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Abstract: (1) Background: Various Machine Learning (ML) methods are applied for the prediction of
individual efficiency of cancer treatment regimens. As features for ML, different multi-omics data
may be used. We proposed a next-generation ML approach termed FloWPS (FLOating-Window
Projective Separator) that filters features before building the ML models to preclude extrapolation in
the feature space. (2) Methods: Using Gene Expression Omnibus (GEO), The Cancer Genome Archive
(TCGA), and Tumor Alterations Relevant for GEnomics-driven Therapy (TARGET) project databases,
as well as our own data, we selected 32 gene expression datasets for cancer patients, annotated with
a clinical response status. The biggest dataset included 235 patient cases, and the smallest one had
only 41. (3) Results and Discussion: We demonstrated essential improvement of ML quality metrics
for FloWPS-based clinical response classifiers for all global ML methods applied, including support
vector machines (SVM), random forest (RF), binomial naïve Bayes (BNB), adaptive boosting (ADA),
and multi-level perceptron (MLP). Namely, AUC for these classifiers increased from the 0.61–0.88
range to 0.70–0.98. (4) Conclusion: In our ML trial with 32 cancer gene expression datasets, the
BNB method with FloWPS showed the best performance, with minimal, median, and maximal AUC
values equal to 0.77, 0.86, and 0.98, respectively.

Keywords: bioinformatics; personalized medicine; oncology; chemotherapy; machine learning; omics
profiling; support vector machines; random forest; adaptive boosting; multi-level perceptron

1. Background

Machine Learning (ML) methods can offer a wide spectrum of opportunities by non-
hypothesis-driven direct linkage of specific molecular features with clinical outcomes, such
as responsiveness to certain types of treatment [1–5].

The high-throughput transcriptomic data, including microarray- and next-generation
sequencing gene expression profiles, can be utilized for building such classifiers/predictors
of clinical response to a certain type of treatment. However, in sharp contrast with the
clinical data on COVID-19 [6], acute/chronic liver failure [7], cancer risk [8], and drug
repurposing [9], the direct use of ML to personalize the prediction of drug efficiency is
problematic. This problem is caused by the lack of sufficient amounts of preceding clinically
annotated cases supplemented with high-throughput molecular data (~thousands or tens
of thousands of cases per treatment scheme) [10]. As a result, classical ML methods are
often not successful in predicting clinical outcomes for several model datasets [11–15].
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To improve the performance of ML in biomedicine, we recently developed an approach
called flexible data trimming (FDT), which removes or excludes extreme values, or outliers
from a dataset [2,4,5,16,17]. Excluding non-informative features helps ML classifiers to
avoid extrapolation, which is a well-known problem of ML [18–21]. Thus, for every point of
a validation dataset, the training dataset is adjusted to form a floating window. We, therefore,
called the respective ML approach FLOating-Window Projective Separator (FloWPS) [2,4].

We investigated [4,5] the FloWPS performance for seven popular ML methods, in-
cluding linear support vector machine (SVM), k nearest neighbors (kNN), random forest
(RF), Tikhonov (ridge) regression (RR), binomial naïve Bayes (BNB), adaptive boosting
(ADA), and multi-layer perceptron (MLP). We performed computational experiments for 32
high-throughput gene expression datasets (41–235 samples per dataset) corresponding to
2596 cancer patients with known responses to chemotherapy treatments [4,5]. We showed
that FloWPS essentially improved the classifier quality for all global ML methods (SVM, RF,
BNB, ADA, MLP), where the AUC for the treatment response classifiers increased from
the 0.61–0.88 range to 0.70–0.98 [4,5]. For all the datasets tested, the best performance of
FloWPS data trimming was observed for the BNB method, which can be valuable for the
further building of ML classifiers in personalized oncology [4,5].

Additionally, to test the robustness of FloWPS-empowered ML methods against over-
training, we interrogated agreement/consensus features between the different ML methods
tested, which were used for building mathematical models for the classifiers [4]. The lack
of such agreement/consensus could indicate overtraining of the ML classifiers, suggesting
random noise instead of extracting significant features distinguishing between the treat-
ment responders and non-responders. If ML methods indeed tend to amplify random noise
during overtraining, then one could expect a lack of correlation between the features for
geometrically different ML models.

However, we found here that (i) there were statistically significant positive correlations
between different ML methods in terms of relative feature importance and (ii) that this
correlation was enhanced for the ML methods with FloWPS. We, therefore, conclude that
the beneficial role of FloWPS is not due to overtraining [4].

2. Methods
2.1. Clinically Annotated Molecular Datasets

We used 32 publicly available datasets (see Table 1, [3–5]) that contain high-throughput
gene expression profiles associated with clinical outcomes of the respective patients [2–5].
Every dataset met the following criteria [3]:

− at least 40 gene expression profiles present;
− data obtained for the same cancer type and using the same experimental platform;
− every profile is linked with the case clinical history;
− all cancers treated with at least one common drug or chemotherapy regimen;
− treatment outcomes are available, enabling the classification of every case as either

responder or non-responder.

The dataset preparation for the analysis included the following steps [2,3,5,17]:

• Labeling each patient as either responder or non-responder on the therapy used [3,17];
• For each dataset, finding top marker genes having the highest AUC values for distin-

guishing responder and non-responder classes [3,17];
• Performing the leave-one-out (LOO) cross-validation procedure to complete the robust

core marker gene set used for building the ML model [3,17].
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Table 1. Clinically annotated gene expression datasets [3–5].

Reference Dataset ID Disease Type Treatment Experimental
Platform

Number NC of Cases
(R vs. NR)

Number S of
Core Marker

Genes

[22,23] GSE25066
Breast cancer with
different hormonal
and HER2 status

Neoadjuvant taxane +
anthracycline

Affymetrix Human
Genome U133

Array

235 (118 R: Complete
response + partial
response; 117 NR:
Residual disease +

progressive disease)

20

[24] GSE41998
Breast cancer with
different hormonal
and HER2 status

Neoadjuvant doxorubicin +
cyclophosphamide, followed by

paclitaxel

Affymetrix Human
Genome U133

Array

68 (34 R: Complete
response + partial
response; 34 NR:

Residual disease +
progressive disease)

11

[25] GSE9782 Multiple myeloma Bortezomib monotherapy
Affymetrix Human

Genome U133
Array

169 (85 R: Complete
response + partial

response; 84 NR: No
change + progressive

disease)

18

[26] GSE39754 Multiple myeloma

Vincristine + adriamycin +
dexamethasone followed by

autologous stem cell
transplantation (ASCT)

Affymetrix Human
Exon 1.0 ST Array

124 (62 R: Complete,
near-complete, and very
good partial responders,

62 NR: Partial, minor,
and worse)

16

[27] GSE68871 Multiple myeloma Bortezomib-thalido-mide-
dexamethasone

Affymetrix Human
Genome U133 Plus

98 (49 R: Complete,
near-complete, and very
good partial responders,

49 NR: Partial, minor,
and worse)

12

[28] GSE55145 Multiple myeloma Bortezomib followed by ASCT Affymetrix Human
Exon 1.0 ST Array

56 (28 R: Complete,
near-complete, and very
good partial responders,

28 NR: Partial, minor.
and worse)

14

[5]

https:
//www.frontiersin.

org/articles/10.3389/
fonc.2021.652063/full#

supplementary-
material (accessed on
17 November 2021)

Multiple myeloma

Bortezomib, doxorubicin, and
dexamethasone (PAD),

or bortezomib,
cyclophospha-mide, and
dexamethasone (VCD)

RNA sequencing,
Illumina HiSeq 3000

53 (28 R: complete
response + very good

partial response; 25 NR:
partial response +
minimal response)

8

[29,30] GSE19784_1 Multiple myeloma,
ISS stage I

Bortezomib, doxorubicin and
dexamethasone (PAD)

Affymetrix Human
Genome U133 Plus

2.0 Array
61 (32 R, 29 NR) 7

[29,30] GSE19784_2 Multiple myeloma,
ISS stage II

Bortezomib, doxorubicin and
dexamethasone (PAD)

Affymetrix Human
Genome U133 Plus

2.0 Array
51 (33 R, 18 NR) 12

[29,30] GSE19784_3 Multiple myeloma,
ISS stage III

Bortezomib, doxorubicin and
dexamethasone (PAD)

Affymetrix Human
Genome U133 Plus

2.0 Array
41 (29 R, 12 NR) 11

[29,31] GSE2658 Multiple myeloma Bortezomib, doxorubicin and
dexamethasone (PAD)

Affymetrix Human
Genome U133 Plus

2.0 Array
208 (55 R, 153 NR) 16

[32,33] TARGET-50 Pediatric kidney
Wilms tumor

Vincristine sulfate +
cyclosporine, cytarabine,

daunorubicin + conventional
surgery + radiation therapy

Illumina HiSeq 2000 72 (36 R, 36 NR) 14

[32,34] TARGET-10
Pediatric acute
lymphoblastic

leukemia

Vincristine sulfate +
carboplatin, cyclophosphamide,

doxorubicin
Illumina HiSeq 2000 60 (30 R, 30 NR) 14

[32] TARGET-20 Pediatric acute
myeloid leukemia

Non-target drugs (asparaginase,
cyclosporine, cytarabine,
daunorubicin, etoposide;

methotrexate, mitoxantrone),
including busulfan and

cyclophosphamide

Illumina HiSeq 2000 46 (23 R, 23 NR) 10

[32] TARGET-20 Pediatric acute
myeloid leukemia

Same non-target drugs, but
excluding busulfan and

cyclophosphamide
Illumina HiSeq 2000 124 (62 R, 62 NR) 16

[35] GSE18728 Breast cancer Docetaxel, capecitabine
Affymetrix Human
Genome U133 Plus

2.0 Array

61 (23R: Complete
response + partial
response; 38 NR:

Residual disease +
progressive disease)

16

https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.652063/full#supplementary-material
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Table 1. Cont.

Reference Dataset ID Disease Type Treatment Experimental
Platform

Number NC of Cases
(R vs. NR)

Number S of
Core Marker

Genes

[36,37] GSE20181 Breast cancer Letrozole
Affymetrix Human

Genome U133A
Array

52 (37 R: Complete
response + partial
response; 15 NR:

Residual disease +
progressive disease)

11

[38] GSE20194 Breast cancer
Paclitaxel; (tri)fluoroacetyl

chloride; 5-fluorouracil,
epirubicin, cyclophosphamide

Affymetrix Human
Genome U133A

Array

52 (11 R: Complete
response + partial
response; 41 NR:

Residual disease +
progressive disease)

10

[39] GSE23988 Breast cancer Docetaxel, capecitabine
Affymetrix Human

Genome U133A
Array

61 (20 R: Complete
response + partial
response; 41 NR:

Residual disease +
progressive disease)

18

[40] GSE32646 Breast cancer Paclitaxel, 5-fluorouracil,
epirubicin, cyclophosphamide

Affymetrix Human
Genome U133 Plus

2.0 Array

115 (27 R: Complete
response + partial
response; 88 NR:

Residual disease +
progressive disease)

17

[41] GSE37946 Breast cancer Trastuzumab
Affymetrix Human

Genome U133A
Array

50 (27 R: Complete
response + partial
response; 23 NR:

Residual disease +
progressive disease)

14

[42] GSE42822 Breast cancer
Docetaxel, 5-fluorouracil,

epirubicin, cyclophosphamide,
capecitabine

Affymetrix Human
Genome U133A

Array

91 (38 R: Complete
response + partial
response; 53 NR:

Residual disease +
progressive disease)

13

[43] GSE5122 Acute myeloid
leukemia Tipifarnib

Affymetrix Human
Genome U133A

Array

57 (13 R: Complete
response + partial
response + stable

disease; 44 R:
Progressive disease)

10

[44] GSE59515 Breast cancer Letrozole

Illumina
HumanHT-12 V4.0

expression
beadchip

75 (51 R: Complete
response + partial
response; 24 NR:

Residual disease +
progressive disease)

15

[45] TCGA-LGG Low-grade glioma Temozolomide + (optionally)
mibefradil Illumina HiSeq 2000

131 (100 R: Complete
response + partial
response + stable

disease; 31 NR:
Progressive disease)

9

[45] TCGA-LC Lung cancer
Paclitaxel + (option-

ally),cisplatin/carboplatin,
reolysin

Illumina HiSeq 2000

41 (24 R: Complete
response + partial
response + stable

disease; 17 NR:
Progressive disease)

7

2.2. Machine Learning (ML) Application with and without FloWPS

Although modern ML applications in clinical cancer genomics may rely on deep
learning methods [46–48], they require large preceding case cohorts [47], which was not
the case for either of the gene expression datasets under investigation. Thus, to further
characterize them, we used several non-deep ML methods implemented in the Python
sklearn library [49].

For each ML method, we used a data trimming/preprocessing step using the FloWPS
method (R package flowpspkg.tar.gz (Available at https://gitlab.com/borisov_oncobox/
flowpspkg, accessed on 17 November 2021)) to increase the robustness and efficiency
due to individual sample-specific selection of the training dataset [2,4,17]. A detailed
description of the FloWPS algorithm [2,4,17] is given in the Supplementary Material.
Among the ML methods, the package flowpspkg allows the application of linear/cubic
support vector machines (SVM) [2,16,50,51], the k nearest neighbors (kNN) method [52],
random forest (RF) [53], ridge regression (RR) [54], binomial naïve Bayes (BNB) [55],

https://gitlab.com/borisov_oncobox/flowpspkg
https://gitlab.com/borisov_oncobox/flowpspkg
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adaptive boosting (APA) [11,56,57], and multi-layer perceptron (MLP) [58–60]. For RF,
these settings were n_estimators = 30, criterion = ‘entropy’. For BNB: alpha = 1.0, binarize = 0.0,
and fit_prior = False. For MLP: hidden_layer_sizes = 30, alpha = 0.001. To compensate for
the possible effect of unequal number of responder and non-responder samples, all SVM
and RF calculations were performed by setting class_weight = ‘balanced’ and class_weight =
‘balanced_subsample’. All other parameters were used with the default settings.

3. Results and Discussion
3.1. Performance of FloWPS with Different Balance Factors for False Positive vs. False
Negative Errors

We used FloWPS in combination with seven ML methods, namely, linear support vec-
tor machines (SVM) [2,16,50,51], k nearest neighbors (kNN) [52], random forest
(RF) [53], ridge regression (RR) [54], binomial naïve Bayes (BNB) [55], adaptive boost-
ing (ADA) [11,56,57], and multi-layer perceptron (MLP) [58–60]. For each ML method, we
checked the performance of this method with and without FloWPS.

For all ML methods, the FloWPS predictions (PFi) are equal to the likelihoods for
attribution of samples to one of the two classes (clinical responders or non-responders).
The discrimination threshold (τ), which may be applied to distinguish between the two
classes, should be determined according to the cost balance between false positive (FP)
and false negative (FN) errors. In our pilot study [2], for the determination of the τ value,
we considered the costs for FP and FN errors to be equal and then maximized the overall
accuracy rate, ACC = (TP + TN)/(TP + TN + FP + FN), since the class sizes were equal.

In a more general case [4,5], the penalty value p = B·FP + FN is minimized; here, B is
called the relative balance factor. B is less than 1 for the situations when the FN error (e.g.,
refusal of prescription of a drug that might help the patient) is more dangerous than the
FP error (e.g., prescription of a useless treatment). Contrarily, B is greater than 1 when it
is safer not to prescribe treatment for a patient than to prescribe it. Several practitioners
of clinical diagnostic tests have different opinions on how high/low this balancing factor
should be. In different applications, the preferred values can be B = 4 [61–63], B < 0.16 [64],
4.5 < B < 5 [44], B < 5 [65], B > 10 for emergency medicine only [66], B > 5 for toxicology [67].

In the case of oncological disease, B should be low when only one or few treatment
options is/are available for a certain patient because the refusal to give a treatment may
cause serious harm to the patient. Contrarily, in the situation when the doctor must
select the best treatment plan among multiple options available, the risk of a wrong drug
prescription will be higher, and B should be high as well. For our analyses, we used five
model settings of B equal to 0.1, 0.25, 1, 4, and 10.

For the quality metrics of AUC, sensitivity (Sn), and specificity (Sp), see Table 2 and
Figures 1 and 2. We found that the use of FloWPS has considerably improved the AUC
metric for all global ML methods investigated (SVM, RF, BNB, ADA, and MLP) but had
no effect on the performance of local methods, kNN and RR. For the global ML methods,
FloWPS improved the classifier quality and increased AUC from the 0.65–0.85 range to
0.78–0.98, and AUC median values—from the 0.70–0.77 range to 0.76–0.82 (Table 2).

Table 2. Performance metrics for seven ML methods with default settings for datasets with equal
numbers of responders and non-responders [4].

ML
Method

Method
Type

Median AUC
without FloWPS

Median AUC
with FloWPS

Paired t-Test p-Value for
AUC with-vs.-w/o FloWPS

Advantage of
FloWPS

Median Sn
at B = 4

Median Sp
at B = 0.25

SVM Global 0.74 0.80 1.3 × 10−5 Yes 0.45 0.42
kNN Local 0.76 0.75 0.53 No 0.25 0.34
RF Global 0.74 0.82 1.3 × 10−5 Yes 0.45 0.42
RR Local 0.80 0.79 0.16 No 0.36 0.41

BNB Global 0.77 0.82 2.7 × 10−4 Yes 0.51 0.58
ADA Global 0.70 0.76 2.4 × 10−4 Yes 0.32 0.41
MLP Global 0.73 0.82 6.4 × 10−5 Yes 0.53 0.53

Yes—FloWPS is beneficial for ML quality, No—FloWPS is not beneficial for ML quality.
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Figure 1. Receiver-operator curves (ROC) showing the dependence of sensitivity (Sn) upon
specificity (Sp) for FloWPS-based classifier of treatment response for datasets with core marker
genes [2]. Red dots: confidence parameter p = 0.95, blue dots: p = 0.90. Panels represent dif-
ferent clinically annotated datasets, (A): GSE25066 [22,23]; (B): GSE41998 [24]; (C): GSE9782 [25];
(D): GSE39754 [26]; (E): GSE68871 [27]; (F): GSE55134 [28] ; (G): TARGET-50 [32,33]; (H): TARGET-
10 [32,34]; (I,J): TARGET-20 [32] with busulfan and cyclophosphamide, respectively.
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Figure 2. The area under the receiver-operator curve (AUC), sensitivity (Sn), and Specificity (Sp) for 
five ML methods (BNB, MLP, RF, RR, and SVM), both with (red line) and without (blue line) FloWPS, 
during the classification of response to PAD/VCD treatment of 53 MM patients (full cohort). Param-
eter B is the false positive vs. false negative balance factor [5]. 

Table 2 and Figure 2 summarize these findings. Considering the quality criterion that 
combines the highest AUC, the highest Sn at B = 4, and the highest Sp at B = 0.25, the top 
three methods were BNB, MLP, and RF. Figure 2 shows how the AUC, Sn, and Sp values 
depend on different values of B. For all ML methods, the application of FloWPS increased 

Figure 2. The area under the receiver-operator curve (AUC), sensitivity (Sn), and Specificity (Sp)
for five ML methods (BNB, MLP, RF, RR, and SVM), both with (red line) and without (blue line)
FloWPS, during the classification of response to PAD/VCD treatment of 53 MM patients (full cohort).
Parameter B is the false positive vs. false negative balance factor [5].

Table 2 and Figure 2 summarize these findings. Considering the quality criterion that
combines the highest AUC, the highest Sn at B = 4, and the highest Sp at B = 0.25, the top
three methods were BNB, MLP, and RF. Figure 2 shows how the AUC, Sn, and Sp values
depend on different values of B. For all ML methods, the application of FloWPS increased
the quality of the classifiers built, as reflected by the AUC metric (Table 2, Figure 2). Taking
the three criteria of AUC, Sn, and Sp together, the optimal solution was provided by the
BNB method with FloWPS (AUC = 0.84) for the multiple myeloma full cohort (Figure 2).
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3.2. Correlation Study between Different ML Methods at the Level of Feature Importance

To check whether the FloWPS enhancement of the different ML is caused by overtrain-
ing of mathematical models or whether FloWPS helps to extract the essential characteristics
in the feature space that separate responders from non-responders, we performed the
analysis of the feature importance.

For linear SVM, RF, RR, BNB, and MLP methods, and for all transcriptomic datasets
tested, we calculated the relative importance, If, of each gene expression feature f in the
dataset, using the following attributes of ML classes in Python library sklearn [61]:

For linear SVM: If = |coef_[0]f|, where coef_[0] is the normal vector to the separation
hyperplane between responders and non-responders in the feature space in the train-
ing model.

For RF, If = |feature_importancesf| from the training model.
For RR, I f = ∑t |X_ f itt f |, where the summation runs through every sample t in the

training model.
For BNB, I f = ∑c f eature_countc f , where the values named feature_countcf denote the

number of samples encountered for each class c and feature f during the fitting of the
training model.

For MLP, I f = ∑t |coe f s[0]t f |, where coe f s[0]t f is the coefficient matrix in the first layer
of the neural network for feature f of sample t in the training model.

For each validation point I, the If was averaged over all predication-accountable set Si.
We showed positive pairwise correlations between the different ML methods at the

level of the relative importance of different features tested (Table 3, Figure 3).
Greater similarities between If marks for the different ML methods reflect more robust

applications of the ML. Importantly, the correlations for the ML methods with FloWPS
were always higher than for the methods without FloWPS. This suggests the beneficial role
of FloWPS in extracting informative features from noisy data. In this model, the biggest
similarity was observed for the pair of RR and BNB methods.

Table 3. Median pairwise (with/without FloWPS) correlations between deferent ML methods at
feature (gene expression) importance (If) level. Figures above main diagonal: Pearson correlations;
figures below: Spearman correlations [4].

SVM RF RR BNB MLP

SVM 1 0.53/0.34 0.40/0.19 0.37/0.24 0.46/0.33
RF 0.55/0.40 1 0.51/0.35 0.48/0.33 0.590.40
RR 0.39/0.14 0.32/0.04 1 0.93/0.88 0.89/0.76

BNB 0.34/0.14 0.31/0.09 0.79/0.64 1 0.81/0.61
MLP 0.46/0.30 0.38/0.17 0.52/0.06 0.46/0.12 1

3.3. Discussion

The application of ML methods for the prescription of certain drugs to certain patients
in omics-based bioinformatics is limited by the deficiency of annotated case histories,
where we know the responses to the treatment combined with the omics (gene expression,
mutation, methylation, phosphorylation, etc.) profiles. These annotated cases should be
collected for a certain combination of the cancer type/localization and treatment regimen.

However, the accuracy for the ML-based classification may be low upon the blind
cross-validation of the ML modes since many ML methods, designed for global separation
of different classes of points in the feature space, are prone to overtraining when the number
of preceding cases is low. Global ML methods may also fail if there is only local rather than
global order in the placement of different classes in the feature space [2,18–20].
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To improve the performance of the global ML methods, we suggested a novel approach
some years ago [2,4,17]. It includes some elements of the local methods, e.g., using the
flexible data trimming that avoids extrapolation in the feature space for each validation
point, followed by selecting only several nearest neighbors from the training dataset. In
such a way, the whole ML classifier becomes a hybrid, both global and local [2,4,17].

According to this hybrid approach, for each validation point, the training of ML
models is performed in the individually tailored feature space. Every validation point is
surrounded by a floating window from the points of the training dataset, and the irrelevant
features are avoided using the rectangular projections in the feature space. That is why the
approach was called FLOating-Window Projective Separator, FloWPS [2,4,17].

Overtraining, together with extrapolation, is also a well-known Achilles heel of ML.
We, therefore, tested if FloWPS helps to extract truly significant features or if it simply
adapts to random noise, thus, causing overfitting. We compared four global ML methods
(SVM, RF, BNB, and MLP) and one local ML method (RR) to check similarities between
them in terms of the relative importance of distinct individual features. We confirmed that
all these five ML methods were positively correlated at the level of feature importance
(Table 3, Figure 3). Moreover, using FloWPS significantly enhanced such correlations in all
the cases examined (Table 3, Figure 3). These results clearly suggest that FloWPS is helpful
for extracting relevant information, and it does not merely follow the random noise [4].

Overall, we suggest that using correlations between different ML methods at the level
of the relative feature importance may be used as an evaluation metric of ML suitability
for building classifiers utilizing omics data. In this case, the higher the correlation is, the
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bigger the probability that the separation of responders from non-responders is robust and
non-overtrained should be (Figure 4).
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GSE68871 [27]; 6—GSE55134 [28]; 7—TARGET-50 [32,33]; 8—TARGET-10 [32,34]; 9—TARGET-
20 [32] with busulfan; 10—TARGET-20 [32] with cyclophosphamide; 11—GSE18728 [35]; 12—
GSE20181 [36,37]; 13—GSE20194 [38]; 14—GSE23988 [39]; 15—GSE32646 [40]; 16—GSE37946 [41];
17—GSE42822 [42]; 18—GSE5122 [43]; 19—GSE59515 [44]; 20—TCGA-LGG [45]; 21—TCGA-LC [45])
are shown through the horizontal axis). (A)—Pearson, FloWPS, (B)—Pearson, no FloWPS, (C)—
Spearman, FloWPS, (D)—Spearman, no FloWPS [4].

Many gene expression datasets are too small to be used as training datasets in person-
alized oncology. However, there is a possibility to aggregate different smaller datasets into
bigger ones. For such aggregation, one may use our new Shambhala-1 [68] and Shahmhala-
2 [69] harmonizing techniques, which are capable of merging arbitrary numbers of datasets
obtained using arbitrary experimental platforms.

To our knowledge, Shambhala-1/2 were the first uniformly shaped gene expression
harmonizers to ever be applied to process the RNAseq and microarray data together [68,69].
We hope that Shambhala-1/2 will become useful for the broad spectrum of applications for
combining different expression datasets. One of its major strengths is the stability of the
final output data, which is not biased/distorted upon each new round of harmonization.

However, one should keep in mind that both Shambhala-1/2 and FloWPS approaches
are algorithmically complex and time-consuming/resource-demanding. Therefore, parallel
execution of the program code using both these approaches may be advantageous [4,69].
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4. Conclusions

Machine Learning (ML) in personalized medicine can be characterized as an a pos-
teriori paradigm since it relies on the association of molecular and clinical features in the
training dataset, which may be used for artificial intelligence (AI) applications [2–4]. Yet,
the number of preceding cases in omics-based personalized oncology, e.g., gene expression
profiles equipped with known responses to certain types of cancer treatment, is still gen-
erally insufficient for the application of conventional ML methods to predict individual
clinical responses.

The deficiency of preceding cases for personalized drug prescription in oncology leads
to extrapolation in the feature space when building the mathematical models for ML, and
the extrapolation leads to model overtraining, which decreases the prediction accuracies.
To overcome the problem above, we suggested a novel approach termed FLOating-Window
Projective Separator, FloWPS [2,4,5].

By using the FloWPS paradigm, the whole ML classifier becomes a hybrid, both global
and local. Namely, for each validation point, training of the ML models is performed in
the individually tailored feature space. Moreover, every validation point is surrounded by
a floating window from the points of the training dataset, and the irrelevant features are
avoided using the rectangular projections in the feature space [2,4,5].

In our ML trial with 32 cancer gene expression datasets, the BNB method with FloWPS
showed the best performance, with minimal, median, and maximal AUC values equal to
0.77, 0.86, and 0.98, respectively [4].

Our FloWPS method is unprecedented because it does not use any pre-selected an-
alytical form of transformation kernels but instead adapts the feature space heuristically
for every particular validation case. The success of using FloWPS for the real-world gene
expression datasets, including tens to hundreds of samples, prompts further trials of its
applicability in biomedicine and in other fields where increased accuracy of ML classifiers
is needed [2,4,5].
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