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Abstract: Exercise training (ET) is a natural activator of Sirtuin 1 (SIRT1), a stress-sensor able to
increase the endogenous antioxidant system. SIRT1 activators, including polyphenols and vitamins,
can enhance the antioxidant capacity. Antioxidant supplements are used to improve athletic per-
formance. However, they might blunt ET-related benefits. Middle-distance runners (MDR) taking
(MDR-S) or not taking antioxidant supplements (MDR-NoS) were compared with each other and
with sedentary subjects (CTR) to evaluate the ET effects on SIRT1 levels and oxidative stress, and to
investigate whether an exogenous source of antioxidants could interfere with such effects. Thirty-two
MDR and 14 CTR were enrolled. SIRT1 mRNA and activity were measured in PBMCs. Total oxidative
status (TOS) and total antioxidant capacity (TEAC) were determined in plasma. MDR showed higher
levels of SIRT1 mRNA (p = 0.0387) and activity (p = 0.0055) than CTR. MDR-NoS also showed higher
levels than MDR-S without reaching statistical significance. SIRT1 activity was higher (p = 0.0012) in
MDR-NoS than in MDR-S. TOS did not differ among the groups, while MDR showed higher TEAC
levels than CTR (p = 0.0001) as did MDR-S and MDR-NoS (MDR-S vs. CTR, p = 0.0007 and MDR-NoS
vs. CTR, p = 0.003). TEAC (β = 0.4488356, 95% CI 0.2074645 0.6902067; p = 0.0001) and the MDR-NoS
group (β = 744.6433, 95% CI 169.9954 1319.291; p = 0.012) predicted SIRT1 activity levels. Antioxidant
supplementation seems to hinder the role of ET as a natural activator of SIRT1.

Keywords: antioxidant capacity; athletes; endurance training; sirtuins; vitamins

1. Background

Exercise training (ET) is recommended by the International Health Authorities as
it provides benefits to healthy individuals and patients belonging to several clinical set-
tings [1–3]. ET contrasts oxidative stress, by decreasing radical oxygen species (ROS) and
other oxidant molecules and/or increasing antioxidant ones [4]. On the other hand, because
of increased oxygen consumption, during exercise the production of ROS may overcome
the capacity of the endogenous antioxidant system to detoxify them, producing oxidative
stress [5–7]. ET is a natural activator of Sirtuin 1 (SIRT1), which is a NAD+-dependent
deacetylase acknowledged as a life-span- and health-span-prolonging agent [8–10]. SIRT1
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activated during ET can contrast aging and age-associated diseases by increasing the
cellular antioxidant capacity [10–12]. However, the ET-related effects, including SIRT1
activation, strongly depend on the type, intensity and duration of the training [13–16].
Other natural activators of SIRT1 include polyphenols, such as resveratrol, and several
phenolic plants extracts whose antioxidant properties are widely acknowledged [17,18].
Supplementation with antioxidants can help prevent or contrast oxidative stress and its
associated cellular damage. Indeed, supplements, especially those containing vitamins
and other micronutrients, are commonly used to improve athletes’ wellness and perfor-
mance [19–21]. Despite this, the effects of antioxidant supplementation have not yet been
elucidated, especially in athletes performing endurance training [20]. Therefore, in this
study, we compared the effects on SIRT1 and antioxidant capacity in endurance athletes
using or not using antioxidant supplements to investigate whether an exogenous source of
antioxidants could interfere with ET-related effects.

2. Methods

Thirty-two endurance athletes, that are middle-distance runners (MDR), and fourteen
age-matched sedentary volunteers (CTR) were enrolled. All participants signed informed
consent and the study got approval from the local ethics committee (Observational Study
n. 86/2020). MDR belonged to an amateur sports association called “Atletica Salerno”.
They were divided into two groups. One of them (MDR-S) consumed an antioxidant
supplement every day (S) consisting of 240 mg vitamin C and 15 mg vitamin E, together
with 861 mg sodium, 555 mg chlorine, 381 mg potassium and 66 mg magnesium. The other
group did not use any antioxidant supplementation (MDR-noS). We recorded the athletes’
data, including those regarding training regimen as well as information concerning alcohol
consumption and tobacco use and dietary habit. Blood samples were collected in fasting
conditions from each participant. Peripheral Blood Mononuclear Cells (PBMCs) were
isolated by Ficoll-Paque density gradient. Serum samples were obtained by centrifugation
at 1500× g for 10 min. Aliquots of serum and PBMCs were frozen at −80 ◦C until analysis.
SIRT1 mRNA and activity were measured in PBMCs by Real-Time PCR and fluorimetric
assay, respectively. Total oxidative status (TOS) and total antioxidant capacity (TEAC) were
measured in plasma by colorimetric assay and oxidative stress index (OSI) was determined
by TOS/TEAC ratio.

3. Results

The study population consisted of 14 CTR, 14 MDR-noS and 18 MDR-S. There were
no differences in age, tobacco and alcohol use as well as in dietary habits between the
two groups of athletes, and between athletes and sedentary controls. CTR had a BMI
higher than MDR-S and MDR-noS (both, p = 0.0001), while no differences between MDR-S
and MDR-noS were found. In addition, neither training time/week nor training fre-
quency/week differed between MDR-S and MDR-noS. MDR demonstrated higher levels of
SIRT1 mRNA compared to CTR (p = 0.0387). Notably, MDR-noS showed higher levels than
CTR (p = 0.0136) while MDR-S did not differ from CTR. No differences between MDR-S
and MDR-noS were found (Figure 1, panel A). MDR showed higher levels of SIRT1 activ-
ity compared to CTR (p = 0.0055). MDR-noS had the highest value, significantly higher
compared to both CTR (p = 0.0003) and MDR-S (p = 0.0012) (Figure 1, panel B).

As shown in Figure 2 (panel A), no differences in TOS levels were found among the
groups. MDR showed higher levels of TEAC compared to CTR (p = 0.0001). Notably, both
the MDR-S and MDR-noS showed higher levels than CTR (MDR-noS vs. CTR, p = 0.0003
and MDR-S vs. CTR, p = 0.0007). No differences were found between MDR-S and MDR-noS
(Figure 2, panel B). CTR demonstrated the highest levels of OSI (TOS/TEAC) compared
to the other groups (CTR vs. MDR, p = 0.0002; CTR vs. MDR-noS, p = 0.0015 and CTR vs.
MDR-S, p = 0.0086). No differences were found between MDR-S and MDR-noS (Figure 2,
panel C).
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Figure 1. SIRTUIN 1 (SIRT1) mRNA expression (A) and activity (B) were measured in peripheral 
blood mononuclear cells (PBMCs) extracted from sedentary controls (CTR), middle distance run-
ners not taking antioxidant supplements (MDR-NoS), and MDR taking antioxidant supplements 
(MDR-S). MDR indicates all the MDR, irrespective of antioxidants supplementation. CTR, MDR-
NoS, MDR-S, and MDR are respectively indicated with a black circle, black square, black triangle 
with the vertex at the bottom, and black triangle with the vertex at the top. All data are expressed 
as mean ± SD. 

As shown in Figure 2 (panel A), no differences in TOS levels were found among the 
groups. MDR showed higher levels of TEAC compared to CTR (p = 0.0001). Notably, both 
the MDR-S and MDR-noS showed higher levels than CTR (MDR-noS vs. CTR, p = 0.0003 
and MDR-S vs. CTR, p = 0.0007). No differences were found between MDR-S and MDR-
noS (Figure 2, panel B). CTR demonstrated the highest levels of OSI (TOS/TEAC) com-
pared to the other groups (CTR vs. MDR, p = 0.0002; CTR vs. MDR-noS, p = 0.0015 and 
CTR vs. MDR-S, p = 0.0086). No differences were found between MDR-S and MDR-noS 
(Figure 2, panel C). 

 
Figure 2. Total oxidative status (TOS) (A), Trolox equivalent antioxidant capacity (TEAC) (B), and 
oxidative stress index (TOS/TEAC, OSI) (C) were determined in the serum extracted from seden-
tary controls (CTR), middle distance runners not taking antioxidant supplements (MDR-NoS) and 
MDR taking antioxidant supplements (MDR-S). MDR indicates all the MDR irrespective of antiox-
idant supplementation. CTR, MDR-NoS, MDR-S, and MDR are respectively indicated with a black 
circle, black square, black triangle with the vertex at the bottom, and black triangle with the vertex 
at the top. All data are expressed as mean ± SD. 

A statistically significant correlation by linear regression analysis between SIRT1 ac-
tivity and TEAC (p = 0.002, r2 = 0.2345) was found. This correlation was determined by the 

Figure 1. SIRTUIN 1 (SIRT1) mRNA expression (A) and activity (B) were measured in peripheral
blood mononuclear cells (PBMCs) extracted from sedentary controls (CTR), middle distance runners
not taking antioxidant supplements (MDR-NoS), and MDR taking antioxidant supplements (MDR-S).
MDR indicates all the MDR, irrespective of antioxidants supplementation. CTR, MDR-NoS, MDR-S,
and MDR are respectively indicated with a black circle, black square, black triangle with the vertex at
the bottom, and black triangle with the vertex at the top. All data are expressed as mean ± SD.
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Figure 2. Total oxidative status (TOS) (A), Trolox equivalent antioxidant capacity (TEAC) (B), and
oxidative stress index (TOS/TEAC, OSI) (C) were determined in the serum extracted from sedentary
controls (CTR), middle distance runners not taking antioxidant supplements (MDR-NoS) and MDR
taking antioxidant supplements (MDR-S). MDR indicates all the MDR irrespective of antioxidant
supplementation. CTR, MDR-NoS, MDR-S, and MDR are respectively indicated with a black circle,
black square, black triangle with the vertex at the bottom, and black triangle with the vertex at the
top. All data are expressed as mean ± SD.

A statistically significant correlation by linear regression analysis between SIRT1
activity and TEAC (p = 0.002, r2 = 0.2345) was found. This correlation was determined by
the results of MDR-noS (p = 0.001, r2 = 0.8029) (Figure 3, panel A). Conversely, an inverse
correlation between SIRT1 activity and OSI was found in MDR (p = 0.013, r2 = 0.213). This
finding was determined by the inverse correlation between the two considered parameters
in MDR-noS (p < 0.0001, r2 = 0.2154) (Figure 3, panel B).
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Figure 3. (A) Linear regression analyses with SIRT1 (SIRT1) activity measured in peripheral blood
mononuclear cells (PBMCs) and Trolox equivalent antioxidant capacity (TEAC) measured in se-
rum of CTR, MDR-NoS, MDR-S, and MDR. (B) Linear regression analyses with SIRT1 (SIRT1) 
activity measured in peripheral blood mononuclear cells (PBMCs) and Oxidative Stress Index 
(OSI) calculated as the ratio of TOS on TEAC. The groups were: sedentary controls (CTR), middle 
distance runners (MDR) not taking antioxidant supplements (MDR-NoS), and MDR taking antiox-
idant supplements (MDR-S). All data are expressed as mean ± SD. 

Figure 3. (A) Linear regression analyses with SIRT1 (SIRT1) activity measured in peripheral blood
mononuclear cells (PBMCs) and Trolox equivalent antioxidant capacity (TEAC) measured in serum
of CTR, MDR-NoS, MDR-S, and MDR. (B) Linear regression analyses with SIRT1 (SIRT1) activity
measured in peripheral blood mononuclear cells (PBMCs) and Oxidative Stress Index (OSI) calculated
as the ratio of TOS on TEAC. The groups were: sedentary controls (CTR), middle distance runners
(MDR) not taking antioxidant supplements (MDR-NoS), and MDR taking antioxidant supplements
(MDR-S). All data are expressed as mean ± SD.

4. Conclusions

This study demonstrated that TEAC increased in MDR compared to CTR irrespective
of an antioxidant supplementation intake. SIRT1 mRNA and activity increased in MDR-noS
but not in MDR-S when compared to CTR. Notably, SIRT1 activity is strongly correlated
with TEAC in MDR-noS but not in MDR-S. An exogenous source of antioxidants seems to
hinder the role of endurance training as a natural activator of SIRT1.
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