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Abstract: Satellite Earth observations provide timely and spatially explicit information on crop
phenology that can support decision making and sustainable agricultural land management. Accurate
classification and mapping of croplands is primary information for agricultural assessments. This
study presents a digital agriculture approach that integrates Earth Observation big data analytics
based on machine learning technologies to classify and map main crop types. Two supervised
machine learning models were calibrated using the Random Forest algorithm from phenological
metrics, estimated from time series of NDVI and LAI vegetation indices calculated using Sentinel-2
MSI satellite acquisitions. Models were calibrated for the Toscana region in Italy. The results show
a satisfactory overall accuracy (~78%) in cropland classification, and the model calibrated using
LAI time series performed slightly better than the model calibrated using NDVI time series. The
proposed approach offers the potential to accurately map crop types in a way that is useful to support
agricultural land management and monitoring systems for large areas over time.
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1. Introduction

Cropland mapping is becoming increasingly important in environmental topics which
deal with sustainable agriculture production and natural resource management [1]. Nowa-
days, a wide number of stakeholders are interested in this topic, such as national authorities,
local environmental agencies, regional government and authorities, municipalities, univer-
sities and research centers, civil protection agencies, insurance companies, and industries.
Cropland mapping products answer the information need deeply felt by users in response
to the growing interest shown by the European policies in climate change mitigation and
adaptation, and foster sustainable agricultural practices, especially today in the context of
the European Green Deal strategy [2].

The information provided by increasing availability of Earth observation (EO) data
makes satellite images of paramount importance for identifying, characterizing, and map-
ping crop typologies in both the space and time dimensions by exploiting the radar backscat-
ter and the optical response of vegetation [3,4]. The commitment by the European Com-
mission (EC) to encourage the development of EO products, possibly taking advantage
of Copernicus in situ Component, makes value-added information derived from satellites
of primary importance for supporting agricultural land management. Indeed, the EC has
finally sanctioned the use of Copernicus Sentinel data, integrated with EGNOS/Galileo,
for the control and granting of Common Agricultural Policy (CAP) payments by local
authorities, promoting open data with a common data-sharing approach (Regulation (EU)
746/2018).
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Multitemporal satellite images have proven to be successfully used to estimate vege-
tation’s biophysical parameters and to identify phenological patterns [5–7]. Recently, the
Copernicus Sentinel-2 satellite constellation, equipped with an MSI sensor, was able to
sense the Earth’s surface at high spatial, spectral, and temporal resolutions, showing its
potential for the estimation of vegetation parameters, such as phenological metrics (e.g.,
the start of season, the length of season, or the end of season) [7,8].

Many authors have investigated the efficacy of spectral and biophysical time series
indices to differentiate crop types [9,10]. Vegetation spectral indices have been and are still
widely used to detect the status of vegetation (e.g., growth, health, and cover), the most
popular of which is the normalized difference vegetation index (NDVI) [11]. However,
NDVI has saturation as its limit at high values. On the other hand, vegetation’s biophys-
ical characteristics, such as the canopy structure and photosynthetic capacity, are well
described by the leaf area index (LAI) largely used in agricultural studies in heterogeneous
smallholder and fragmented agroecosystems [12,13].

Furthermore, the advances in analytical techniques, such as machine learning algo-
rithms, enable us to deal with fast and robust analyses applied to big data. Among these,
Random Forest (RF) is an ensemble learning classifier that has been successfully used in
vegetation classification applications, including crop mapping [7,10,14].

The aim of this study was to present a digital agriculture approach that integrates
EO big data analytics, based on a supervised machine learning model using temporal
statistics and phenological metrics estimated from NDVI and LAI time series as predictors,
to identify and map the main crop types. The performance of two supervised machine
learning models, calibrated using the RF algorithm for a study area in central Italy, are
presented and discussed.

2. Materials and Methods
2.1. Study Area

Tuscany is located in central Italy and covers about 23,000 square kilometers. The
climate ranges from the Mediterranean dry climate along the coastline to the temperate
humid and wet climate in the inland and northern areas of the region. Tuscany is mainly
hilly (about 67%) and mountainous (about 25%), and it also includes some plains (about
8%). The cultivated areas represent about 39% of the region, mainly characterized by arable
land, vineyards, and olive groves.

2.2. Satellite Images

Sentinel-2 (S2) satellites images, acquired from November 2015 to October 2019 with
cloud cover lower than 90%, were acquired for the 4 granules corresponding to the study
area. The Multi-Spectral Instrument (MSI) sensor onboard S2 is characterized by a high
spatial resolution (10 m, 20 m, and 60 m), a high revisit time (5 days with two satellites),
and 13 spectral bands from visible to shortwave infrared. The spectral bands of the
images in the MUSCATE format, distributed by Theia as the bottom of the atmosphere
(BOA) reflectance, orthorectified, terrain-flattened, and atmospherically corrected with the
MACCS-ATCOR joint algorithm (MAJA) [15], were processed for spatial resampling at
10 m masked for invalid pixels (cloud, cloud_cirrus, cloud_shadow, topographic_shadow,
snow, edge, sun_too_low). A static mask, generated from Copernicus Land Monitoring
Service datasets, was applied to mask out pixels not corresponding to croplands.

2.3. Crop Type Maps

The reference crop type maps used in this study were made available by the Tuscany
Regional Agency for Agriculture (http://dati.toscana.it/organization/artea, accessed on
17 October 2020) for the years from 2016 to 2019. This study focused only on the main crop
types of the arable land, excluding permanent crops such as vineyards and olive groves.
Selected crop typologies were grouped into 8 classes, taking the temporal pattern of the
crops in the study area into account: winter cereals, clover and alfalfa, maize, sorghum,

http://dati.toscana.it/organization/artea
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sunflower, rapeseed, horticultural crops, and soy. The centroid of each crop parcel polygon
in the reference maps was used to query the raster predictors generated from the satellite
images.

2.4. Time Series and Temporal Predictors

Two vegetation indices were selected to derive the main crop types in the study area:
the NDVI and the LAI. The NDVI was calculated following Equation (1):

NDVI =
(NIR − RED)

(NIR + RED)
(1)

where RED corresponds to the S2 MSI spectral band B4 and NIR corresponds to the S2
MSI spectral band B8. The Leaf Area Index (LAI) is defined as half of the total green
(i.e., photosynthetically active) leaf area per unit of horizontal ground surface area. The
biophysical processor [16] available in SNAP software was used to estimate the LAI from
the surface reflectance data.

The time series of the vegetation indices were first gap-filled and interpolated daily
using the Stinemann algorithm [17], and later temporally smoothed using the procedure
based on second-order weighted polynomial fitting and Whittaker smoothing, as described
in [18]. From the NDVI and LAI time series, temporal statistics and phenological metrics,
derived following Gu et al. [19], were calculated and used as temporal predictors in the
classification model (Table 1).

Table 1. List of time series statistics and phenological metrics used as model predictors. The predictors’
importance resulting from the classification model is expressed as the Gini index value. Variables
with no important values were not selected as model predictors. The abbreviation ‘dl’ stands for
‘dimensionless’.

Name Description Unit Importance

NDVI LAI NDVI LAI

avg Annual average value dl m2/m2 25,089.92 1910.118

std Standard deviation value dl m2/m2 - 4332.682

min Annual minimum value dl m2/m2 - 3486.984

max Annual maximum value dl m2/m2 - -

delta Delta value dl m2/m2 - -

djf_avg Winter (December, January,
February) average value dl m2/m2 - -

djf_min Winter (December, January,
February) minimum value dl m2/m2 - -

djf_max Winter (December, January,
February) maximum value dl m2/m2 - -

jja_avg Summer (June, July, August)
average value dl m2/m2 26,029.03 2817.965

jja_max Summer (June, July, August)
maximum value dl m2/m2 24,610.40 -

SoS_doy Start of season DoY DoY DoY - 1890.944

SoS_value Start of season value dl m2/m2 - -

SGS_doy Start of growing season DoY DoY DoY - 2243.904

SGS_value Start of Growing Season
value dl m2/m2 23,572.20 -
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Table 1. Cont.

Name Description Unit Importance

NDVI LAI NDVI LAI

PoS_doy Peak of season DoY DoY DoY - 2611.057

PoS_value Peak of season value dl m2/m2 - -

EGS_doy End of growing season DoY DoY DoY - 2653.588

EGS_value End of growing season
value dl m2/m2 - -

EoS_doy End of season DoY DoY DoY - -

EoS_value End of season value dl m2/m2 22,521.31 -

amplitude Amplitude value dl m2/m2 27,390.47 2052.926

greenup_doy Greenup DoY DoY DoY 47,205.49 -

greenup_rate Greenup rate dl m2/m2 24,246.63 -

senescence_doy Senescence DoY DoY DoY 57,316.61 -

senescence_rate Senescence rate dl m2/m2 20,347.07 -

plateau_slope Rate of change during the
maturity plateau dl m2/m2 23,675.63 -

DoS Duration of the season Days Days 23,237.03 1627.551

LMP Length of maturity plateau Days Days - 1450.587

STI Seasonal time-integrated
value dl m2/m2 22,737.46 -

All predictors with a Pearson correlation coefficient higher than 0.9 and a variance
inflation factor (VIF) higher than 2.0 [20] were removed to avoid multi-collinearity.

2.5. Random Forest Classification

The R package ‘mlr’ [21] was used to set the RF hyperparameter combination (i.e.,
mtry, min.node.size, ntree) through a 5-fold cross-validation with 20 repetitions and selected
those with a higher Cohen’s kappa coefficient. The tuned hyperparameters were used to
calibrate the classification models from the NDVI and LAI predictors using the R package
‘ranger’ [22]. The variables’ importance for the final set of selected predictors used in the
models was calculated using the Gini index.

A stratified sampling method was applied to the crop type reference map of the year
2019 in order to select the pixels which represented all 8 classes of crop types and could be
used as training samples for the classification and as test samples to verify the accuracy of
the classification obtained. Here, 70% of the pixels were used as training samples and the
remaining 30% as the test samples.

The results of the classifications obtained were evaluated by means of confusion
matrices according to the test samples. Overall accuracy (OA), producer’s accuracy (PA),
user’s accuracy (UA), and Cohen’s kappa coefficient (K) were assessed.

Finally, the crop type map product for the year 2019 was predicted using the calibrated
supervised machine learning models.

3. Results

The RF hyperparameter tuning produced the following settings: mtry = 5, min.node.size = 2,
ntree = 893 for NDVI, and mtry = 4, min.node.size = 3, ntree = 424 for LAI. The selected
predictor variables reporting the highest Gini index were 13 for NDVI and 11 for LAI
(Table 1).

The resulting spatial crop type map is shown in Figure 1. Regarding the classification
obtained from the NDVI time series analysis, an overall accuracy of 78.6% was achieved
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with a Cohen’s kappa coefficient of 0.54 (Table 2). Some classes were more accurately classi-
fied than others, such as clover and alfalfa (UA = 91.1%; PA = 82.8%), maize (UA = 69.5%;
PA = 58%), and winter cereals (UA = 55.9%; PA = 69.2%). On the contrary, sorghum was
the worst classified (UA = 6%; PA = 26.8%). Rape and soy obtained low user’s accuracy
(17.2% and 17.6% respectively).

As for the classified crop types resulting from the LAI time series analysis, an overall
accuracy of 78.3% was achieved, with a Cohen’s kappa coefficient of 0.59 (Table 3). Unlike
the NDVI model results, the LAI model generally showed high user’s and producer’s
accuracies for all the classes, except for rapeseed (UA = 10.7%), and the misclassification
was principally with winter cereals.

Table 2. Confusion matrix of the RF results from the NDVI time series analysis. Producer’s (PA),
user’s (UA), and overall (OA) accuracies (as percentages), as well as the Cohen’s kappa coefficient (K)
are reported.
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Winter cereals 3804 1609 4 2 8 24 44 0 5495 69.2
Clover and Alfalfa 2974 17,084 53 45 36 29 410 0 20,631 82.8
Maize 2 21 528 62 215 0 71 11 910 58
Sorghum 1 1 8 11 11 0 9 0 41 26.8
Sunflower 6 20 139 34 230 0 62 3 494 46.6
Rape 7 1 0 0 0 11 0 0 19 57.9
Horticultural crops 10 16 28 29 54 0 540 0 677 79.8
Soy 0 0 0 0 0 0 0 3 3 100
Total 6804 18,752 760 183 554 64 1136 17 28,270 OA%

UA % 55.9 91.1 69.5 6 41.5 17.2 47.5 17.6 OA% 78.6

Table 3. Confusion matrix of the RF results from the LAI time series analysis. Producer’s (PA), user’s
(UA), and overall (OA) accuracies (as percentages), as well as the Cohen’s kappa coefficient (K) are
reported.
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Winter cereals 9759 2510 0 0 0 62 40 0 12,371 78.9
Clover and Alfalfa 2170 7743 0 0 0 13 146 0 10,072 76.9

Maize 0 0 19 5 4 0 2 1 31 61.3
Sorghum 0 0 4 20 1 0 2 0 27 74.1
Sunflower 0 0 3 0 12 0 0 2 17 70.6

Rape 13 0 0 0 0 9 0 0 22 40.9
Horticultural crops 5 2 0 5 0 0 428 1 441 97.1

Soy 0 0 0 1 1 0 0 3 5 60.0
Total 11,947 10,255 26 31 18 84 618 7 22,986 OA %

UA % 81.7 75.5 73.1 64.5 66.7 10.7 69.3 42.9 OA % 78.3
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Figure 1. Crop type map for the year 2019 for the area of the city of Pisa (Tuscany, Italy).

4. Discussion

The capacity to map crop types using phenological metrics with a high spatial res-
olution has been demonstrated in this research study for a heterogeneous, small, and
fragmented agricultural system. Multi-temporal information has been demonstrated to
increase the crop type classification’s accuracy significantly [7]. In the context of crop
type mapping and the monitoring of agricultural practices, synthesizing information to
fewer phenological metrics facilitates image data processing by reducing the time series’
dimensionality [18].

Azar et al. [1] analyzed the performance of crop classification from multi-temporal
Landsat 8 OLI images over a study area in Northern Italy. Four supervised classification
algorithms applied to the spectral indices’ profiles were tested over different time step
datasets to assess the performance of in-season crop classification in the year 2013. The
result was a crop type map with seven classes with OA = 86.5% that was produced five
months ahead of the end of season, in the middle of July.

Many studies have confirmed crop classifications with a high accuracy (OA = 82%)
for eight crop types [4] and mapped cropland status (cropped or fallowed) with accuracies
over 75% [23]. The crop recognition method can lose accuracy, especially when the mapped
crops have high intra-class variability [10] or when insufficient knowledge of the field data
relating to the phenological cycles of the crops is available [24,25].

Despite the overall accuracies and Cohen’s kappa coefficient being similar for both the
NDVI and the LAI model, comparing the results for individual classes, the latter showed
slightly higher performance.

Veloso et al. [26] worked toward crop classification (maize, soybean, sunflower) using
the temporal profile of NDVI and radar backscatter (VH, VV, and VH/VV). Regarding
the classification of the crop, they concluded that NDVI shows low ability to distinguish
summer crops, except for sunflower, during the senescence period in August and September.
Besides, during periods of strong cover development, NDVI’s sensitivity to biomass is
more likely to become saturated. High misclassifications of horticultural crops may be
related to the different seeding times of the horticultural species, which could increase the
variability in terms of the range of the predictors’ values. With respect to soy and rapeseed,
it should be noted that the small number of reference crops used for model calibration and
validation could be the reason for such a low class accuracy.
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Mueller-Warran et al. [27] outlined that although converting multi-year land-use data
into a crop rotation history is relatively simple in theory, the presence of classification
errors can severely compromise the results. Given this fact, they proposed using a matrix
of logically forbidden or extremely unlikely year-to-year land use transitions to detect
classification errors. Likewise, the use of a priori knowledge of the local rotation practices
could be a research avenue for improving crop type identification by constraining the
classification models. Future research should consider the use of extended crop type
information (e.g., the LUCAS Soil DataBase) in order to increase the number of classification
model training points and therefore improve the overall accuracy.

5. Conclusions

The study demonstrated the EO big data analytics’ capacity to provide thematic prod-
ucts to support agricultural land management and fulfill the users’ requirements. The
phenological metrics estimated from high-resolution imagery sensed by the Copernicus
S2 satellite constellation, combined with a thematic reference dataset related to crop types,
together with the use of advanced computational analytic techniques (the RF algorithm),
allowed crop type mapping in heterogeneous, small, and fragmented agricultural sys-
tems. The calibrated NDVI and LAI supervised machine learning models showed similar
performance, with the LAI model yielding better results.

The supervised machine learning model, applied to a wider spatial extent, could
contribute to the measurement and assessment of sustainability foreseen by the European
Green Deal strategy, in terms of sustainable agricultural practices and environmental moni-
toring, and climate change mitigation and adaptation, in accordance with the stakeholders’
requirements.
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