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Abstract: Neural interfaces, such as microarrays and probes, consist of many electrodes for stimulat-
ing and recording purposes simultaneously. The multi-functional neural interface can suffer from
many types of artefacts and noise, such as long-term use, environment, surrounding instruments and
living subjects. This paper proposes a filtering approach by enhancing the band-pass and band-stop
selection of the Kaiser Window finite-impulse response (FIR) filter based on the occurrence histogram
of spectrum bands of neuronal signals in all channels. The implementation of the approach shows a
clear enhancement of electrocorticogram (ECoG) signals by keeping the most important features and
components, such as the interictal spikes.

Keywords: neural interface; adaptive filter; band selection; neurological events

1. Introduction

Neural interfaces are bioelectronic devices that aim to communicate and control the
nervous tissue by stimulating or inhibiting a group of neurons according to different
modalities, in addition to recording electrical signals in a specific area [1]. The types of
neural interfaces differ in design between microelectrode arrays and probes that contain
parts for electrical recording and sometimes for stimulation purposes [2]. Despite the
technological development in the field of neural interface fabrication in terms of materials
engineering and biocompatibility with neural tissue, the barrier of biological and electrical
stability, which plays an important role in the functional performance of the neural interface,
remains a problem that is not completely or ideally solved. Some of the factors that
influence the functionality of neural interfaces come from interactions between brain tissue
and the implanted device, such as neuronal degeneration and glial scarring. Moreover, the
response of the nervous tissue against the foreign body leads to a corrosive environment
that accelerates the structural deterioration of the electrodes [3].

Electrocorticogram (ECoG) signals recorded directly from the cerebral cortex have
a much higher signal-to-noise ratio than electroencephalogram (EEG). Despite its close
contact with the cerebral cortex, ECoG signals are still prone to noise. This noise can be
categorized by origin into two different types: (1) noise that is common in all channels
(for example, noise generated by a signal reference and surrounding instruments) and (2)
noise that is unique to a particular channel (for example, electrode and surrounding tissue
response). Therefore, some or all channels are prone to effects by common or different
types of noise. Therefore, in the case of neural interfaces that contain a large number of
recording sites and possibly other functions that generate noise, it is not reliable to use a
filter with the same parameters on all channels [4].

Filters or noise-removal approaches can be categorized into [5] (1) well-known digital
filters, such as bandpass filters, bandstop filters, low-bandwidth and high-bandwidth
filters, where parameters are empirically determined; (2) adaptive filters that optimize
parameters using a raw signal, a reference signal and an optimization algorithm with
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feedback process [6]; (3) hybrid methods that depend on the integration of several methods
to achieve optimal noise cancellation [5].

In this paper, we propose an approach to determine the noisiest ranges of frequencies
in all channels of the neural interface based on the probability of their occurrence in all
channels. The proposed approach starts with calculating the short-time Fourier transform
(STFT) of 3 s of each channel, then estimating the most periodic frequencies that have more
rates of occurrence compared with active and dominant bands and, finally, filtering those
frequencies out using the Kaiser-Window-based band-pass filter. The proposed approach
is tested using ECoG recording of anesthetized rats with penicillin-induced epilepsy.

2. Materials and Methods
2.1. Animal Preparation, Electrode Implantation and Data Analysis

Recording experiments were carried out on four adult male rats weighing 240–250 g
in the Research Centre for Natural Sciences, Eötvös Lóránd Research Network. All ex-
periments were performed according to the EC Council Directive of 22 September 2010
(2010/63/EU) and all procedures were reviewed and approved by the Animal Care Com-
mittee of the Research Centre for Natural Sciences and by the National Food Chain Safety
Office of Hungary (license number: PE/EA/775-7/2020). Rats were kept in a stable envi-
ronment with a controlled temperature (22 ± 1 ◦C). The ECoG signals are recorded using
flexible polymer-based multimodal microarray of 32 recording sites (Figure 1B) [7]. The
multimodal microarray was implanted on the left somatosensory cortex at the same site
where the injection was performed (Figure 1A). The common reference electrode was fixed
on the skull. The rats were injected with penicillin (1 µL, injected over 10 min, 500 IU,
inserted into a 1.5 mm depth 34G needle with a rate of 10 µm/s). After penicillin ad-
ministration, the needle is pulled out. The ECoG signals are recorded using 32 channels
(Intan, 4/SP, AD Instruments, Sydney, Australia) with 20 kHz sampling, 16-bit resolution,
0.1–7500 Hz. ECoG signals are filtered and pre-processed offline using Matlab (MathWorks,
Natick, MA, USA). Notch filter (50 Hz) is used to remove electrical supply artefacts.
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ing on the skull scheme of the rat; (B) flexible polymer-based multimodal microarray of 32 recording
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2.2. Time-Frequency Analysis

The STFT of a signal is implemented by calculating the discrete Fourier transform of
the M-length of data using a sliding window over the signal then repeating these steps
using an interval of the R signal element. The result of implementing STFT is a matrix
where the row order (m) expresses the frequencies of the spectrum power, the column order
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expresses the time window (k) of the signal and the STFT(m,k) is density of the spectrum
power at the time frequency in dB [8]:

STFT(m, k) = 20× log10

(
1
N

∣∣∣∣∑N−1
n=0 s

(
n + mN′

)
w(n)e−

j2πnk
N

∣∣∣∣2
)

(1)

where:

k = 0, 1, . . . , N − 1
S(m,k): indicates the m-index time-frequency spectrogram.
N: window segment length.
N′: the shifting step of the time window.
w(n) = window method of an N-point sequence.

2.3. Proposed Filtering Approach

The classical principle of the adaptive filter consists of using a primary signal with
a reference signal through feedback error to modify the transfer function or parameters
of the filter. In this work, the principle of updating the filter parameters depends on re-
estimating the noisy frequencies by detecting the non-repeating frequencies in all channels.
The proposed approach consists of the following steps as shown in (Figure 2):

(1) Implementing the STFT on 3 s length of all active channels using (Equation (1)).
(2) Calculating the probability of occurrence of all major frequencies. The probability of

occurrence is calculated based on the histogram of clustered frequencies with a step
of 5 Hz (histogram expresses the occurrence count of 0–5 Hz, 6–10 Hz, etc.).

(3) Extracting the frequencies with the sudden occurrence that are not considered event-
related frequencies should be previously determined by the expert. This extracting
step is implemented with a threshold of 10 dB (high power density in dB according to
the specialist’s decision).

(4) Implementing Kaiser-Window-based filter with a β of 1.509 on extracted ranges of
noisy frequencies [9].

(5) Repeat the steps (1 to 4) with fixed time intervals.
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Figure 2. A brief scheme of the proposed filtering approach.

3. Results

The proposed approach is implemented using Matlab (MathWorks, Natick, MA, USA)
where the ECoG signals are filtered with a 50 Hz notch filter to remove power-supply
artefacts. The channels in the ECoG microarray are ordered based on the distance from
penicillin injection. In this work, the filtering process cares about the interictal spikes that
have a main power spectrum of 0.5–90 Hz, as shown in Figure 3A. By running instruments
during in vivo experiments, many periodic frequencies of noise (for example, 98–102 Hz,
198–202 Hz, etc.) appear in the power spectrum of ECoG with different densities in all
channels, as shown in Figure 3B.
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Figure 3. Histogram of estimated dominant frequencies from STFT: (A) histogram of frequencies
from ECoG channels without instrument noise; (B) histogram of frequencies from ECoG channels
with instrument noise.

After keeping the frequencies between 0.5 and 90 Hz as an important spectrum for
epileptiform discharges, the ranges of frequency in the histogram are estimated program-
matically (Figure 3B) and considered as noise, then filtered out using a finite-impulse-
response (FIR) filter with a Kaiser Window. The designed filter of the proposed approach is
responsible for filtering out the estimated frequencies from the probability of occurrence
(Figure 3B). The frequency response of the FIR filter is shown in Figure 4A, in addition
to the frequency response of the 2–300 Hz bandpass Butterworth filter (Figure 4B) for
comparison purposes.
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Figure 4. Frequency response of filter: (A) frequency response of FIR filter with Kaiser Window;
(B) frequency response of Butterworth filter as 2–300 Hz bandpass filter.

After designing the FIR filter with a Kaiser Window and considering the noisy frequen-
cies, the difference between raw and filtered ECoG signals using the proposed approach
is shown in Figure 5, where it is clear that some channels have different noises, such as
‘E20’ and ‘E7’, compared with the other. The proposed approach is able to give the same
efficiency in filtering out based on a pre-known range of constructive and influencing
frequencies that should be kept in all channels. The proposed approach has more efficient
performance compared with Butterworth, where the signals of ‘E1’ and ‘E16’ channels are
converted into smoother ECoG signals (Figure 5).
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4. Discussion

The neural interface that contains many recording sites may suffer from many factors
that may decrease its functionality during long-term use [10]. Different approaches for
adaptive and hybrid filtering were proposed to handle the periodic and transient types of
noise and artefacts [5,11]. This paper focuses more on the different types of noise that may
affect specific channels of neural microarray or probe; at the same time, it is not reliable to
filter out different frequencies of noise from specific channels and keep the other because it
leads to wrong and inefficient information for analysis purposes. The proposed method
depends on calculating the occurrence of frequencies based on STFT and considering the
sudden and periodic frequencies of STFT (that are not related to the neurological event) as
contamination. The proposed approach can be considered a self-adaptive filter because it is
able to consider unwanted frequencies as noise and fragment the precise ranges of those
frequencies based on the thresholding of the histogram (Figure 3). The implementation of
the approach shows a clear enhancement in ECoG signals (Figure 5) by keeping the most
important features and components, such as the interictal spikes, and removing precisely
the periodic noise that comes from the surrounding instruments and the electrical and
mechanical properties of electrodes. Some adaptive filters are developed to enhance EEG
signals during the movement of patients and filter transient noise out using accelerometer-
based referential signals [12]. Our work can overcome the issue of various and transient
noises [12] by tracking the sudden noise spectrum with low probability among channels, in
addition to designing one Kaiser-Window-based FIR that involves all frequencies of noise
without the need for adaptive filters in cascade [13].

This paper highlights the different noise and artefacts in specific channels of a neural
interface and shows that by considering the occurrence of noise spectrum among all
channels, we can design and implement an adaptive filter that can process all signals of
channels with unified parameters without losing any important information.

5. Conclusions

In this paper, we propose an approach to determine the ranges of frequencies in
all channels of the neural interface that cause a distortion in ECoG signals based on the
probability of their occurrence in all channels. The accurate selection of frequencies in
any filter, taking into account the common information among all channels, increases the
reliability of analyzed signals and enhances the extracted features for evaluation stages.
On the other hand, the occurrence probability of the most influencing power bands in all
channels helps in keeping the most desirable information in terms of neurological events.
The proposed method can be developed using a machine learning approach for a more
precise selection of frequencies.

Author Contributions: Conceptualization, E.I.; methodology and investigation, E.I., Z.F.; formal
analysis, E.I.; software, E.I.; writing—original draft preparation, E.I. and Z.F.; writing—review
and editing, Z.F.; supervision, Z.F. All authors have read and agreed to the published version of
the manuscript.
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