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Abstract: In a recent paper, we have a shown that the flattening of galactic rotation curves can be
explained by retardation. However, this relies on a temporal change of galactic mass. In our previous
work, we kept only second order terms of the retardation time in our analysis, while higher terms in
the Taylor expansion were not considered. Here, we consider analysis to all orders and show that,
indeed, a second order analysis will suffice, and higher order terms can be neglected.
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1. Introduction

The dynamics of large scale structures is inconsistent with Newtonian mechanics. This
was noted in the 1930s by Fritz Zwicky [1], who pointed out that if more (unseen) mass
were present, one would be able to solve the apparent contradiction. The phenomena was
also observed in galaxies by Volders [2], who has shown that star trajectories near the rim
of galaxies do not move according to Newtonian predictions, and later corroborated by
Rubin and Ford [3–5] for spiral galaxies.

In a series of papers, we have shown that these discrepancies can be shown to result
from retarded gravity as dictated by the theory of general relativity [6–10]. Indeed, in the
absence of temporal density changes, retardation does not effect the gravitational force.
However, density is not constant for galaxies; in fact, there are many processes that change
the mass density in galaxies over time. Mass accretion from the inter galactic medium and
internal processes such as super novae leading to super winds [10] modify the density. In
addition to these local processes, there is a cosmological decrease in density due to the
cosmic expansion. However, the later process is many orders of magnitude smaller than
the former.

In previous analysis [6–10], the corrected gravitational force was evaluated assuming
a second order approximation in the retardation time R

c , neglecting higher order terms
without justification. Here, we take into account all orders and show that a second order
approximation is indeed sufficient.

2. Linear GR

Only in cases of extreme compact objects (black holes and neutron stars) and the very
early universe do we consider the solution of the full non-linear Einstein equations [6].
In most cases of astronomical interest (including the galactic case), a linear approximation
to those equations around the flat Lorentz metric ηµν is used, such that

gµν = ηµν + hµν, ηµν ≡ diag (1,−1,−1,−1), |hµν| � 1 (1)

One thendefines the quantity

h̄µν ≡ hµν −
1
2

ηµνh, h = ηµνhµν, (2)
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h̄µν = hµν for non diagonal terms. For diagonal terms,

h̄ = −h⇒ hµν = h̄µν −
1
2

ηµν h̄. (3)

It was shown ([11] page 75, exercise 37, see also [12–14]) that for a proper gauge, the
Einstein equations are

2h̄µν ≡ h̄µν,α
α = −16πG

c4 Tµν, h̄µα,
α = 0. (4)

Equation (4) can be solved such that [15]

h̄µν(~x, t) = −4G
c4

∫ Tµν(~x′, t− R
c )

R
d3x′,

t ≡ x0

c
, ~x ≡ xa a, b ∈ [1, 2, 3],

~R ≡ ~x−~x′, R = |~R|. (5)

In [16–19], we explain why the symmetry between space and time is broken, which
justifies the use of different notations for space and time. 4G

c4 ' 3.3× 10−44 is a tiny number;
hence, in the above calculation, one can take Tµν to the zeroth order in hαβ. We now evaluate
the affine connection in the linear approximation:

Γα
µν =

1
2

ηαβ
(
hβµ,ν + hβν,µ − hµν,β

)
. (6)

Notice that the affine connection has first order terms in hαβ; hence, to the first order
Γα

µνuµuν appearing in the geodesic equation, uµuν must be taken to the zeroth order,
in which

u0 =
1√

1− v2

c2

, ua = ~u =
~v
c√

1− v2

c2

,~v ≡ d~x
dt

, v = |~v|. (7)

For velocities much smaller than the speed of light in vacuum,

u0 ' 1, ~u ' ~v
c

, ua � u0 for v� c. (8)

Hence, the current paper does not discuss the post-Newtonian approximation, in which
matter travels at speeds close to the speed of light, but we do consider the retardation ef-
fects which are due to the finite propagation speed of the gravitational field. We emphasize
the assumption that v

c << 1 is not the same as stating R
c << 1 (with R being the typical

size of a galaxy), since
R
c
=

v
c

R
v

(9)

Now, since in galaxies, R
v is huge ( R

v ' 1015 s), it follows that v
c can be dismissed but

not R
c , for which R

c ' 1012 s. Inserting Equations (6) and (8) in the geodesic equation, we
arrive at the approximate equation:

dva

dt
' −c2Γa

00 = −c2
(

ha
0,0 −

1
2

h00,
a
)

(10)

Taking a standard matter Tµν, assuming ρc2 � p, and taking into account Equation (8),
we arrive at T00 = ρc2, while the remaining tensor components are much smaller. Therefore,
h̄00 is larger than the other components of h̄µν. Notice that it is not possible to deduce from
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the magnitudes of quantities that a similar difference exists between the derivatives of
those quantities. Gauge conditions in Equation (4) lead to

h̄α0,
0 = −h̄αa,

a ⇒ h̄00,
0 = −h̄0a,

a, h̄b0,
0 = −h̄ba,

a. (11)

Thus, the zeroth derivative of h̄00 (which contains a 1
c ) is of similar order to the spatial

derivative of h̄0a. In addition, the zeroth derivative of h̄0a (see Equation (10)) is of similar
order to the spatial derivative of h̄ab. However, we can compare the spatial derivatives of
h̄00 and h̄ab and conclude that the former is larger. Taking into account Equation (3) and
the above consideration, we write Equation (10) as

dva

dt
' c2

4
h̄00,

a ⇒ d~v
dt

= −~∇φ = ~F, φ ≡ c2

4
h̄00 (12)

Thus, the gravitational potential φ can be estimated using Equation (5):

φ =
c2

4
h̄00 = −G

c2

∫ T00(~x′, t− R
c )

R
d3x′

= −G
∫

ρ(~x′, t− R
c )

R
d3x′ (13)

and ~F is the force per unit mass. In the case that the mass density ρ does not depend
on time, we may use the Newtonian instantaneous action at a distance. Note that it is
improbable that ρ is static for a galaxy, as it accretes intergalactic medium gas.

3. Retardation Effects Beyond the Newtonian Approximation

The duration R
c may be tens of thousands of years but may be short with respect to

the duration in which the galactic density changes considerably. Thus, we write a Taylor
series for the density:

ρ(~x′, t− R
c
) =

∞

∑
n=0

1
n!

ρ(n)(~x′, t)(−R
c
)n, ρ(n) ≡ ∂nρ

∂tn . (14)

By inserting Equation (14) into Equation (13), we will obtain

φ = φ2 + φ(n>2)

φ2 = −G
∫

ρ(~x′, t)
R

d3x′ +
G
c

∫
ρ(1)(~x′, t)d3x′ − G

2c2

∫
Rρ(2)(~x′, t)d3x′

φ(n>2) = −G
∞

∑
n=3

(−1)n

n!cn

∫
Rn−1ρ(n)(~x′, t)d3x′ (15)

The Newtonian potential is the first term, the second term has null contribution,
and the third term is the lower order correction to the Newtonian theory:

φr = −
G

2c2

∫
Rρ(2)(~x′, t)d3x′ (16)

We will show later that n > 2 terms can be neglected; thus, the total force per unit
mass can be approximated as

~F ' ~FN + ~Fr

~FN = −~∇φN = −G
∫

ρ(~x′, t)
R2 R̂d3x′, R̂ ≡

~R
R

~Fr ≡ −~∇φr =
G

2c2

∫
ρ(2)(~x′, t)R̂d3x′ (17)
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~FN , first introduced by Newton, is attractive; however, the retardation force ~Fr can be ei-
ther attractive or repulsive. Newtonian force decreases as 1

R2 ; however, the retardation force
does not depend on distance as long as the Taylor approximation given in Equation (14)
holds. Below a certain distance, the Newtonian force dominates, but for larger distances,
the retardation force has the upper hand. Newtonian force can be neglected for distances
significantly larger compared to the retardation distance:

R� Rr ≡ c∆t (18)

∆t is a duration associated with the second order derivative of the density ρ. For R�
Rr, retardation can be neglected, and only Newtonian forces need to be considered; this
is the situation in the solar system. As the galaxy accretes intergalactic gas, the galactic
mass becomes larger, and thus Ṁ > 0; however, the intergalactic gas is depleted, and thus
the rate at which the mass is accreted decreases resulting in M̈ < 0. Hence, we have an
attractive retardation force.

4. Higher Order Terms

Comparing Equation (31) to Equation (82) of [9], it follows that

g(2)(t) = g(2)(0)e
t
τ (19)

Hence:
g(n)(t) = g(2)(0)τ2−ne

t
τ = g(2)(t)τ2−n, n > 2 (20)

And also

ρ(n)(~x, t) = ρ(2)(~x, t)τ2−n, M(n)(t) = M(2)(t)τ2−n, n > 2 (21)

Thus, according to Equation (15), we have the following correction to the retardation
potential:

φ(n>2) = −G
∞

∑
n=3

(−1)n

n!cnτn−2

∫
Rn−1ρ(2)(~x′, t)d3x′. (22)

The deviation from the second order approximation is more pronounced for large r,
for which R ' r, which is the case we consider here; thus:

φ(n>2) ' −G
∞

∑
n=3

(−1)n

n!cnτn−2 rn−1
∫

ρ(2)(~x′, t)d3x′ = −GM̈(t)τ2

r

∞

∑
n=3

1
n!

(
−r
cτ

)n
. (23)

Now, using the well-known identity:

∞

∑
n=3

αn

n!
= eα − (1 + α +

1
2

α2) (24)

We may write Equation (23) as a closed expression instead of an infinite sum:

φ(n>2) ' −
GM̈(t)τ2

r

(
e−

r
cτ − 1 +

r
cτ
− 1

2

( r
cτ

)2
)

. (25)

For r � cτ, it is quite clear that the term in the parenthesis of Equation (25) van-
ishes, since

lim
α→0

∞

∑
n=3

αn

n!
= lim

α→0

(
eα − (1 + α +

1
2

α2)

)
= 0. (26)

Hence, φ(n>2) can be neglected if indeed r � cτ for the relevant measurements of
the M33 rotation curve, that is, up to about r < 20 kpc. Now, τ is dependent, according
to Equation (81) of [9], on the density gradient of the inter galactic medium (IGM) and
the typical velocity in this medium. Although these values are not known precisely, we
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may assume that vz ∼ 100 km /s, and the typical gradient is the same as the gradient of
the optical disk luminosity, that is, 1

k ∼ 0.1 kpc. Thus, τ ∼ 106 years, and τc ∼ 300 kpc,
making the second order approximation used so far reasonable.

5. Conclusions

The phenomena of retardation is ubiquitous in physics and follows directly from
the Lorentz symmetry group. Hence, any system that is invariant under the Lorentz
transformation will exhibit retardation phenomena. These include physical systems related
to classical electromagnetism [20–23] and general relativity [6–9], but also to other Lorentz
invariant theories such as conformal gravity [24–26].

Dark matter being a major candidate for explaining galactic rotation curves has only a
slim chance of being found, given that accelerator experiments, such as using the Large
Hadron Collider, have been unable to find any super symmetric particles, not only of the
community’s favorite form of dark matter, but also of the form that is mandated in string
theory, a theory that also suggests a quantized version of Einstein gravity.

We have shown that at least on the galactic scale, dark matter is not needed [6–10],
as the needed dynamics can be explained by a retarded gravitational potential when a near
field approximation is used. We remark that the analysis of far field leading to gravitational
waves [27] was corroborated in recent years by observations [28,29].

A justification for the second order Taylor series approximation which we used in
previous works is given here for the first time, showing that indeed higher order terms can
be safely neglected.

Finally, we mention other approaches to the galactic rotation curves problem, which
suggest overcoming the problem by changing the laws of gravity. Such approaches are
Milgrom’s MOND [30] and Mannheim’s conformal gravity [24–26]. Unfortunately, these
approaches seem to contradict both general relativity (which is supported by a large body
of observational evidence) and recent observations. Indeed van Dokkum et al. [31] have
shown that there are galaxies with Newtonian rotation curves, excluding the possibility of
a universal modification to the laws of gravity which prevail in every galaxy. Thus, either
van Dokkum’s galaxy is devoid of “dark matter”, or it has a small retardation depletion
effect, as the gas around it has not yet depleted (or fully depleted).

Given the negative results from accelerator experiments regarding dark matter, retar-
dation theory seems to be the only valid option.
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