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Abstract: Objectives: We have previously shown that inhibition of the mTORC1 nutrient-sensing com-
plex by rapamycin and mTORC1/mTORC2 inhibition by either Torin-2 or RapaLink-1 have differen-
tial effects on the global untargeted metabolomics in in vivo and in vitro cell culture models. Methods:
In this study, we leveraged the mummichog Python algorithm to analyze the high-dimension untar-
geted metabolomics data to model the biochemical pathways and metabolic networks and predict
their functional activity. We used pancreatic beta-cell culture (Beta TC6) and incubated the cells with
either Rapalink-1, Rapamycin or the vehicle control for 24 h. Cells were harvested and flush-frozen in
liquid nitrogen. Cells were extracted in ethanol, and the supernatant was collected. The untargeted
metabolomics was performed using the high-resolution mass spectrometry LC-MS/MS HILIC peak
detection of ESI-positive and -negative polarity modes. The data were collected using Bruker’s
maXis-II ESI-Q-q-TOF coupled to Dionex Ultimate-3000 U(H)PLC system using Sequant ZIC-HILIC
150 × 2.1 mm column (Bruker, Hamburg, Germany). We compared the high-resolution untargeted
precision metabolomics (LC-MS/MS) between groups using positive and negative polarity modes to
capture both hydrophilic and hydrophobic metabolites. We employed the XCMS plus bioinformatics
platform to link mTOR-regulated metabolites to the predicted biological pathways. Statistical signifi-
cance (p < 0.001) was assessed by ANOVA and Ranked order data by Whitney-Cox followed by ad
hoc unpaired t-test. Results: The cluster heatmap deconvolution and cloud plot analysis show the
differential pattern of metabolites between Rapamycin and Rapalink-treated pancreatic beta cell lines.
Mapping the downstream metabolites data onto predictive metabolic pathways and activity networks
revealed that the top pathways affected included the pentose phosphate pathway, dopamine and
ubiquinol degradation pathways in the ESI-positive polarity mode, and creatine synthesis/glycine
degradation and nicotine degradation pathways in the ESI negative polarity mode. Conclusions: The
high-resolution untargeted metabolomics can be leveraged as a proxy of the internal exposome yield-
ing high-dimensional data that provide mechanistic insights into metabolic and signaling pathways,
and the underlying biology. This approach will have beneficial applications of the internal exposome
in determining the optimal precision nutrition pathways for personalized medicine.

Keywords: mTORC1; mTORC2; exposome; metabolomics; precision nutrition; high-resolution
mass spectrometry

1. Background

Precision nutrition entails nutrition approaches tailored to the individual metabolic
profile, biological and physiological attributes, social influences, personal circumstances,

Biol. Life Sci. Forum 2023, 29, 16. https://doi.org/10.3390/IECN2023-15878 https://www.mdpi.com/journal/blsf

https://doi.org/10.3390/IECN2023-15878
https://doi.org/10.3390/IECN2023-15878
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blsf
https://www.mdpi.com
https://orcid.org/0000-0002-8629-6062
https://orcid.org/0000-0002-3936-4958
https://iecn2023.sciforum.net/
https://doi.org/10.3390/IECN2023-15878
https://www.mdpi.com/journal/blsf
https://www.mdpi.com/article/10.3390/IECN2023-15878?type=check_update&version=1


Biol. Life Sci. Forum 2023, 29, 16 2 of 5

and environmental exposures. Achieving such a goal requires system science approaches
and an understanding of the mechanistic signaling pathways and networks governing
nutrient metabolism. One of the central regulators of metabolic pathways is the mechanistic
Target of the Rapamycin (mTOR) protein, which functions as a critical node to regulate
carbohydrate, fat, and protein metabolism (synthesis and catabolism). mTOR kinase
assembles two functionally distinct and mutually exclusive complexes termed mTORC1
and mTORC2 [1,2]. The Raptor subunit binds the mTOR kinase to form mTORC1—which
is activated by Rheb at the lysosomal membrane—to regulate cell metabolism in response to
nutrients and growth factors. On the other hand, Rictor facilitates the mTORC2 localization
to the plasma membrane, together with mLST8, to scaffold the mSin1 subunit to control
glucose homeostasis and cell growth.

In this study, we chemically knocked down mTOR complexes with drugs, includ-
ing Rapamycin (which mainly inhibits mTORC1) and RapaLink-1 (which inhibits both
mTORC1 and mTORC2) to determine the differences between mTORC1 and mTORC2 in
their signaling cascade to gain mechanistic insights into the metabolic pathways that govern
nutrient metabolism. We applied high-dimension untargeted metabolomics as a proxy of
the internal exposome, the totality of exposures across the lifespan, to provide a readout
of the differential mechanistic pathways between mTORC1 and mTORC2. Untargeted
metabolomics systematically identifies small-molecule metabolites that are affected by the
exposome and manifested by biochemical responses and molecular alterations.

2. Objectives

We have previously shown that inhibition of the mTORC1 nutrient-sensing complex
by Rapamycin and mTORC1/mTORC2 inhibition via either Torin-2 or RapaLink-1 have
differential effects on the global untargeted metabolomics in vitro cell culture models [3].
In this proof-of-concept study, we leveraged the mummichog Python algorithm to analyze
the high-dimension untargeted metabolomics data for modeling the biochemical pathways
and metabolic networks, and predicting their functional activity using the XCMS Plus
bioinformatics platform [4,5].

3. Methods

We used pancreatic beta-cell culture (Beta TC6), which secretes insulin in response to
glucose, and incubated the cells with either (1) Rapalink-1, (2) Rapamycin or (3) control
for 24 h. Cells were harvested and flush-frozen in liquid nitrogen. Cells were extracted
in ethanol, and the supernatant was collected to be analyzed by a high-resolution mass-
spectrometry-based approach (ESI-LC-MS/MS). Both positive and negative ionization
modes in ESI-LC-MS/MS were used for untargeted screening and differential analysis
of metabolites under various treatment conditions. The data were collected employing
Bruker’s maXis-II ESI-Q-q-TOF coupled to the Dionex Ultimate-3000 U(H)PLC system
using Sequant ZIC-HILIC 150 × 2.1 mm column (Bruker, Hamburg, Germany). Using the
mummichog Python algorithm, we employed the XCMS plus bioinformatics platform to
link mTOR-regulated metabolites to the predicted biological pathways [4–6]. Metabolites
were identified by searching the BioCys database. A multi-group analysis by ANOVA
was performed to compare and determine the significant differences between RapaLink-1,
Rapamycin, and the control groups. If a statistical significance was determined by ANOVA,
we performed a protected pair-wise analysis of samples incubated with either Ramamycin
or RapaLink. Statistical significance (p < 0.001) was assessed via ranked order data by
Whitney-Cox followed by an ad hoc unpaired t-test.

4. Results

The principal component analysis (PCA) revealed that each group clustered into at
least two components with distinct metabolite signatures (Figures 1A and 2C,D). The
cluster heatmap deconvolution (Figure 1B) and cloud plot (Figure 2AB) analysis show the
differential pattern of metabolites between Rapamycin and RapaLink-treated pancreatic
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beta cell lines. In the cloud plots (Figure 2A,B), the features in green color showed increased
metabolites and features in red revealed decreased metabolites in the positive (55 features
p < 0.001) and negative modes of ionization (344 features p < 0.01). Pathway and network
analyses showed that mTOR-centered pathways and networks were differentially altered
with RapaLink versus Rapamycin. The metabolic pathways and activity network analysis
revealed that the top pathways affected included the pentose phosphate pathway, dopamine
and ubiquinol degradation pathways in the ESI-positive polarity mode of sample ionization
(Table 1), and creatine synthesis/glycine degradation and nicotine degradation pathways
in the ESI-negative polarity mode (Table 2).
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Figure 1. Principal component analysis (PCA) and heatmap visualization tools to compare the treat-
ment groups. Pancreatic beta cell lines (β-TC-6) were incubated with either RapaLink, Rapamycin,
or control for 24 h. Cells were harvested, flush-frozen, extracted and analyzed using an ESI-LC-
MS/MS spectrometry-based approach. The data were collected and analyzed using the XCMS-Plus
bioinformatics platform. (A) Principal component analysis (PCA) clusters of the treatment groups.
(B) Heatmap visualization of the comparison of the untargeted metabolomics data.

Table 1. Dysregulated metabolic pathways comparison between the effects of mTORC1 inhibitor
(Rapamycin) and mTORC1/mTORC2 inhibitor (RapaLink-1) in ESI-positive mode. Top pathways
are listed below.

Pathways Overlap_Size Pathway_Size p-Value
(raw) p-Value

Pentose phosphate pathway
(non-oxidative branch) 2 3 0.023334 0.0

Dopamine degradation 2 7 0.12893 0.00004

Ubiquinol-8-biosynthesis
(eukaryotic) 2 11 0.2682 0.00074

Arsenate detoxification I
(glutaredoxin) 1 4 0.32129 1
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Figure 2. Visualization of data by cloud plot, PCA cluster, and heatmap of the differences of the untar-
geted metabolomics between the effects of mTORC1 inhibitor (Rapamycin) and mTORC1/mTORC2
inhibitor (RapaLink-1) on pancreatic cell lines (β-TC-6) in the ESI-positive and negative modes. Cells
were incubated with either Rapalink, Rapamycin or control cells were harvested and analyzed by
ESI-LC-MS/MS, followed by bioinformatics analysis using the XCMS-Plus platform. (A) Cloud
plot of the comparison between RapaLink and Rapa incubation, showing (A) 55 features in the
ESI-positive mode, (B) 344 features with a p-value ≤ 0.001, and fold change ≥ 1.5. (C) Principal com-
ponent analysis (PCA) between RapaLink and Rapamycin in ESI-positive mode and (D) ESI-negative
mode, respectively. (E) Heatmap of all the features in the global untargeted metabolomics dataset
comparison between RapaLink-versus Rapamycin-treated pancreatic beta cells (β-TC-6).

Table 2. Dysregulated metabolic pathways comparison between the effects of mTORC1 inhibitor
(Rapamycin) and mTORC1/mTORC2 inhibitor (RapaLink-1) in ESI-negative mode. Top pathways
are listed below.

Pathways Overlap_Size Pathway_Size p-Value
(raw) p-Value

Nicotine degradation II 4 10 0.0587 0.00289

Phospholipases 2 2 0.02513 0.0053

Glycine degradation (creatine
biosynthesis) 3 7 0.08438 0.0058

Creatine biosynthesis 3 8 0.11986 0.00875

D-myo-inositol
(3,4,5,6)-tetrakisphosphate

biosynthesis
2 3 0.06755 0.01111

D-myo-inositol
(1,3,4)-trisphosphate biosynthesis 2 3 0.06755 0.0111

Glutathione biosynthesis 2 3 0.06755 0.0111

1D-myo-inositol hexakisphosphate
biosynthesis II (mammalian) 2 4 0.12123 0.02083

L-dopachrome biosynthesis 2 4 0.12123 0.02083

tRNA charging pathway 3 12 0.29586 0.03833
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5. Conclusions

High-resolution untargeted metabolomics can be leveraged as a proxy of the internal
exposome to determine altered metabolites, yielding high-dimensional data that provide
plausible mechanistic insights into metabolic and signaling pathways and the underlying
biology. This approach will have beneficial applications of the internal exposome in
determining the optimal precision nutrition pathways for personalized medicine.
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