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Abstract: Objectives: Nowadays, the global population is moving towards herbal drugs, which contain
bioactive compounds, to cure diseases. Rauwolfia serpentina is a medicinally important herb that is
mainly effective in the treatment of hypertension and psychotic disorders. The present study was
designed to investigate the effects of Rauwolfia serpentina on acute stress. The herb extract was orally
administered before immobilization for 2 h only, to monitor any change in behavioral activities. We also
evaluated the role of Rauwolfia serpentina in oxidative stress, including its effect on antioxidant enzymes’
activities, such as catalase and superoxide dismutase, and also on plasma glucose, corticosterone and
leptin levels. Methods: Animals were divided into four groups, which were (i) saline unstressed,
(ii) Rauwolfia serpentina unstressed, (iii) saline stressed and (iv) Rauwolfia serpentina stressed, which
were injected accordingly with saline (1 mL/kg) or Rauwolfia serpentina (30 mg/kg). Animals of
the stressed group received immobilization for 2 h. Behavioral analysis was performed after the
termination of the 2 h immobilization period. Animals were then decapitated and plasma samples
were collected for CAT, SOD, corticosterone, leptin and glucose estimation. Results: Results showed
that Rauwolfia serpentina is an effective anxiolytic agent as it attenuates stress-induced behavioral
deficits and improves locomotor activity. On the other hand, it provides positive outcomes regarding
the antioxidant enzymes levels of stressed animals. Conclusion: Rauwolfia Serpentina was found to
prevent the stress-induced increase in corticosterone, and an increase in the levels of endogenous
leptin attenuates the stress-induced activity of the HPA axis. It is also concluded that 30 mg/kg of
Rauwolfia serpentina is not sufficient to produce hypoglycemic effects. However, more studies are
recommended to explain the particular action by which Rauwolfia serpentina produces its effects.

Keywords: acute stress; Rauwolfia serpentina; behavioral activities; oxidative enzymes; glucose; leptin

1. Introduction

Stress has exhibited an imperative role in the etiology, exacerbation and cure of
affective psychopathology, suggesting close interplay between the two [1]. Acute stress
is a result of a traumatic event that causes a person to feel fear and helplessness [2]. A
variety of diverse environmental and stressful stimuli have also been reported to alter
behavioral patterns, neurotransmitter levels and oxidative damage in discrete areas of the
brain [3,4]. However, the effects of stress on the brain have long been associated with the
onset and exacerbation of several neuropsychiatric disorders, such as depression, anxiety,
drug addiction and epilepsy [5]. Parallel studies on experimental animals showed that
an uncontrollable stressor produced neurochemical changes and behavioral deficits [6,7].
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Several investigators have suggested a link between oxidative stress and certain anxiety
disorders, such as obsessive compulsive disorder and panic disorder, indicating that the
oxidative metabolism can affect the regulation of anxiety.

Recognizing elements that contribute to neurodegenerative progression in the brain is
one of the chief goals of contemporary medicine. There are several hypotheses regarding
the mechanisms that lead to the damage and death of brain cells in neurodegenerative
diseases [8], such as excitotoxic effects by excitatory amino acids [9], impairment in cellular
energy metabolism [10,11] and oxidative stress (OS),which is caused by free radicals or
other reactive molecules [9,12]. The results of many in vitro and in vivo preclinical and
clinical studies have consistently demonstrated that OS is one of the crucial players in the
degeneration that occurs in the nervous system. The imbalance between OS and antioxidant
defense systems seems to be a universal condition in neurodegeneration [13]. Clinical and
preclinical studies indicate that neurodegenerative diseases are characterized by higher
levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain
and peripheral tissues [14]. There is now increasing evidence that reactive oxygen species
(ROS) generation is involved in the regulation of neurotransmission, particularly glutamate
release, which most likely plays an important role in the “fight or flight response” [15].
Oxidative stress creates a state of cellular imbalance, in which reactive oxygen species
(ROS) production surpasses the antioxidant response mechanisms that help to neutralize
ROS-mediated oxidative damage to DNA, RNA and lipids, leading to innumerable patho-
physiological consequences [16,17]. In order to counterbalance the free-radical-induced
damage of biological molecules, antioxidant mechanisms and enzymes are activated. Super-
oxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were identified
as antioxidant enzymes that act as the body’s first line of defense against ROS by catalyzing
their conversion to less reactive or inert species [18].Consequently, research has revealed
that individuals with anxiety or depression show an extensive range of abnormalities in
controlling fear-related responses, suggesting that deficits in emotion regulation may be
linked to neurobiological differences in response to stress [1].

Nowadays, the global population is moving towards herbal drugs, which contain
bioactive compounds, to cure diseases [19]. Rauwolfia serpentina, belonging to the family
Apocynaceae, is an important medicinal plant in the pharmaceutical world due to its
immense therapeutic properties [20,21]. It is effective in the treatment of hypertension and
psychotic disorders such asschizophrenia, anxiety, insomnia, insanity and so forth [22].
Various indole alkaloids and related constituents have been isolated from the roots of this
plant, which have significant biological activities [23]. An in vitro study described the
antimicrobial and antioxidant activities of the leaf extract of this plant [24]. The principle
alkaloid of Rauwolfia serpentina is reserpine [24]. It is present in the root, stem and leaves of
the plant. It contains less than 0.15% of reserpine and rescinnamine group alkaloids [25].

Previously, numerous studies have been reported from our laboratory that establish the
capability of phytochemicals present in rice bran oil [26], olive oil [27] and the aqueous fruit
extract of sea buckthorn [28] to attenuate/or reverse anxiety in rats. Similarly, our laboratory
also observed that the oral administration of red rice bran oil averted haloperidol-induced
anxiety syndrome in rats [29]. Conversely, oral administration of Nigella sativa (NS) and
Olea europaea (OE) oil did not show anxiolytic effects in rats [30]. In continuation of our
research on the plant, the present study was designed to investigate the neuroprotective
effects of Rauwolfia serpentina following acute exposure to immobilization stress in rats.
The herb extract was orally administered at a non-sedative dose of 30 mg/kg [31] before
immobilization for 2 h to monitor any change in behavioral activities. The neuroprotective
efficacy of the plant extract was assessed in terms of its potency to attenuate oxidative-
stress-induced alterations of antioxidant enzymes’ activities, such as CAT and SOD, and
locomotor deficits. In order to obtain an insight into the role of Rauwolfia serpentina in
the HPA axis, we also monitored plasma leptin, corticosterone and glucose levels. The
study establishes that Rauwolfia serpentina plant extract may have potential therapeutic
significance for the management of stress and related disorders.
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2. Materials and Methods
2.1. Animals

Locally bred albino Wistar rats, weighing 180–200 g and purchased from PCSIR,
were housed individually on a 12 h light/dark cycle in a temperature-controlled room
(24 ± 2 ◦C), with free access to tap water and cubes of standard rodent diet, for at least
7 days before the start of the experiment (establishing familiarity with the environment).
All procedures conducted were approved by the Local Institutional Animal Care and Use
Committee at the University of the Health Sciences and conducted in full compliance with
the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

2.2. Prepararation of Plant Extract

Thirty grams of ground powder of the roots of Rauwolfia serpentina was extracted with
methanol (1 L; 95%) overnight and filtered through Whatman No.1 filter paper twice. The
filtrate was then concentrated at 40 ◦C till dryness in a rotary vacuum evaporator (Eyela-
NE) to obtain a brown residue that was referred to as methanolic root extract (MREt) [22].
This procedure yielded 3–4% (w/w) of the dry root. The MREt was stored in an airtight
container in a refrigerator, below 10 ◦C, until use.

2.3. Immobilization Procedure

The animals of the stress groups were subjected to a single exposure of immobilization
stress for 2 h. Immobilization was done in a separate room to prevent unstressed animals
from being placed under stressful conditions due to disturbance. The animals were im-
mobilized by an approved procedure [32,33]. Wire grids fitted with a Perspex plate, as
described earlier [33], were used. Immobilization was affected by pressing the legs of the
rats through the gaps in the metal grid and taping them together with zincoxide plaster.
Hind limbs were also taped and the head of the animal rested on the Perspex plate. After
2 h of immobilization stress, animals were released by applying acetone to the tape and
returned to their home cage.

2.4. Behavioral Analysis
2.4.1. Activity in a Novel Environment (Open Field)

The locomotor activity of control and test rats was monitored in an open field appa-
ratus. The open field was a square area of 76 × 76 cm with opaque walls of 42 cm height.
The floor was divided by lines into 25 equal squares. The test was performed in a quiet
room under white light to avoid any noise effect, as described earlier [34,35]. Animals were
placed in the center square of the open field (one at a time). Activity in the open field was
determined by counting the number of squares crossed for 5 min [36]. Exploratory activity
of control rats and test rats was monitored in a balance design to avoid order effects.

2.4.2. Light–Dark Transition Test

The light–dark transition test, a behavioral test used to monitor the anxiolytic effects
of drugs in preclinical investigations, is based on the innate aversion of rodents to brightly
illuminated areas. The test procedure was essentially the same as described earlier [37].
The apparatus used in the present investigation was a two-compartment light–dark box.
Both the light compartments (composed of transparent plastic) measured 26 × 26 × 26 cm
and access between the two compartments was provided by a 12 × 12 cm passageway. The
experiment was performed in a quiet, air-conditioned room, and the apparatus was placed
under white light. An animal was introduced into the apparatus via the light compartment.
Cumulative time spent in the light compartment and the numbers of entries into the light
compartment were monitored for a period of 5 min. An entry was defined as all four paws
being positioned within the light compartment. The degree of anxiety was assessed by a
decrease in time passed in the light compartment and also by a decrease in the number of
entries made to the light compartment.
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2.5. Blood Sample Collection

Blood was collected from rats in heparinized centrifuge tubes. Centrifugation was
done for 10 min. Plasma was collected and stored at −70 Celsius till biochemical estimation
of the plasma glucose concentration in mg/dL, corticosterone concentration in µg%, leptin
concentration in ng/mL and catalase and superoxide dismutase.

2.6. Biochemical Estimation of Glucose, Catalase and Superoxide Dismutase in Plasma
2.6.1. Determination of Catalase (EC1.11.1.6)

CAT activity was estimated by the method of Patterson [38]. The decomposition of
H2O2 was measured at 240 nm, taking De at 240 nm as 43.6 mMcm–1. Reaction mixture
(3.0 mL) consisted of 10.5 mM H2O2 in 0.05 M potassium phosphate buffer (pH 7.0) and the
reaction was initiated after the addition of 0.1 mL enzyme extract at 25 ◦C. The decrease in
absorbance at 240 nm was used to calculate the activity. One unit of CAT activity is defined
as the amount of enzyme that catalyzes the conversion of 1 mM of H2O2 min–1 at 25 ◦C [39].

2.6.2. Determination of Superoxide Dismutase (EC.1.15.1.1)

The assay for SOD activity was performed by the method of [40]. The assay mixture
consisted of 27.0 mL of 0.05 M potassium phosphate buffer (pH 7.8), 1.5 mL of L-methionine
(300 mg per 2.7 mL), 1.0 mL of nitroblue tetrazolium salt (14.4 mg per 10 mL) and 0.75 mL
of Triton X-100. Aliquots (1.0 mL) of this mixture were delivered into small glass tubes,
followed by the addition of 20 mL enzyme extract and 10 mL of riboflavin (4.4 mg per
100 mL). The cocktail was mixed and then illuminated for 15 min in an aluminum foil-lined
box, containing 25 W fluorescent tubes. In a control tube, the sample was replaced by
20 mL of buffer and the absorbance was measured at 560 nm. The reaction was stopped by
switching off the light and placing the tubes in the dark. The increase in absorbance due
to the formation of formazan was measured at 560 nm. Under the described conditions,
the increase in absorbance in the control was taken as 100% and the enzyme activity in the
samples was calculated by determining the percentage inhibition per minute. One unit
of SOD is the amount of enzyme that causes a 50% inhibition of the rate for reduction of
nitroblue tetrazolium salt under the conditions of the assay [39].

2.6.3. Estimation of Glucose in Plasma by GOD-PAP Method

The concentration of glucose in plasma was measured by using the glucose oxidase
method (GOD-PAP, Solo per USO diagnostico in vitro).

2.6.4. Estimation of Leptin and Corticosterone in Plasma by ELISAKit

Animals were decapitated, followed by the collection of blood in heparinized cen-
trifuge tubes. Centrifugation proceeded for 20 min at 2000× g and 4 ◦C to obtain plasma.
The samples were stored at −70 degrees Celsius until the assay of plasma leptin and
corticosterone using an ELISA kit (Cat # EZRL-83K).

3. Experimental Protocol

Twenty-four animals randomly divided into two equal groups of 12 each were as-
signed to the unstressed and stressed groups. These animals were further divided into
four groups of 6 rats each that were designated as (i) saline unstressed, (ii)Rauwolfia ser-
pentina unstressed, (iii)saline stressed and(iv)Rauwolfia serpentina stressed, which were
orally administered with saline (1 mL/kg) or Rauwolfia serpentina (30 mg/kg). Animals
of the stressed group were immobilized for 2 h, commencing between 9:00 and 11:00 h.
Animals of the unstressed group were left in their home cage during this time. Behavioral
activities were monitored in open field activity and light–dark transition box after the
termination of the 2 h immobilization period. Plasma samples were collected for CAT,
SOD, corticosterone, glucose and leptin estimation. The experiment was performed in a
balanced design in such a way that control and test rats were measured alternately to avoid
an order effect.
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Statistical Analysis

Values are presented as mean ± SD. Data were analyzed by two-way ANOVA. Post hoc
analysis was done by Newman–Keuls test. Values of p < 0.01 were considered significant.

4. Results

Figure 1A shows changes in motor activity in a novel environment in animals orally
administered with Rauwolfia serpentina for 2 h before exposing the animal to acute im-
mobilization stress for 2 h. Analysis of the data on latency to move (Figure 1A) showed
significant effects of stress (F = 7.737 p < 0.01 df1,20) and Rauwolfia serpentina (F = 7.737
p < 0.01 df1,20), as well as the interaction between two factors (F = 8.796 p < 0.01 df2,20).

Figure 1. Changes in motor activity in a novel environment in animals orally administered with
Rauwolfia serpentina exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24).
Significant differences evaluated by Newman–Keuls test. ** p < 0.01 and * p < 0.05 from similarly
treated unstressed control animals. ++ p < 0.01 from respective (unstressed or stressed) animals.

Post hoc analysis by Newman–Keuls revealed that the administration of Rauwolfia
serpentina at a dose of (30 mg/kg) to stressed rats resulted in an increase in latency to move
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as compared to unstressed rats. On the other hand, saline + stressed rats did not show
any significant difference in latency to move as compared to unstressed rats. Rauwolfia
serpentina +stressed rats showed an increase in latency to move in comparison with saline +
stressed rats.

Figure 1B shows changes in motor activity in a novel environment in animals orally
administered with Rauwolfia serpentina for 2 h before exposing the animal to acute immobi-
lization stress for 2 h. Analysis of the data on the number of squares crossed (Figure 1B)
showed significant effects of stress (F = 4.017 p < 0.05 df1,20) and Rauwolfia serpentina
(F = 43.136 p < 0.01 df1,20). The interaction between the two factors was not significant
(F = 1.143 N.S.).

Post hoc analysis by Newman–Keuls showed a decreased number of squares crossed
by saline + stressed rats but not Rauwolfia serpentina + stressed rats. Rats treated with
Rauwolfia serpentina alone showed increased locomotor activity in the open field. On the
other hand, stress-induced decreases in locomotor activity were reversed in Rauwolfia
serpentina-administered stressed rats.

Figure 2A shows changes in behavior in the light–dark transition test in animals
orally administered with Rauwolfia serpentina for 2 h before exposing animals to acute
immobilization stress for 2 h. Analysis of the data on entries in the light box (Figure 2A)
showed significant effects of stress (F = 16.298 p < 0.01 df1,20)and an interaction between
the two factors (F = 5.391 p < 0.01 df1,20). Effects of Rauwolfia serpentina were not significant
(F = 1.589 N.S.).

Post hoc analysis by Newman–Keuls showed a decreased number of entries in the
light–dark transition box in Rauwolfia serpentina + stressed and saline +stressed animals as
compared to their respective controls. Rats treated with Rauwolfia serpentina alone showed
an increased number of entries in the light–dark transition box. On the other hand, stress-
induced decreases in the number of entries in the light–dark box were reversed in Rauwolfia
serpentina-administered rats.

Figure 2B shows changes in behavior in the light–dark transition test in animals
orally administered with Rauwolfia serpentina for2 h before exposing animals to acute
immobilization stress for 2 h. Analysis of the data on time spent in the light box (Figure 2B)
showed non-significant effects of stress (F = 1.146 N.S.) and significant effects of Rauwolfia
serpentina (F = 20.861 p < 0.01 df1,20), as well as an interaction between the two factors
(F = 7.740 p < 0.01 df2,20).

Figure 2. Cont.
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Figure 2. Changes in behavior in light–dark transition test in animals orally administered with
Rauwolfia serpentina exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24).
Significant differences evaluated by Newman–Keuls test. ** p < 0.01 from similarly treated unstressed
control animals. ++ p < 0.01 and from respective (unstressed or stressed) animals.

Post hoc analysis by Newman–Keuls showed decreased time spent in the light–dark
transition box (sec) in saline +stressed rats but significantly increased in Rauwolfia serpentina
+stressed rats. Rauwolfia serpentina alone did not increase locomotor activity in the light–
dark transition box. On the other hand, the stress-induced decrease in locomotor activity
was reversed in Rauwolfia serpentina-administered stressed rats.

Figure 3 shows the effects of stress with the oral administration of Rauwolfia serpentina
on the plasma glucose level. Analysis of the data on glucose level (Figure 3) showed
non-significant effects of stress (F = 0.566 N.S.) and Rauwolfia serpentina (F = 2.144 N.S.), as
well as the interaction between the two (F = 3.142 p < 0.005 df2,20).

Figure 3. Changes in the levels of glucose in animals orally administered with Rauwolfia serpentina
exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24).
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Post hoc analysis by Newman–Keuls test revealed that the concentration of plasma
glucose was not significant in all groups.

Figure 4 shows the effects of stress with the oral administration of Rauwolfia serpentina
on plasma CAT activity. Analysis of the data on CAT activity (Figure 4) showed non-
significant effects of stress (F = 0.508 N.S) and an interaction between the two factors
(F = 2.802 N.S.). Effects of Rauwolfia serpentina were significant (F = 4.858 p < 0.05 df2,20).

Figure 4. Changes in the levels of catalase activity in animals orally administered with Rauwolfia
serpentina exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24). Significant
differences evaluated by Newman–Keuls test. ** p < 0.01 and * p < 0.05 from similarly treated
unstressed control animals. ++ p < 0.01 and from respective (unstressed or stressed) animals.

Post hoc analysis by Newman–Keuls revealed that the activity of CAT was significantly
increased in saline + stressed rats but significantly decreased in Rauwolfia serpentina +
stressed rats. Rauwolfia serpentina administration alone increased CAT activity. On the other
hand, the stress-induced increase in CAT activity was attenuated in Rauwolfia serpentina-
administered stressed rats.

Figure 5 shows the effects of stress with the oral administration of Rauwolfia serpentina
on plasma SOD activity. Analysis of the data on SOD activity (Figure 5) showed significant
effects of stress (F = 3.282 p < 0.05 df1,20). Effects of Rauwolfia serpentina (F = 2.256 N.S) and
the interaction between the two were not significant (F = 1.121 N.S.).

Post hoc analysis by Newman–Keuls showed that the activity of SOD was significantly
decreased in Rauwolfia serpentina+ stressed rats. However, Rauwolfia serpentina alone did
not alter the activity of SOD. On the other hand, the activity of SOD was not significant in
other groups.

Figure 6 shows the effects of stress with the oral administration of Rauwolfia serpentina
on the plasma corticosterone level. Analysis of the data on corticosterone levels (Figure 6)
showed significant effects of stress (F = 9.0 df1,20 p < 0.01), Rauwolfia serpentina (F = 7.92
df2,20 p < 0.01), as well as the interaction between the two (F = 26.01 df1,20 p < 0.01).

Post hoc analysis by Newman–Keuls showed significantly increased levels of corticos-
terone in saline +stressed animals but decreased in Rauwolfia serpentina +stressed animals.
On the other hand, an immobilization-stress-induced increase in corticosterone did not
occur in single Rauwolfia serpentina administered animals.
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Figure 5. Changes in the levels of superoxide dismutase activity in animals orally administered with
Rauwolfia serpentina exposed to 2 h acute immobilization stress. * p < 0.05.

Figure 6. Changes in the levels of corticosterone in animals administered with Rauwolfia serpentina
exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24). Significant differences
evaluated by Newman–Keuls test. ** p < 0.01 from similarly treated unstressed control animals.
++ p < 0.01 and from respective (unstressed or stressed) animals.

Figure 7 shows the effects of stress with the oral administration of Rauwolfia serpentina
on plasma leptin levels. Analysis of the data on leptin levels (Figure 7) showed significant
effects of stress (F = 9.0 df1,20 p < 0.01) and Rauwolfia serpentina (F = 7.92 df2,20 p < 0.05). A
non-significant effect of the interaction between the two factors was noted (F = 26.01 N.S.).

Post hoc analysis by Newman–Keuls showed significant increases in both saline
+stressed and Rauwolfia serpentina +stressed animals as compared to their unstressed control
rats, respectively. Rauwolfia serpentina +stressed rats showed increase levels of leptin in
comparison with saline + stressed rats.
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Figure 7. Changes in the levels of leptin in animals orally administered with Rauwolfia serpentina
exposed to 2 h acute immobilization stress. Values are means ± S.D. (n = 24). Significant differences
evaluated by Newman–Keuls test. ** p < 0.01 and * p < 0.05 from similarly treated unstressed
control animals.

5. Discussion

Experiencing stress is an inexorable part of everyday life and plays a significant role
in shaping adaptive behavior [41]. Acute exposure to immobilization stress has been
reported to impair motor activity, cause memory dysfunction, modulate anxiety [42] and
pain perception [43] and elicit depression-like behaviors [44] in animals. The goal of the
current study was to observe the neuroprotective effects of Rauwolfia serpentina on the
behavioral activity of animals in a novel environment and light–dark transition box activity
following acute exposure to 2 h immobilization stress in rats. Alterations in the levels of
corticosterone, glucose and leptin were also measured to establish a link between oxidative
stress and the HPA axis following administration of the plant extract. We also probed
the concentrations of antioxidant enzymes such as catalase and superoxide dismutase to
delineate the relationship of oxidative stress with behavioral deficits in rats. A consistent
finding of the present study is that the oral administration of Rauwolfia serpentina plant
extracts attenuated immobilization-stress-induced behavioral deficits and alterations in
antioxidant enzymes levels in the rats. Moreover, plasma leptin and corticosterone were
also mitigated in these rats, suggesting a role of the antioxidant components of the plant
extract, which may elicit neuroprotective effects.

In the present study, we examined the effects of Rauwolfia serpentina on the modulation
of immobilization-stress-induced behavioral deficits with two extensively used behavioral
models of anxiety-like behavior, including the open field and light–dark transition test.
These tests may be useful to examine anxiolytic-like or anxiogenic-like activity in mice [45].
The present results showed that 2 h immobilization exhibited a significant decrease in the
number of squares crossed but not latency to move in the open field as compared to the un-
stressed animals (Figure 1). Our findings are consistent with previous studies that showed
that acute exposure to (2 h) immobilization stress produces anxiety-like symptoms in rats,
and the animals did not explore rapidly enough to find and enter the dark compartment;
instead, they tended to freeze and remain immobile for the majority of the test session [46].
Therefore, immobilized stressed animals avoided exploring the new environment in the
light–dark box as well as in the open field exploration test. Conversely, administration of
the oral Rauwolfia serpentina extract alone increased the number of squares crossed in the
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open field in rats. On the other hand, oral administration of Rauwolfia serpentina extract
attenuated 2 h immobilization-stress-induced decreases in locomotor activity in the open
field. Similarly, a significant increase in the numbers of entries in the light box and time
spent in the light compartment of the light–dark transition box were also observed in these
animals, suggesting a reduction in novel-environment-induced anxiogenic effects (Figure 2).
Therefore, this anxiolytic effect of Rauwolfia serpentina plant extract could be explainable in
terms of the presence of numerous phytochemical compounds or secondary metabolites,
such as alkaloids, carbohydrates, flavonoids, glycosides, phlobatannins, phenols, resins,
saponins, sterols, tannins and terpenes in the plant extract [24,47,48]. The present results
are therefore in agreement with previous findings that the phenolic antioxidants present in
plant extracts could produce anxiolytic effects [49].

Oxidative stress has been implicated in the response to stress [50] and in the patho-
genesis of neurologic and psychiatric diseases [51]. An antioxidant is a substance that is
present at low concentrations and significantly inhibits or prevents the oxidation of the
oxidizable substrate [52]. Endogenous antioxidants play a vital role in conserving optimal
cellular functions. However, endogenous antioxidants may not be adequate under certain
conditions that could promote oxidative stress [53,54], as observed in the current results
(Figures 4 and 5). Thus, elevated superoxide dismutase and catalase activities were found
in rats immobilized for 2 h compared to control animals, signifying that acute exposure to
stress can promote the formation of ROS and lead to oxidative stress. In such cases, dietary
antioxidants should be supplied to maintain optimal cellular functions. Some antioxidants
can interact with other antioxidants in order to regenerate their original properties. This
process is referred to as the “antioxidant network” [55]. It has been suggested that a diet
rich in antioxidants can bring health benefits [56] and a lot of interest is directed towards
assessing the antioxidant capacity of natural products. In recent years, many studies ev-
idenced that the majority of the antioxidant activity of plants may be from compounds
such as phenolic acids, flavonoids and ascorbic acids, which can provide protection against
ROS [57–60]. From this perspective, the plant extract containing flavonoids and the ascor-
bic acid content of Rauwolfia serpentina exhibit antioxidant capacity, which expands its
nutraceutical value [61]. In the present study, oral administration of Rauwolfia serpentina
(Figures 4 and 5) attenuated the immobilization-induced increase in the antioxidant en-
zymes CAT and SOD’s activities, suggesting the antioxidant capacity of the plant extract
components, particularly flavonoids and ascorbic acid. Conversely, we also observed that
oral administration of Rauwolfia serpentina alone increases CAT but not SOD activity. It has
been indicated that the balance between pro-oxidant and antioxidant compounds moder-
ately favors pro-oxidants under physiological conditions. Consequently, it leads to slight
oxidative stress and requires the intervention of the endogenous antioxidant systems of the
organism [62]. It seems possible that the alkaloid and flavonoid components of Rauwolfia
serpentina plant extract could contribute, along with the endogenous antioxidant system, to
counteracting oxidative stress under basal conditions.

It is well recognized that exposure to acute stress causes the formation of free radicals,
which may lead to oxidative damages [63]. The HPA axis is the neuroendocrine system
that regulates responses to stress [64]. The production of high levels of free radicals in
the glands that comprise the HPA axis is related to the activation of the stress response
system [65–67]. In terms of the activity of the HPA axis, it is now eminent that neurons
in the paraventricular nucleus (PVN) of the hypothalamus release corticotropin-releasing
factor (CRF) to stimulate the synthesis and release of adrenocorticotropin (ACTH) from
the anterior pituitary. ACTH then travels to the adrenal gland and induces the rapid [68]
release of corticosteroids, which later activate various physiological processes to assist an
organism in coping with a stressful situation and reinstate homeostasis under a potentially
threatening condition [34,69,70]. The present investigation demonstrates that animals
subjected to immobilization stress exhibit increased corticosterone levels (Figure 6). This is
not unexpected, since it has been previously reported that acute restraint stress [71] and
immobilization stress [72] increase corticosterone levels, and this is considered to be an
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important indicator of stress [73–75]. However, oral administration of Rauwolfia serpentina
alone did not alter corticosterone levels as compared to saline plus unstressed animals.
Conversely, immobilization-induced elevated levels of corticosterone were attenuated
in Rauwolfia serpentina-treated animals (Figure 6). Previously, it was reported that the
chronically immobilized [63] and restraint [76] stress-induced attenuation of corticosterone
levels is explainable in terms of anti-stress activity. It is therefore interesting to relate the
Rauwolfia serpentina-induced modulation of corticosterone levels in terms of suppressing
HPA mobilization in response to stress by normalizing elevated plasma corticosterone levels
back to baseline. Thus, oral administration of Rauwolfia Serpentina reduced the adverse
effects of acute exposure to (2 h) immobilization stress and is thought to be beneficial for
the body to prevent stress-induced damages.

As per clinical evidence, elevated levels of corticosterone in response to stress also
increase the plasma glucose concentration [77,78]. From previous studies, it was reported
that stress causes an increase in plasma glucocorticoid levels [79–81], which stimulates liver
gluconeogenesis, which then leads to elevated blood glucose [82]. Regardless of the wide
use of glucose as an indicator of stress, some authors [83,84] have emphasizedthatcarehas-
tobetakenwhenusingplasmaglucoseastheonlyindicator. It has been reported that glucose
measurements show many inconsistencies and should be a complement to stress tests rather
than a main indicator [85]. In the present results, acute (2 h) exposure to immobilization
stress was unable to alter the plasma glucose concentration. Previously, preclinical studies
on the antidiabetic potential of the methanolic root extract of Rauwolfia serpentina have been
reported. It was found to be effective in lowering blood glucose levels [31]. However, in our
findings, oral administration of Rauwolfia serpentina did not show any significant decrease
in the levels of glucose as compared to the saline plus unstressed rats (Figure 3). Similarly,
treatment with Rauwolfia serpentina also did not alter stress-induced changes in glucose
concentration in rats (Figure 3). It seems that 30 mg/kg of Rauwolfia serpentina was not
sufficient to produce significant hypoglycemic effects in our present study paradigm. The
reason for the variation between our observation and that in the mentioned study is unclear,
but it may be due to the discrepancy in the nature of the stressful or ambient environments.

We report, for the first time, the potential therapeutic role of Rauwolfia serpentina
in endogenous leptin and corticosterone levels. Leptin secretion is basically under the
influence of neural and hormonal control [86–88]. The influence of leptin on the HPA axis
is one of the mechanisms by which leptin can improve stress controllability to produce
antidepressant and anxiolytic-like effects. Previously, preclinical studies reported that
exposure to 1 h immobilization [89], 10 min forced swimming [90] and 120 dB noise [91]
showed an increase in circulating levels of leptin. These studies are consistent with our
present data where in exposure to acute (2 h) immobilization stress resulted in a significant
increase in the circulating levels of leptin (Figure 7). As many components of the HPA axis
contain leptin receptors, it seems promising that systemically circulating leptin can alter
the stress response at every focal point of the axis [92]. On the other hand, stress-induced
releases of corticosterone have the opposite influence on leptin expression in adipocytes
and its secretion into the blood circulation. It has been reported that pretreatment with
recombinant mouse leptin inhibited the stress-mediated stimulation of plasma ACTH and
corticosterone in mice [93], and this inhibitory effect could be produced by receptors in the
hypothalamus. The present results showed that oral administration of Rauwolfia serpentina
significantly augments immobilization-stress-induced increases in plasma leptin levels
(Figure 7) but inhibits corticosterone levels (Figure 6). It is therefore suggested that leptin
could elicit a feedback effect over the activity of the HPA axis. Thus, the role of leptin
in HPA axis functioning suggests that their relationship is bidirectional [92]. However,
a role of leptin in alleviating stress perception is also apparent from studies reporting
anxiolytic-like effects of pharmacological doses of exogenous leptin in rodent models of
anxiety and an inhibition of stress-induced anxiety in these models [93]. It has also been
reported that conventional potential anxiolytic compounds inhibited the corticosterone
response to an acute stressor [94,95] and reversed stress-induced behavioral deficits [96,97].
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Similarly, we found that oral administration of Rauwolfia serpentina reversed acute (2 h)
immobilization-stress-induced behavioral deficits (Figures 1 and 2). It is therefore suggested
that the oral administration of the plant extract could possibly elicits an anxiolytic-like
effect (Figures 1 and 2) by modulating endogenous leptin levels and thus inhibiting the
stress-induced activation of the HPA axis.

We suggest that Rauwolfia serpentina has potential to antagonize the adverse effects
of acute (2 h) immobilization stress by reducing stress perception. Despite an apparently
promising role in reducing stress perception, the molecular mechanism underlying the
acute anxiolytic effects of the oral administration of Rauwolfia serpentina plant extract
remains to be determined. Future studies are also needed to determine the effects of
the oral administration of Rauwolfia serpentina plant extract before and after exposure to
unpredictable stress perception to further evaluate its potential as an anxiolytic compound,
and this may facilitate the development of alternative treatment strategies for stress-related
disorders including anxiety and depression.

6. Conclusions

The present study concludes that Rauwolfia serpentina is an effective anxiolytic agent
as it attenuates stress-induced behavioral deficits and improves locomotor activity. The
majority of the components present in Rauwolfia serpentina are beneficial and provide
positive outcomes regarding the antioxidant enzyme levels of restrained animals, but in the
case of unstrained animals, it showed increased antioxidant enzyme levels that might be
due to the presence of any alkaloid. On the other hand, our results showed that Rauwolfia
serpentina was found to prevent the stress-induced increase in corticosterone. Moreover,
an increase in the levels of endogenous leptin attenuates the stress-induced activity of the
HPA axis and reverses the adverse effects of acute stress. It is also concluded that 30 mg/kg
of Rauwolfia serpentina was not sufficient to produce hypoglycemic effects. However, more
studies are recommended to explain the particular action by which Rauwolfia serpentina
produces its effects.
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