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Abstract: In this paper, we introduce a framework to study the tidal deformation of relativistic
anisotropic compact stars. Anisotropic stresses are ubiquitous in nature and widely used in modelling
compact stellar objects. Tidal deformability of astrophysical compact objects is a natural effect of
gravity, such as one produced by a companion in a binary system. In general relativity, the existence
of this measurable effect of gravity can be quantified by their tidal Love numbers (TLN), which
characterize the deformability of a neutron star (NS) from sphericity. The tidal deformability or
polarizability parameter of an NS depends on its complex internal structure, and hence, the nature of
the compact object can be studied by measuring the TLN. We choose a particular solution, which is
the anisotropic generalization of the Tolman IV model, as the interior of the compact stellar object. The
physical acceptability of the model has been shown graphically by considering the pulsar 4U 1608-52
with their current estimated mass and radius. By computing the quadrupole moment, we found that
the TLN is dependent on anisotropy of the compact object. We graphically analyze the variation of
the TLN against anisotropy for different compact objects with a compactness factor. The numerical
value of TLN is given for different compact objects for physically acceptable values of the anisotropic
parameter.

Keywords: compact star; anisotropy; tidal effect; Love number

1. Introduction

Compact objects are extremely dense astro-physical objects that provide strong gravity
and high density, allowing for the study of fundamental physics related to nuclear matter
properties. In general, compact objects exist with their binary companion is a natural
setup. In this binary setup, a compact star is assumed to be immersed in the tidal field of
its companion and hence produce tidal deformation. The possibility of the generation of
the gravitational waves during extremely fast rotational motion of a binary system was
predicted. Recently, a gravitational wave has been detected by advanced astronomical
observations of LIGO and Virgo collaborations from the binary neutron star merger event
GW170817 [1]. A neutron star placed in a perturbing external gravitational field is deformed
and induces a quadrupole moment, which affects the binding energy of the system and
increases the rate of emission of gravitational waves during the late stage inspirals. The
recent observational data based on the measurement of the tidal deformability impose a
stringent constraint on the allowed equation of state (EOS). In particular, the theoretical
prediction of the mass and radius of a neutron star (NS) mostly depends on the nature of
the nuclear EOS at supra-nuclear densities. In this context, tidal deformability can be used
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to study their interiors. The EOS of neutron stars involves their microscopic properties
and uniquely determines the macroscopic properties, such as the maximum allowed NS
mass, radius and tidal effects. The tidal response is the astrophysical constraints that can
be employed as probes of NS properties. It is the astrophysically observable macroscopic
property of NS that can be defined as the ratio of the induced multipole moment of a star
over the induced tidal field from its companion. The tidal Love number (TLN), which is
the ratio of the induced quadrupole moment to the perturbing tidal gravitational field, can
be expressed by a relatively simple analytical formula.

On the other hand, the existence of pressure anisotropy, the difference of radial and
transverse pressures, is ubiquitous in a compact star. The source of pressure anisotropy in
a compact star can be due to various reasons, e.g., pion and kaon condensates [2,3], high
density, existence of a solid core or type 3A superfluid [4,5], strong magnetic fields [6],
a mixture of a perfect and a null fluid, viscosity, and phase transition [7], etc. There are
several works available in the literature where incorporating anisotropy into the matter
distribution of compact objects in the background of general relativity (GR) has been
addressed for various issues of the compact structures [8–14].

In this paper, we assume a known solution, which is an anisotropic generalization of
the Tolman IV model, to describe the compact star. We have calculated the TLN, which
actually measures the tidal deformability of the compact object induced by the external
field.

2. Physical Features and Tidal Love Number

The tidal distortion of NSs in a binary system connects the EOS, describing the nature
of the matter composition star with that of the gravitational wave emission during the
inspiral [15]. We consider a static spherically symmetric star, immersed in an external
quadrupolar tidal field Eij [16,17] arising due to its binary companion. The star in response
to the tidal field develops quadrupole moments Qij, which can be related to the linear
order external tidal field Eij as [17].

Qij = −Λ Eij, (1)

where Λ is the tidal deformability of the NS and is related to the l = 2 dimensionless TLN
k2 as [17]

k2 =
3
2

Λ R−5. (2)

The background geometry of spacetime of a spherical static star can be written as

(0)ds2 =(0) gµνdxµdxν

= −e2ν(r)dt2 + e2λ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (3)

For the spherically static metric (3), the stress-energy tensor is given as

(0)Tξ
χ = (ρ + pt)uξ uχ + ptg

ξ
χ + (pr − pt)η

ξ ηχ, (4)

where uξuξ = −1, ηξηξ = 1 and ηξ uξ = 0.
We choose a particular model, which is an anisotropic generalization of the Tolman IV

Model [18], given as

e2ν = A2(1 + aCr2), (5)

e2λ =
1

(aCr2+1)(1−BCr2)
2aCr2+1 − αCr2

2aCr2+1

. (6)
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It is interesting to note that for α = 0, this solution reduces to the well-known Tolman
IV solution [19].

For the line element (3), the independent set of the Einstein field equations are then
obtained as

8πρ =
1
r2

[
r(1− e−2λ)

]′
, (7)

8πpr = − 1
r2

(
1− e−2λ

)
+

2ν′

r
e−2λ, (8)

8πpt = e−2λ

(
ν′′ + ν′2 +

ν′

r
− ν′λ′ − λ′

r

)
, (9)

where primes (′) denote differentiation with respect to r. In the field Equations (7)–(9),
we have assumed G = 1 = c. The system of equations determines the behaviour of the
gravitational field of an anisotropic imperfect fluid sphere.

For the assumed solutions we have

8πρ =
C
(
a
(
Cr2(a(6BCr2 + 2

)
+ 2α + 7B

)
+ 3
)
+ 3(α + B)

)
(2aCr2 + 1)2 , (10)

8πpr = −
C
(
aCr2 + 1

)(
a
(
3BCr2 − 1

)
+ B

)
+ αC

(
3aCr2 + 1

)
(aCr2 + 1)(2aCr2 + 1)

, (11)

8πpt = −
C
(
aCr2 + 1

)2(a(3BCr2 − 1
)
+ B

)
+ αC

(
aCr2(aCr2 + 3

)
+ 1
)

(aCr2 + 1)2
(2aCr2 + 1)

, (12)

8π∆ =
aαC2r2

(aCr2 + 1)2 , (13)

where we define ∆ = 8π(pt − pr) as the measure of anisotropy of the spherical system.
The exterior Schwarzschild metric is

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (14)

across the boundary of the star r = R, where M is the total mass of the sphere.
Making use of the junction conditions, the constants A, B, C are determined as

A =

√
R− 3M√

R
, (15)

C =
M

aR3 − 3aMR2 , (16)

B =
(R− 3M)(a(R− 2M)− αR)

R(R− 2M)
. (17)

Now the background metric (0)gµν(xν) under the influence of an external tidal field
with a small perturbation hµν(xν) gets modified as

gµν(xν) =(0) gµν(xν) + hµν(xν). (18)

For the linearized metric perturbation hµν, using the method as in [20,21], without
loss of generality, we restrict ourselves to static l = 2, m = 0 even parity perturbation. The
perturbed metric, with the assumption that the tidal deformation will be axis symmetric
around the line connecting the two stars, which we take as the axis of spherical harmonic
decomposition, becomes

hµν = diag
[

H0(r)e2ν, H2(r)e2λ, r2K(r), r2 sin2 θK(r)
]
Y2m(θ, φ). (19)
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Furthermore, the perturbed energy momentum tensor is defined by Tξ
χ =(0) Tξ

χ + δTξ
χ ,

where the non-zero components of Tξ
χ are: δTt

t = − dρ

dpr
δpr Y(θ, φ), δTr

r = δpr(r)Y(θ, φ),

& δTθ
θ = δTφ

φ = dpt
dpr

δpr(r)Y(θ, φ). With these perturbed quantities, we can write down the
perturbed Einstein field equation as follows:

Gξ
χ = 8πTξ

χ , (20)

where the Einstein tensor Gξ
χ is calculated using the metric gχξ .

From different components of the background Einstein field equation (0)Gξ
χ = 8π(0)Tξ

χ ,
we can have the following relationships:

(0)Gt
t = 8π(0)Tt

t ⇒ λ′(r) =
8πr2e2λ(r)ρ(r)− e2λ(r) + 1

2r
, (21)

(0)Gr
r = 8π(0)Tr

r ⇒ ν′(r) =
8πr2 pr(r)e2λ(r) + e2λ(r) − 1

2r
, (22)

where and hereafter the prime denotes the derivative w.r.t. the radial coordinate r.
In addition, we know that ∇(0)

ξ Tξ
χ = 0. Now choosing ξ = r, by expanding and

solving the equation, we can find the expression

p′r(r) =
−rpr(r)ν′(r)− 2pr(r) + 2pt(r)− rρ(r)ν′(r)

r
. (23)

Again from the various components of the perturbed Einstein Equation (20), we get
the following relations

Gθ
θ − Gφ

φ = 0⇒ H0(r) = H2(r) = H(r), (24)

Gθ
r = 0⇒ K′ = H′ + 2Hν′, (25)

Gθ
θ + Gφ

φ = 8π(Tθ
θ + Tφ

φ )⇒ δpr =
H(r)e−2λ(r)(λ′(r) + ν′(r))

8π
dpt
dpr

r
. (26)

Using the identity

∂2Y(θ, φ)

∂θ2 + cot(θ)
∂Y(θ, φ)

∂θ
+ csc2(θ)

∂2Y(θ, φ)

∂φ2 = −6Y(θ, φ)

and Equations (21)–(26), we have the master equation for H(r) as

− 1
e−2λ(r)Y(θ, φ)

[
Gt

t − Gr
r
]
= − 8π

e−2λ(r)Y(θ, φ)

[
Tt

t − Tr
r
]

⇒ H′′(r) +RH′(r) + SH(r) = 0, (27)

where

R = −
(
−e2λ(r) − 1

r
− 4πre2λ(r)(pr(r)− ρ(r))

)
, (28)
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S = −
(

4e2λ(r) + e4λ(r) + 1
r2 + 64π2r2 pr(r)2e4λ(r) + 16πe2λ(r)

(
pr(r)

(
e2λ(r) − 2

)

−pt(r)− ρ(r)) +
−4π

dρ
dpr

e2λ(r)(pr(r) + ρ(r))− 4πe2λ(r)(pr(r) + ρ(r))
dpt
dpr

. (29)

The vacuum exterior of the star is of Schwarzschild type, so that by setting ρ = 0,
pr = 0, pt = 0 and e2λ = 1/(1− 2M/r), the master Equation (27) becomes

−H′′(r)− 2(M− r)H′(r)
r(2M− r)

+
2H(r)

(
2M2 − 6Mr + 3r2)
r2(r− 2M)2 = 0. (30)

The solution to this second order differential Equation (30) is

H(r) =
1

2M2r(2M− r)

[
c2

(
−2M

(
2M3 + 4M2r− 9Mr2 + 3r3

)
− 3r2(r− 2M)2

× log
( r

M
− 2
)
+ 3r2(r− 2M)2 log

( r
M

))]
+

3c1r(2M− r)
M2 , (31)

where c1 and c2 are integration constants. In order to obtain the expressions for these
constants, we perform a series expansion of Equation (31)

H(r) = −3c1r2

M2 +
6c1r
M
−

c2
(
8M3)
5r3 +O

((
1
r

)4
)

. (32)

Now, at large r, the metric coefficient gtt is given by [17]:

(1− gtt)

2
=− M

r
−

3Qij

2r3

(
ninj − 1

3
δij
)
+O

(
1
r4

)
+

1
2
Eijxixj +O(r3), (33)

where ni = xi/r.
Matching the asymptotic solution from Equation (32) with the expansion from

Equation (33) and using the Equation (1), we have

c1 = −M2E
3

, c2 =
15Q
8M3 . (34)

Using Equations (34), (31) and (2), we obtain the expression for TLN k2 as follows:

k2 = [8(1− 2C)2C5(2C(y− 1)− y + 2)]/X, (35)

where

X = (5(2C(C(2C(C(2C(y + 1) + 3y− 2)− 11y + 13) + 3(5y− 8))− 3y + 6)

+3(1− 2C)2(2C(y− 1)− y + 2) log
(

1
C − 2

)
− 3(1− 2C)2(2C(y− 1)− y + 2) log

(
1
C

)))
. (36)

Here, the compactness C = M
R and y depend on r, H and its derivatives evaluated at

R with

y =
rH′(r)
H(r)

∣∣∣∣
r=R

. (37)
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To calculate numerically the value of k2 for a particular NS [22], one needs to modify
the master Equation (27) using Equation (37) as

ry′ + y2 + (rR− 1)y + r2S = 0. (38)

3. Results

The recent data available from the pulsar 4U 1608− 52 (for the star to be composed
of an anisotropic fluid distribution with α = 0.5), whose estimated mass and radius are
M = 1.57 M� and R = 9.8 km, respectively [23,24], are used to find the constants are
calculated as A = 0.53953, B = 0.291097, C = 0.008452. We set a = 1. Making use of
these values, we show the nature of all the physically meaningful quantities graphically in
Figure 1.
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Figure 1. Physical features are plotted against the radial parameter for the compact star 4U 1608-52.

Using the initial condition y(0) = 2 and all the mentioned equations, Equation (38)
for a particular NS, can be numerically calculated. Having the numerical value of y, for a
particular NS, from Equation (35), the TLN k2 can be obtained numerically.

4. Conclusions

The plots clearly show that all the quantities comply with the requirements of a
physically viable realistic star. In particular, the figures highlight the effect of anisotropy on
the gross physical behaviour of the compact star. In Figure 2, the TLN k2 is plotted against
α for different compact objects with compactness C. From this panel of figures, we note that
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k2 decreases monotonically with increasing α. This is a much expected physical property
of a compact object with anisotropy.
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Figure 2. k2 is plotted against α for different compact objects with compactness C only for the allowed
values of α.
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