
Proceeding Paper

On Two Measure-Theoretic Aspects of the Full Bayesian
Significance Test for Precise Bayesian Hypothesis Testing †

Riko Kelter ‡

����������
�������

Citation: Kelter, R. On Two

Measure-Theoretic Aspects of the Full

Bayesian Significance Test. Phys. Sci.

Forum 2021, 3, 10. https://doi.org/

10.3390/psf2021003010

Academic Editors: Wolfgang von der

Linden and Sascha Ranftl

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, University of Siegen, 57072 Siegen, Germany; riko.kelter@uni-siegen.de
† Presented at the 40th International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, online, 4–9 July 2021.
‡ Current address: University of Siegen, Department of Mathematics, Walter-Flex-Street 3,

57072 Siegen, Germany.

Abstract: The Full Bayesian Significance Test (FBST) has been proposed as a convenient method
to replace frequentist p-values for testing a precise hypothesis. Although the FBST enjoys various
appealing properties, the purpose of this paper is to investigate two aspects of the FBST which
are sometimes observed as measure-theoretic inconsistencies of the procedure and have not been
discussed rigorously in the literature. First, the FBST uses the posterior density as a reference for
judging the Bayesian statistical evidence against a precise hypothesis. However, under absolutely
continuous prior distributions, the posterior density is defined only up to Lebesgue null sets which
renders the reference criterion arbitrary. Second, the FBST statistical evidence seems to have no
valid prior probability. It is shown that the former aspect can be circumvented by fixing a version of
the posterior density before using the FBST, and the latter aspect is based on its measure-theoretic
premises. An illustrative example demonstrates the two aspects and their solution. Together, the
results in this paper show that both of the two aspects which are sometimes observed as measure-
theoretic inconsistencies of the FBST are not tenable. The FBST thus provides a measure-theoretically
coherent Bayesian alternative for testing a precise hypothesis.

Keywords: Full Bayesian Significance Test (FBST); statistical hypothesis testing; e-value; p-value

1. Introduction

Statistical hypothesis testing is an important method in a broad range of sciences [1].
However, the recent problems with the validity of research results have been termed a
scientific replication crisis [2,3], at the core of which lie some fundamental flaws in the
statistical analysis of data [4]. Various papers have discussed the reproducibility of research
and often the inadequate use of null hypothesis significance tests (NHST) substantiates
a major cause of the replication crisis [5]. This holds in particular in the biomedical and
cognitive sciences [6,7], where the p-value is the gold standard for quantifying the evidence
against a precise null hypothesis.

Bayesian hypothesis testing has become increasingly popular in the biomedical and
cognitive sciences due to the above problems [8–10]. It is well known that Bayesian
data analysis solves some of the problems of NHST by allowing researchers to make use
of optional stopping [11,12] and by simplifying the interpretation of censored data [13].
Together, these aspects are consequence of Bayesian inference being consistent with the
likelihood principle [13]. An appealing proposal for a Bayesian test of a precise hypothesis
is the Full Bayesian Significance Test (FBST), which has been applied in a wide range
of domains [8,14–18]. The FBST advocates the e-value as a Bayesian replacement of the
frequentist p-value for quantifying the statistical evidence against a precise hypothesis [19].
The FBST is a fully Bayesian procedure [19], accords with the likelihood principle [15],
and enjoys attractive asymptotic properties [20] next to transformation invariance [16].
However, the FBST seems to suffer from two aspects which are studied in detail in this
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paper. First, the reference criterion in the FBST is only defined up to Lebesgue null sets,
which seems to be make the evidential threshold arbitrary. Thus, it seems that the FBST
statistical evidence, the e-value, lacks a calibration. Second, the statistical evidence in the
FBST seems to have no prior probability, which contradicts common Bayesian reasoning.
For other criticisms on the FBST see Ly & Wagenmakers [21] and for a more optimistic
perspective Kelter [22]. In this paper it is shown that both aspects can be solved by fixing
a version of the posterior distribution for statistical inference, and assigning one of two
possible interpretations to the prior probability of the statistical evidence in the FBST. These
aspects have not yet been discussed extensively in the literature and present a further
justification of the FBST as an attractive replacement of frequentist p-values to remedy
the ongoing problems with the replication of scientific results. The plan of the paper
is as follows: The next section outlines the theory behind the FBST. After that, the two
problematic aspects mentioned above are detailed and illustrated by an example from
medical research. The following section elaborates on the problems and provides solutions
to them. After that, a conclusion is provided.

2. The Full Bayesian Significance Test

This section outlines the theory behind the FBST. First, the required notation is introduced.

2.1. Notation

In contrast to the frequentist approach, in the Bayesian approach the parameter
θ ∈ Θ is modelled as a random variable, and the data y ∈ Y are fixed. Denote by Θ
the parameter space and G as the σ-algebra on Θ, and let Pϑ be the prior probability
measure on G, leading to the triple (Θ,G, Pϑ). The observed sample is modelled by the
random variable Y : Ω → Y which takes values in the measurable space Y , where Y is
endowed with a σ-algebra B. The uncertainty in the data generating mechanism producing
a sample Y(ω) = y for ω ∈ Ω is modelled via the assumption of a statistical model
P := {Pθ : θ ∈ Θ} which is dominated by a σ-finite measure ν. In practice, ν often is the
Lebesgue measure λ. The latter requirement guarantees the existence of Radon-Nikodým
derivatives dPθ/dλ = f (y|θ). Let (Ω,A, P∗) be the product space defined as Ω := Θ×Y ,
A := G × B and P∗ the product measure induced by the selection of Pϑ and P , where Pθ

must be a measurable function on B for every y on Y . Thus, Pϑ is the marginal distribution
of P∗ with respect to the parameter θ, and the marginal distribution with respect to Y is
the prior predictive Pϑ(B) :=

∫
Θ Pθ(B)dPϑ for any B ∈ B. The parameter, as noted above,

is modelled mathematically as a random variable ϑ : Ω → Θ. The resulting operational
models from a Bayesian point of view are thus given as

1. the prior model (Θ,G, Pϑ)
2. the statistical model P on (Y ,B), leading to (Y ,B, {Pθ : θ ∈ Θ}), and
3. the posterior model (Θ,G, {Pϑ|Y : Y ∈ Y})

The existence of the posterior distribution Pϑ|Y is guaranteed on Polish spaces [23] and
inference about θ is conducted with respect to the posterior distribution Pϑ|Y with density
p(θ|y) := dPϑ|Y/dλ, which exists under the assumption that Pϑ << λ where << denotes
absolute-continuity of Pϑ with respect to the measure λ.

2.2. Theory behind the Full Bayesian Significance Test (FBST)

The Full Bayesian Significance Test (FBST) was originally developed by Pereira and
Stern [14] as an alternative to frequentist null hypothesis significance tests based on the
p-value. It was created under the assumption that a significance test of a sharp hypothesis
had to be conducted, where a sharp hypothesis refers to any submanifold of the parameter
space of interest [20]. This includes, in particular, precise hypotheses like H0 : θ = θ0 for
θ0 ∈ Θ [15]. The FBST assumes a standard parametric statistical model, where θ ∈ Θ ⊆ Rp

is a (possibly vector-valued) parameter of interest, f (y|θ) is the density corresponding
to the model distribution PY|ϑ and p(θ) is the prior density corresponding to the prior
distribution Pϑ, where we again assume a dominating measure ν to guarantee the existence
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of Radon-Nikodým densities. A hypothesis H makes the statement that the parameter θ
lies in the corresponding null set ΘH , where for simple (or precise) hypotheses ΘH := {θ0},
where θ0 is the value specified in H : θ = θ0. The Full Bayesian Significance Test (FBST)
then defines two quantities: ev(H), which is the e-value supporting (or in favour of) the
hypothesis H, and ev(H), the e-value against H, also called the Bayesian evidence value
against H [14]. First, the posterior surprise function s(θ) and its maximum s∗ restricted to
the null set ΘH are introduced:

Definition 1 (Posterior surprise function). The posterior surprise function s(θ) for a reference
function r : Θ→ (T , C) from Θ to a measurable space (T , C) is defined as

s(θ) :=
p(θ|y)
r(θ)

(1)

In the definition of the posterior surprise function s(θ), the denominator r(θ) serves as
a reference density, and often the measurable space (T , C) is equal to (Rd,B(Rd)). When
the improper flat reference function r(θ) = 1 is used, the surprise function becomes the
posterior density p(θ|y). Otherwise, a weakly informative prior density can be used as a
reference function, see Pereira and Stern [16]. Then,

s∗ := s(θ∗) = sup
θ∈ΘH

s(θ) (2)

is defined as the supremum of the surprise function s(θ) over the null hypothesis support.
For a precise null hypothesis, s∗ is simply s(θ0). Next, the tangential set is introduced:

Definition 2 (Tangential set). The tangential set T(ν) is defined as

T(ν) := Θ \ T(ν) (3)

where

T(ν) := {θ ∈ Θ|s(θ) ≤ ν} (4)

Thus, T(ν) includes all parameter values θ ∈ Θ which attain a surprise function value
s(θ) smaller or equal to the threshold ν. The tangential set T(ν) is then the set complement
and includes all parameter values θ ∈ Θ which yield a surprise function value s(θ) larger
than ν. Fixing ν = s∗ yields T(s∗), which is called the tangential set to the hypothesis H.
This set T(s∗) contains the points θ of the parameter space Θ with higher surprise (or
corroboration relative to the reference function r(θ)) than the point θ0 in the null set ΘH .
Then, the cumulative surprise function is introduced which is required to compute the
e-value in the final step:

Definition 3 (Cumulative surprise function). The map W : Θ→ [0, 1] given by

W(ν) :=
∫

T(ν)
p(θ|y)dθ (5)

is called the complementary cumulative surprise function, and

W(ν) := 1−W(ν) (6)

is called the cumulative surprise function.

Thus, the complementary cumulative surprise function W(ν) is the integral of the
posterior density p(θ|y) over the set T(ν), and the cumulative surprise function W(ν) is
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simply the integral of the posterior density over the tangential set T(ν). The final step
towards the e-value is to integrate the posterior density p(θ|y) over this set:

Definition 4 (e-value). The e-value against a sharp null hypothesis H0 : θ = θ0 is defined as

ev(H0) := W(s∗) (7)

and can be interpreted as the Bayesian evidence against H0.

Clearly, ev(H0) := W(s∗) is the integral of the density p(θ|y) over the tangential set
T(s∗), which can be interpreted as the integral of the posterior density p(θ|y) over all
parameter values θ which fulfill the condition s(θ) ≥ s∗. The e-value ev(H0) supporting
H is obtained as ev(H) := 1 − ev(H0) under r(θ) := 1. Large values of ev(H0) thus
indicate that the hypothesis H traverses low-density regions (or equivalently, that the
alternative hypothesis traverses high-density regions) so that the evidence against H0 is large.
For r(θ) 6= 1 the argument is identical as H0 traverses low posterior-surprise regions then.

For theoretical properties of the FBST and the e-value see Pereira and Stern [16] and
Kelter [18]. The FBST then uses ev(H) to reject H if ev(H) is sufficiently small (or when
ev(H) is large) [14,15].

3. On Two Aspects of the FBST

Now, this section demonstrates the two aspects briefly mentioned in the introduction
based on an illustrative example.

3.1. The Reference Criterion

To illustrate the first problem, data of Rosenman et al. [24] of the Western Collaborative
Group Study about coronary heart disease is used.

Example 1 (Coronary heart disease data). The Western Collaborative Group Study began in
1960 with 3524 male volunteers who were 39 to 59 years old and free of heart disease as determined
by electrocardiogram. After the initial screening, the study population dropped to 3154 because
of various exclusions. Multiple endpoints were studied and average follow-up continued for
8.5 years with repeat examinations. As an illustrative example, suppose interest lies in testing
for differences in systolic blood pressure between light smokers and heavy smokers. Thus, we test
the hypothesis H0 : δ = 0 against the alternative H1 : δ 6= 0 where we classify participants with
more than 5 cigarettes per day as heavy smokers. A Bayesian two-sample t-test using the model of
Rouder et al. [25] is conducted, and the left plot in Figure 1 shows the results of the FBST using
a flat reference function r(δ) := 1. The model is parameterized in the effect size δ of Cohen [26],
and the e-value ev(H0) is given as ev(H0) = 0.4362, which equals the posterior probability mass
visualized as the blue area in the left plot of Figure 1. Thus, 43.62% of the posterior probability
indicate evidence against the null hypothesis, and the situation is inconclusive. The right plot in
Figure 1 shows the result of the FBST when replacing the flat reference function r(δ) := 1 with
a Cauchy C(0,

√
2) density (note the different scaling on the y-axis), which is also used as the

prior on δ in the two-sample t-test. In this case, the e-value ev(H0) = 0.4367 indicates a similarly
inconclusive situation and changes the result barely.

Now, the above example shows that calculation of the e-value is straightforward and
universally applicable. However, the parameter space Θ is continuous in the example (the
effect size δ ∈ R is a continuous quantity) and any usual prior distribution Pϑ assigned
to θ is absolutely continuous with respect to the Lebesgue measure λ. It is well-known
that the posterior distribution Pϑ|Y is absolutely continuous with respect to the prior
distribution [27], and thus any Pϑ-null-set N ⊂ Θ with Pϑ(N) = 0 is also a Pϑ|Y-null-set
with Pϑ|Y(N) = 0. Problematically, the set Θ0 := {δ0} = {0} which is used in the precise
null hypothesis H0 : δ = 0 is a Pϑ-null-set under both the improper flat and Cauchy
prior, as both of these are absolutely continuous with respect to the Lebesgue measure
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λ, and submanifolds are Lebesgue-null-sets [28]. Thus, λ({δ0} = λ({0}) = 0 implies
Pϑ({0}) = 0 due to Pϑ << λ, which implies in turn that the posterior probability Pϑ|Y({0})
of the value δ0 = 0 is a Pϑ|Y-null-set due to Pϑ|Y << Pϑ. As a consequence, the value of
the posterior density p(0|y) = 9.4693 which is shown as the blue point in the left plot of
Figure 1 could be chosen arbitrarily. Problematically, this value is used as the reference
criterion in the calculation of the e-value ev(H0) in the computation of the tangential set
T(ν). Thus, one could assign p(0|y) an entirely different value, say, c ∈ R, and obtain
a different e-value ev(H0) than the one calculated from the value p(0|y) = 9.4693. This
seems to render the calculation of the statistical evidence ev(H0) in the FBST arbitrary,
questioning the use of the procedure.
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Figure 1. Results of the Full Bayesian Significance Test using a flat reference function (left) and a
C(0,
√

2) Cauchy density as reference function (right) for testing the hypothesis of no difference
H0 : δ = 0 in terms of systolic blood pressure between smokers and non-smokers.

3.2. Prior Probability of the e-Value

The second issue with the FBST may be phrased as the e-value having no valid prior
probability. In fact, the e-value in Equation (7) is based on the cumulative surprise function
W(s∗), which itself depends on the tangential set T(s∗) and the posterior density p(θ|y).
Before data y ∈ Y are observed, the posterior Pϑ|Y has not been realized as Pϑ|Y=y and
thus there exists no prior probability Pϑ which is associated with the e-value. Even the
tangential set T(s∗) := {θ ∈ Θ|s(θ) > s∗} which is a subset of Θ seems to have no prior
probability, because it depends on the surprise function s(θ) which itself depends on the
posterior density p(θ|y), compare Equation (1). Thus, the statistical evidence in the FBST
seems to escape the natural Bayesian transition from prior to posterior probability.

4. Solutions to the Two Aspects
4.1. The Reference Criterion

If the above criticism that the reference criterion in the FBST is arbitrary would
hold, the procedure would be of little use in practice. However, the solution to the
problem is given by fixing a specific version of the posterior distribution and performing
all calculations conditional on fixing such a version. It is well known that probability
distributions (which are probability measures corresponding to a random variable) are
defined up to Lebesgue-null-sets (when they are dominated by the Lebesgue measure).
The values on null-sets do not influence these probability measures and therefore they are
identified with each other whenever they only differ on Lebesgue-null-sets [28]. Technically,
this corresponds to the shift from the vector space Lp

Lp(Ω,A, µ) :=
{

f : Ω→ K
∣∣∣∣f is measurable,

∫
Ω
| f (x)|pdµ(x) < ∞

}
(8)
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on a probability space (Ω,A, µ), K ∈ {R,C} for 0 < p < ∞ to the quotient space Lp, see
Bauer [28]. The latter space is defined as Lp := Lp/N , where

N :=
{

f ∈ Lp
∣∣∣∣ f = 0 µ-almost-everywhere

}
(9)

and the elements in Lp are equivalence classes. Thus, two elements [ f ], [g] ∈ Lp are equal
if and only if they differ only on µ-null-sets, that is, [ f ]− [g] ∈ N . Thus, the arbitrariness
of the reference criterion in the FBST exists only unless a specific representant of the
equivalence class, in which the posterior density p(θ|y) is located, is selected. In the context
of Example 1, this implies that a specific version of the posterior density p(δ|y) needs to be
chosen, which fixes the densities value on δ0 = 0 (and the other values δ ∈ Θ). Thus, setting
p(δ0|y) := p(0|y) := 9.4693 explicitly by definition fixes one representant of the equivalence
class of Pϑ|Y and bypasses the problem that the reference threshold p(δ0|y) in the FBST is
arbitrary. Whenever the posterior is obtainable as a closed-form solution, that is, follows a
well-known probability density P̃ϑ|Y with Lebesgue-density p̃(θ|y), setting p(θ|y) := p̃(θ|y)
as the value of this known probability density p̃ for the posterior density p in the FBST
by definition solves the first problem. Whenever numerical techniques like Markov-Chain-
Monte-Carlo (MCMC) are used to produce the posterior, the resulting posterior distribution
PMCMC

ϑ|Y and the posterior density pMCMC(θ|y) approximate the true posterior distribution

Pϑ|Y and the posterior Lebesgue-density p(θ|y). Thus, setting p(θ|y) := pMCMC(θ|y)
by definition for a fixed numerical technique like MCMC with given random number
generator seed fixes a version of the posterior density and renders the reference threshold
in the FBST unique. In Example 1 this equals the choice of p(δ0|y) := 9.4693 by definition
(as MCMC sampling was used), and p(δ|y) := pMCMC(δ|y) for all δ ∈ R. In summary,
the above considerations provide the following result:

Theorem 1. Let s∗ := s(θ∗) = sup
θ∈ΘH

s(θ) be the supremum of the surprise function in the Full

Bayesian Significance Test, and Lp and Lp the corresponding vector spaces on (Θ,G, Pϑ|Y) with
quotient space Lp/N forN := { f ∈ Lp| f = 0 µ-almost-everywhere}. Whenever Pϑ|Y is a known
probability distribution P̃ϑ|Y with Lebesgue-density p̃(ϑ|Y), defining p(θ|y) := p̃(θ|y) pointwise
for all θ ∈ Θ renders the e-value ev(H0) against H0 : θ = θ0 for θ0 ∈ Θ well-defined and unique
for the choice of p(θ|y).

Proof. See Appendix A.

Note that when using numerical methods such as MCMC, ergodic theory ensures that
PMCMC

ϑ|Y → Pϑ|Y in distribution and pMCMC
ϑ|Y → pϑ|Y, that is, the MCMC posterior density

approximates the posterior Lebesgue-density pointwise with increasing precision for in-
creasing number of MCMC samples [29]. Thus, fixing a version of the posterior, Theorem 1
extends also to situations where numerical techniques such as MCMC are required.

4.2. Prior Probability of the e-Value

The solution to the second problem is more involved and less technical. Conceptually,
from the above line of thought it is immediate that under absolutely continuous priors
Pϑ with respect to the Lebesgue measure λ, the prior probability Pϑ(Θ0) will be zero for
any precise null hypothesis H0 := Θ0 with Θ0 := {θ0} for θ0 ∈ Θ. The posterior Pϑ|Y is
absolutely continuous with respect to the prior Pϑ, so Pϑ|Y(Θ0) = 0. Thus, it is simply
not possible to use a natural Bayesian workflow which assigns positive probability mass
to a Lebesgue-null-set Θ0 whenever the statistician uses an absolutely continuous prior
distribution Pϑ with respect to λ. Traditional Bayesian hypothesis testing and model
selection bypasses this inconvenience by introducing an arbitrary mixture prior structure
Pϑ := $1Θ0 + (1− $)P̃ϑ which assigns positive probability mass $ > 0 to the null set Θ0,
and distributes the rest of the probability mass (1− $) ∈ [0, 1] by means of a probability
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distribution P̃ϑ on the alternative hypothesis space Θ1 = Θ \ Θ0. Early proposals of
such a mixture prior structure include Jeffreys [30] and Haldane [31], see also Robert [29]
and Kleijn [23]. Such a prior allows computation of a Bayes factor, and furthermore,
the Bayes factor itself also has no prior probability which is naturally associated with it.
Importantly, this mixture prior structure imposes a dichotomy between hypothesis testing
and parameter estimation, because such a mixture prior structure is reasonable only from a
hypothesis testing perspective. Whenever parameter estimation is the goal, the assignment
of probability mass $ > 0 to a specific value is highly questionable and often contradicts
reasonable a priori beliefs. In these cases, prior beliefs are expressed better through a prior
which is absolutely continuous with respect to the Lebesgue measure λ.

The FBST avoids the introduction of such a mixture structure and thus allows for a
unified prior elicitation which is coherent both from a Bayesian hypothesis testing and
Bayesian parameter estimation stance. Importantly, the e-value is intended to be a Bayesian
replacement of the frequentist p-value which measures the statistical discrepancy between
the observed data to an assumed precise hypothesis. Thus, the e-value provides the
Bayesian evidence against such a precise hypothesis. From a measure-theoretic point of
view, every precise null hypothesis is assumed to be false and the FBST thus aligns with
the empirical rationalism of Popper [32]. For the use of testing a precise hypothesis as
an approximation of a small interval hypothesis see Berger [33], Rousseau [34], Rao &
Lovric [35] as well as Kelter [36]: Often, the approximation of a small interval hypothesis
via a precise point null hypothesis will be bad, and thus the e-value does not assign
positive probability mass to such a precise null hypothesis. Instead, the FBST quantifies
the discrepancy between the observed data and the hypothetical precise null value, while
simultaneously implementing I.J. Good’s principle of least surprise [37–39]. Note further
that the mathematical introduction of positive prior probability $ > 0 to a precise value
θ0 ∈ Θ when using a mixture prior does not render such a precise hypothesis H0 : θ = θ0
more realistic in practice.

Furthermore, next to its measure-theoretic premises, there exists another argument
which weakens the criticism that there is no prior probability of the e-value: When a prior
distribution Pϑ is selected and no data y ∈ Y has been observed, the posterior distribution
can be identified conceptually as the prior distribution. Thus, replacing the posterior
density p(θ|y) with the λ-density p(θ) of the prior Pϑ yields s(θ) := p(θ)

r(θ) , which implies

that the tangential set T(ν) := Θ \ T(ν) for T(ν) := {θ ∈ Θ|s(θ) ≤ ν} includes those
parameter values θ ∈ Θ for which p(θ)/r(θ) > ν. Using the fact that s∗ = p(θ0)/r(θ0) for
a precise hypothesis H0 : θ = θ0 then, yields T(ν) = {θ ∈ Θ|p(θ)/r(θ) > p(θ0)/r(θ0)}.
Plugging this tangential set into Equation (6) yields the e-value

ev(H0) := W(s∗) =
∫

T(s∗)
p(θ)dθ

which is the integral of the prior density p(θ) over T(s∗). When the reference function r(θ)
is chosen as a flat improper prior r(θ) := 1, this becomes

ev(H0) =
∫
{θ∈Θ|p(θ)>p(θ0)}

p(θ)dθ

which is the integral of the prior density p(θ) over all values which attain higher prior
density values than the null value θ0 in H0 : θ = θ0. Thus, the e-value in such a case
quantifies the discrepancy of the precise hypothesis H0 : θ = θ0 with the prior beliefs Pϑ.
The above line of thought provide the following result:
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Theorem 2. Let r(θ) := 1. In case no data y ∈ Y has been observed, the e-value quantifies the
discrepancy between the precise hypothesis H0 := Θ0 for Θ0 := {θ0} and θ0 ∈ Θ and the prior
distribution Pϑ, that is,

ev(H0) = Pϑ({θ ∈ Θ|p(θ) > p(θ0)}) (10)

Proof. See Appendix A.

Whenever r(θ) 6= 1, the interpretation is more complicated because such a reference
function incorporates a surprise element into the tangential set, but the conclusions remain
the same. The e-value then quantifies the discrepancy between the precise hypothesis and
the prior surprise.

5. Discussion

The Full Bayesian Significance Test (FBST) has been proposed as a convenient method
to replace frequentist p-values for testing a precise hypothesis [14–16]. Although the FBST
enjoys various appealing properties [8,19,20,40], two aspects of the FBST are sometimes
observed as measure-theoretic inconsistencies of the procedure and have not been dis-
cussed rigorously in the literature. First, the FBST uses the posterior density as a reference
for judging the Bayesian statistical evidence against a precise hypothesis. However, un-
der absolutely continuous prior distributions, the posterior density is defined only up
to Lebesgue null sets which renders the reference criterion arbitrary. Second, the FBST
statistical evidence seems to have no valid prior probability. In this paper, it was shown
that the former problem can be circumvented by fixing a version of the posterior density
before using the FBST. Theorem 1 demonstrated that then, the e-value is well-defined and
unique after observing the data y ∈ Y .

The latter aspect is based on the measure-theoretic premises of the FBST. As shown
in this paper, the FBST avoids the use of a mixture prior structure which imposes a
dichotomy between Bayesian hypothesis testing and parameter estimation. Thus, the FBST
is compatible with absolutely continuous priors with respect to the Lebesgue measure λ
(the Bayes factor, for example, is not). As a consequence, there exists no prior probability
of the e-value and a precise hypothesis H0 : θ = θ0 under an absolutely continuous prior
Pϑ. Theorem 2 showed that even then, the e-value has a proper interpretation from a prior
perspective: It quantifies the a priori discrepancy of the hypothesis H0 with the prior beliefs
which are expressed by Pϑ whenever the reference function r(θ) is flat. When r(θ) 6= 1,
the interpretation is more difficult but the conclusion remains the same.

Together, the results in this paper show that both of the two aspects which are
sometimes observed as measure-theoretic inconsistencies of the FBST are not tenable.
The FBST thus provides a measure-theoretically coherent Bayesian alternative for testing a
precise hypothesis.
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Appendix A

Proof of Theorem 1. From Definition 1 and Equation (2) it follows that the tangential set
T(ν) := Θ \ T(ν) becomes T(s∗) := Θ \ T(s∗), which equals the set

{θ ∈ Θ : s(θ) > s(θ∗)} =
{

θ ∈ Θ :
p(θ|y)
r(θ)

>
p(θ∗|y)
r(θ∗)

}
=

{
θ ∈ Θ :

p(θ|y)
r(θ)

>
p(θ0|y)
r(θ0)

}
(A1)

where the first equality uses Definition 2 and the second equality uses θ∗ = θ0 for a precise
hypothesis H0 : θ = θ0 for θ0 ∈ Θ. By assumption, the posterior distribution Pϑ|Y is
known to take the form P̃ϑ|Y with Lebesgue-density p̃(θ|y). Defining the posterior density
p : Θ→ Rd pointwise as p(θ|y) := p̃(θ|y) implies that the value p(θ0|y) is equal to p̃(θ0|y).
Thus, the tangential set T(s∗) in Equation (A1) is well-defined and unique for this fixed
value p(θ0|y) := p̃(θ0|y). From Definition 3 and Equation (7) it follows that the e-value
ev(H0) is well-defined and unique for the choice of p(θ|y).

Proof of Theorem 2. Let Pϑ be the prior distribution and r(θ) := 1. Suppose no data
y ∈ Y has been observed, then the posterior distribution Pϑ|Y can be identified as the prior
distribution Pϑ. Thus, replacing the posterior density p(θ|y) with the λ-density p(θ) of
the prior Pϑ yields s(θ) := p(θ)

r(θ) , which implies that the tangential set T(ν) := Θ \ T(ν) for
T(ν) := {θ ∈ Θ|s(θ) ≤ ν} includes the parameter values θ ∈ Θ which fulfill the condition
p(θ)/r(θ) > ν. It follows that s∗ = p(θ0)/r(θ0) for a precise hypothesis H0 : θ = θ0,
and this yields T(ν) = {θ ∈ Θ|p(θ)/r(θ) > p(θ0)/r(θ0)} for the tangential set to H0.
Using the latter in Equation (6) yields the e-value

ev(H0) := W(s∗) =
∫

T(s∗)
p(θ)dθ

which is the integral of the prior density p(θ) over T(s∗). By assumption, r(θ) := 1, so
this becomes

ev(H0) =
∫
{θ∈Θ|p(θ)>p(θ0)}

p(θ)dθ = Pϑ({θ ∈ Θ|p(θ) > p(θ0)})

which is the statement in Equation (10).
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