β̂3xi,3 + εi (7)

pi =
eηi

(1 + eηi )
(8)

pi: simulated SARS-CoV-2 prevalence in sector i;
xi,1: income in census sector i;
xi,2: zero income population percentage in census sector i;
xi,3: percentage of households with two or more bathrooms in census sector i.

3.2. Balance and Decoupling Trade-Off in the Haphazard Method

The Haphazard intentional sampling method is not exclusively concerned with choos-
ing maximally representative samples. Equally important is to prevent estimation biases
induced by spurious confounding effects. This is exactly the role of the decoupling effects en-
gendered by standard randomization procedures. We need a quantitative measure to assess
how effectively the noise introduced in the method, with weight λ, is performing this task.
A proxy measure of this sort can be constructed using Fleiss’ Kappa coefficient, conceived
to measure the degree of agreement between nominal scales assigned by multiple raters,
see Fleiss [13]. In our context, it is used as follows.

For r repetitions of a sampling procedure, let ri,j denote the number of times element
i ∈ {1, 2, . . . , N} is allocated to group j ∈ {0, 1}. Let Po denote the observed average
proportion of concordance among all allocation pairs. Let Pe denote the expected agreement
that would be obtained by chance, conditional on the proportion of assignments that were
observed in each group j.

Po =
1

Nr(r− 1)

N

∑
i=1

1

∑
j=0

ri,j(ri,j − 1) Pe =
1

∑
j=0

(
∑N

i=1 ri,j

)2

(Nr)2 (9)

The Fleiss’ Kappa coefficient is obtained by the ratio of the difference between the
observed and the expected random agreement, Po − Pe, and the difference between total
agreement and the agreement obtained by chance, 1− Pe:
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κ =
Po − Pe

1− Pe
(10)

The relation between decoupling and the degree of disturbance added is assessed
empirically. The following transformation between parameters λ and λ∗ is devised to
equilibrate the weights given to the terms of Equation (6) corresponding to the covariates
of interest and artificial noise, according to dimensions d (the number of columns of X)
and k (the number of columns of Z).

λ = λ∗ / [λ∗(1− k/d) + k/d] , where λ∗ ∈ {0.005, 0.01, 0.05, 0.1, 0.25, 0.5}. (11)

The trade-off between balancing and decoupling also varies according to the charac-
teristics of each municipality. Small municipalities have only a limited number of census
sectors and, hence, also a limited set of near-optimal solutions. Therefore, for small mu-
nicipalities, good decoupling requires a larger λ∗. Figure 1a shows, for the smallest of the
133 municipalities in the database (with 34 census sectors), the trade-off between balance
and decoupling (Fleiss’ Kappa) as λ∗ varies in proper range. Figure 1b shows the same
trade-off for a medium sized municipality. Since it has many more sectors (176), it is a lot
easier to find well-balanced solutions and, hence, good decoupling is a lot easier to achieve.

(a) (b)

Figure 1. Trade-off between balance and decoupling in 300 allocations for two municipalities
containing, respectively, 34 (panel a) and 176 (panel b) sectors. Sectors are the minimal units by
which census information is made publicly available, each containing about 200 households. Balance
between allocated and non-allocated sectors is expressed by the 95th percentile of Mahalanobis
distance. Decoupling is expressed by Fleiss’ Kappa coefficient—notice the different range in each
case (a,b).

Larger municipalities engender larger optimization problems (for the number of
binary decision variables equals the number of census sectors) that, in turn, usually require
more CPU time for the MILP solver. Table 1 displays empirically calibrated parameters λ∗

and maximum CPU times under the hardware configuration described in Section 3.3.

Table 1. Parameters λ∗ and maximum CPU time for MILP solver by number of sectors.

Sectors λλλ∗ Time (s)

<50 0.1 5
50–4000 0.01 30
>4000 0.001 120

3.3. Benchmark Experiments and Computational Setups

Our performance experiments used a subset of 10 municipalities of the 133 in the
original Epicovid19 study, covering a wide range of population size and characteristics.
Following the original Epicovid19 protocol, a sample of 25 census sectors was selected at
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each municipality. The sampling procedure for selecting these 25 sectors was repeated 300
times, using each of the three methods under comparison, namely, Haphazard method,
Rerandomization, and pure randomization.

Numerical optimization and statistical computing tasks were implemented using the
R v.3.6.1. environment [14] and the Gurobi v.9.0.1 optimization solvers [15]. The computer
used to run these routines had an AMD RYZEN 1920X processor (3.5 GHz, 12 cores,
24 threads), ASROCK x399 motherboard, 64 GB DDR4 RAM, and Linux Ubuntu 18.04.5
LTS operating system. There is nothing particular about hardware configuration, with
performance being roughly proportional to general computing power.

4. Experimental Results

In this section, we present the comparative results for the Haphazard, Rerandomiza-
tion, and simple randomization methods, considering the metrics discussed in the sequel.

4.1. Group Unbalance among Covariates

We compute the standardized difference between group means for each covariate,
based on 300 simulated allocations per method. Specifically, we compute the empirical
distribution of the statistics (X1

,j − X0
,j)/sj, where X1

,j and X0
,j denote the averages of the j-th

column of X over units allocated to, respectively, groups 1 and 0 (see Equation (1)); and sj

is the reference scale given by the standard deviation of X1
,j − X0

,j computed over 300 pure
random allocations.

Figure 2 shows the distribution of standardized differences in each covariate (see Mor-
gan and Rubin [16]) for São Paulo, the largest Brazilian municipality (18,182 sectors). It can
be easily seen that differences are remarkably smaller for the haphazard allocations than
for the rerandomization allocations, which, in turn, are remarkably smaller than for the
pure randomization allocations. It is important to mention that this same pattern is verified
in all other municipalities.

Figure 2. Difference between groups 1 (sampled sectors) and 0 (not sampled sectors) with respect to
average standardized covariate values for each type of allocation.
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4.2. Root Mean Square Errors of Simulated Estimations

We now consider simulated scenarios where, once we have sampled the sectors in each
municipality, we estimate the municipality’s SARS-CoV-2 prevalence based on observed
prevalences on these sectors. Here, SARS-CoV-2 prevalence in each sector is simulated
by the auxiliary regression model described in Section 3.1. To assess the estimation er-
ror yielded in each sampling method and to estimate variability, we compute, for each
municipality, the root mean square error (RMSE) and the standard deviation of estimates,
as follows:

RMSE(θ̂) =

√
1
r

r

∑
a=1

(
θ̂a − θ

)2 SD(θ̂) =

√
1

r− 1

r

∑
a=1

(
θ̂a − E(θ̂)

)2
, (12)

where r = 300 denotes the number of allocations, θ̂a denotes the SARS-CoV-2 prevalence
estimated from allocation a, θ denotes the SARS-CoV-2 prevalence considering all sectors
of the municipality, and E(θ̂) denotes the average of θ̂a computed over r allocations.

Table 2 presents the RMSE(θ̂) and SD(θ̂) yielded by each sampling method for the
10 municipalities selected for this study. Both the Haphazard and the Rerandomization
methods show RMSEs and SDs that are much smaller than the pure randomization method.
Moreover, the Haphazard method outperforms the Rerandomization method, in the fol-
lowing sense: (a) the Haphazard method yields smaller RMSEs than the Rerandomization
methods (in 9 out of 10 municipalities for this simulation); (b) moreover, the SDs are
substantially smaller for the Haphazard method.

Table 2. Root mean square error (RMSE) and standard deviation (SD); red: best result; black: worst.

City Haphazard Rerandomizaton Pure Randomizaton
RMSE SD RMSE SD RMSE SD

São Paulo 1.6558% 1.6516% 2.4683% 2.3900% 4.9930% 4.9899%
Rorainópolis 0.8582% 0.7487% 1.5116% 1.4310% 3.0028% 3.0008%
Rio de Janeiro 1.3864% 1.3310% 1.9441% 1.9394% 4.6324% 4.6216%
Oiapoque 1.3887% 1.3835% 1.7651% 1.7509% 3.2107% 3.2107%
Marília 1.1624% 1.1603% 1.4787% 1.4737% 3.4950% 3.4919%
Iguatu 0.8329% 0.8196% 1.3029% 1.3025% 3.9094% 3.9003%
Cruzeiro do Sul 1.3873% 1.3489% 2.0482% 2.0457% 5.0029% 5.0003%
Corrente 0.7496% 0.7000% 1.0708% 1.0665% 2.8250% 2.8230%
Campos dos Goytacazes 0.9419% 0.9350% 1.8786% 1.8522% 4.4839% 4.4829%
Brasília 1.7978% 1.3434% 1.5739% 1.5299% 3.9608% 3.9539%

The RMSEs analyzed in the last paragraphs can be used to compute the sample size
required to achieve a target precision in the statistical estimation of SARS-CoV-2 prevalence
(as mentioned in Section 3, each sampling unit consists of a census sector containing
around 200 households; the sample size refers to the number of sectors to be selected from
each municipality). Figure 3 shows RMSEs as a function of sample size. If the sample
size for each municipality is calibrated in order to achieve the target precision of the
original Epicovid19 study (black horizontal line), using the Haphazard method implies an
operating cost 40% lower than using the Rerandomization method and 80% lower than
using pure randomization.
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Figure 3. RMSE averaged among municipalities x number of sampled sectors.

5. Final Remarks

Both Haphazard and Rerandomization are promising methods in generating samples
that provide good estimates of the population parameters with potentially reduced sample
sizes and consequent operating costs. Alternatively, if we keep the same sample sizes, the
use of Haphazard or Rerandomization methods will substantially improve the precision
of statistical estimation. The Rerandomization method is simple to implement. The
Haphazard intentional method requires the use of numerical optimization software and
the empirical calibration of auxiliary parameters. Nevertheless, from a computational
point of view, as the dimension of the covariate space or the number of elements to be
allocated increases, the Haphazard method will be exponentially more efficient. Finally, the
theoretical framework of the Rerandomization method has been fully developed [6,16]. In
further research, we intend to better develop the theoretical framework of the Haphazard
intentional sampling method and continue to show its potential for applied statistics.
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Abbreviations
The following abbreviations are used in this manuscript:

IBGE Instituto Brasileiro de Geografia e Estatística
(Brazilian Institute of Geography and Statistics)

IBOPE Instituto Brasileiro de Opinião Pública e Estatística
(Brazilian Institute of Public Opinion and Statistics)

MILP Mixed-Integer Linear Programming
MIQP Mixed-Integer Quadratic Programming
RMSE Root mean square error
SD Standard deviation
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