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Abstract: Recently, researchers have developed new heat transfer fluids that have high thermal
conductivity, heat capacity, and low viscosity for food applications. Because the thermal conductivity
of nanoparticles is higher than base fluids (water, ethylene glycol, and so on), nanofluids (NFs) are
characterized by high performance in heat transfer operations. In this study, the aim was to determine
the effect of NFs used in heat transfer equipment on the heat transfer coefficient using Analysis of
Covariance (ANCOVA), which is an optimization test. For heat transfer modeling of tomato juice, the
effect of alumina content in NFs on Reynolds Number (Re) and overall heat transfer coefficient was
evaluated. For heat transfer modeling of milk, the effect of carbon nanotube content in NFs on Peclet
Number (Pe) and convective heat transfer coefficient was assessed. As a result, it was determined
that Re and alumina content to be crucial in the heat transfer of tomato juice within their p-values.
However, in milk production heat transfer, carbon nanotubes had no crucial importance.
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1. Introduction

Due to high consumption worldwide, fruit juice production has gained importance as
one of the agriculture-based sectors. Evaporation is a kind of heat treatment used to obtain
safe and stable juice. Besides that, it can be possible to adjust the desired concentration level
of a juice via an evaporator [1]. Except for evaporation, there are many application areas of
heat transfer in the juice sector such as refrigeration, pasteurization, and sterilization [2].

Nanofluid is a colloidal suspension composed of metallic or non-metallic nanoparticles
which disperse uniformly in a base liquid. These particles can be effective at larger sizes to
increase the thermal conductivity of the fluid. The reason for decreasing particle size to the
nanoscale is to prevent sedimentation and provide a large surface area per volume. Using
nanofluid in heat transfer operations can provide many advantages to an industrial food
producer. Thanks to high thermal conductivity and heat transfer coefficient, the process
becomes feasible in terms of economy and time. It can be used in smaller process equipment
as a low amount of fluid can be used. Nanofluids have a few drawbacks to solve. These
need more pump power because of their low viscosity making them more stable [2].

In the current literature, there are several optimization studies about NFs. Chang
et al. (2006) carried out a study about the optimization of TiO2 NF synthesis parameters.
They used the Robustness Design method for optimization [3]. Salameh et al. (2021)
combined fuzzy modeling and particle swarm optimization to determine the optimum
heat transfer operating parameters for Al2O3/SiO2 NF. In summary, they achieved specific
values of density, viscosity, specific heat, and thermal conductivity [4]. Mohammadi et al.
(2019) worked with water–Fe3O4 NF to obtain the maximum heat transfer rate. They used
Taguchi as an optimization method. They tested the effect of different mass flowrates and
nanoparticle concentration to reach the optimum values [5].
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Nanofluid utilization in beverage production is a novel topic in the literature. Jafari
et al. (2017) synthesized Al2O3 containing NF to reduce the process time during pasteur-
ization in tomato juice production [6]. Saremnejad Namini et al. (2015) used the same
NF type for the production of watermelon juice. At this time, researchers investigated
color and vitamin changes during the process when NF was used in the heat transfer [7].
Taghizadeh-Tabari et al. (2016) assessed TiO2-containing NF to increase the heat transfer
rate during pasteurization in milk production [8]. This study aimed to display the effect of
NFs in liquid food production via computational optimization.

2. Material and Methods

Optimization was done on SigmaPlot 14.0 software for one-way Analysis of Covari-
ance (ANCOVA). The importance of the independent variables for heat transfer determined
in relation to the p-values means that if a variable had a below-selected p-value, it was not
the effect of this variable on heat transfer. Data for the analysis were obtained from the
literature, which are presented in Tables 1 and 2. Normality and Equal Variance tests were
made using Shapiro–Wilk and Levene, respectively.

Table 1. Data for heat transfer in tomato juice production [9].

Alumina (wt./v. %) Reynolds Number (Re) Overall Heat Transfer
Coefficient (W/m2/K)

0 200 1700
0 250 2150
2 200 1800
2 250 2250
4 200 2000
4 250 2500

Table 2. Data for heat transfer in milk production [10].

Carbon Nanotube (wt./wt. %) Peclet Number (Pe) Convective Heat Transfer
Coefficient (W/m2/K)

0 574 700
0 1000 1040

0.35 574 800
0.35 1000 1220
0.55 574 880
0.55 1000 1340

For tomato juice production, independent variables (alumina amount in the NF and
Reynolds Number) were connected with the dependent variable (Overall Heat Transfer
Coefficient). The alumina content of the NF was selected as factor for this analysis.

For milk production, independent variables (Carbon Nanotube amount in the NF and
Peclet Number) were connected with the dependent variable (Convective Heat Transfer
Coefficient). The carbon nanotube content of the NF was selected as factor for this analysis.

As a result of the analysis, Degree of Freedom, Sum of Square, mean square, F- and
p-values were determined. Adjusted means graphs were drawn. Regression equations
were obtained.

3. Results and Discussion
3.1. Tomato Juice Production

In Table 3, the ANCOVA results for heat transfer in tomato juice production are shown.
The Reynolds number was assumed as the covariate. As can be shown in the results, all
of the parameters had a crucial effect on heat transfer. Because the p-value of both the
alumina amount and Reynolds number were below 0.05. However, it was concluded that
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Re had more importance than alumina amount. Same conclusion was obtained the study by
Vahidinia and Miri in 2015. They determined that an increasing Re had a positive effect on
heat transfer when it was used alumina contained NF [11]. Since its p-value was near zero.
For ANCOVA analysis of tomato juice, the R2 value was found as 0.998. In Figure 1 the
possible overall heat transfer coefficient ranges when the appropriate amount of alumina
in NF was used is shown. Table 4 displays the equations used to compute the overall heat
transfer coefficient for NF contained in alumina in tomato juice heat transfer.

Table 3. ANCOVA calculations for heat transfer in tomato juice production.

Variance
Source

Degree of
Freedom

Sum of
Square

Mean
Square
Value

F-Value p-Value

Alumina (wt./v. %) 2 110,833.333 55,416.667 133.000 0.007
Re 1 326,666.667 326,666.667 784.000 0.001

Residual 2 833.333 416.667 -- --
Total 5 438,333.333 87,666.667 -- --
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Figure 1.Adjusted means with 95% confidence intervals for heat transfer in tomato juice produc-
tion. 
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Table 4. Resulting ANCOVA equations for heat transfer in tomato juice production.

Alumina
(wt./v. %) Equation

0 Overall Heat Transfer Coefficient = −175.000 + (9.333 × Re)
2 Overall Heat Transfer Coefficient = −75.000 + (9.333 × Re)
4 Overall Heat Transfer Coefficient = 150.000 + (9.333 × Re)

3.2. Milk Production

In Table 5, the ANCOVA results for heat transfer in milk production are displayed.
At this time, the Peclet Number was chosen as the covariate. The results show that only
the Peclet Number had a significant effect on heat transfer. Because the p-value of the
Carbon Nanotube amount was higher than 0.05,it was not a surprising result. Sarafraz and
Hormozi in 2016 concluded that carbon nanotubes content in NFs has a negligible effect on
the friction factor, especially in the case of high Re (over 8000). It is known that the friction
factor affects heat transfer P [11]. Furthermore, researchers determined that the optimum
carbon nanotube amount is 1% [12]. The reference study values in this work were lower
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than this value (Table 2). In the ANCOVA analysis of milk, the R2 value was 0.988. Figure 2
shows the ranges of the convective heat transfer coefficient using the appropriate amount
of Carbon Nanotube in the NF. Table 6 shows the equations used to calculate the convective
heat transfer coefficient for Carbon Nanotube containing NF in milk heat transfer.

Table 5. ANCOVA calculations for heat transfer in milk production.

Variance
Source

Degree of
Freedom

Sum of
Square

Mean
Square
Value

F-Value p-Value

Carbon Nanotube
(wt./wt. %) 2 58,133.333 29,066.667 15.571 0.060

Pe 1 248,066.667 248,066.667 132.893 0.007
Residual 2 3733.333 1866.667 -- --

Total 5 309,933.333 61,986.667 -- --
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Figure 2.Adjusted means with 95% confidence intervals for heat transfer in milk production. 
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Table 6. Resulting ANCOVA equations for heat transfer in milk production.

Carbon Nanotube
(wt./wt. %) Equation

0 Convective heat transfer coefficient = 118.717 + (0.955 × Pe)
0.35 Convective heat transfer coefficient = 258.717 + (0.955 × Pe)
0.55 Convective heat transfer coefficient = 358.717 + (0.955 × Pe)

4. Conclusions

The aim of this work was to display the effect of parameters, one of which was the
amount of nanomaterial in NF, on heat transfer in the production of milk and tomato
juice. The experimental data were obtained from the scientific literature and utilized in the
analysis of covariance. After the analysis, the most effective parameter in heat transfer in
liquid food production was determined, as well as the equations defining the relationship
between the covariance, the factor, and the dependent variable. It was concluded that the
amount of alumina was an important parameter used in tomato juice production in terms
of its p-value. It may be appropriate to work with high percentage Alumina to achieve a
high heat transfer rate. For 4% w/v alumina NF content, almost 2200–2300 overall heat
transfer coefficient in the heat exchanger can be achieved. It was determined that the Peclet
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Number is more important for heat transfer than the content of carbon nanotube in NF in
milk production. When working with high heat transfer, it is crucial to work with high
carbon nanotube content NF for milk production. This is one of the disadvantages of using
NF using in heat transfer in the production of food juice sin terms of the production costs
of nanomaterials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/Foods2023-14963/s1. Presentation Video: Effect of Nanofluids
on Heat Transfer in Milk and Tomato Juice Production: An Optimization Study with ANCOVA.
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