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1 Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University
of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; xharencar@uniag.sk

2 Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in
Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; zdenka.galova@uniag.sk (Z.G.);
zelmira.balazova@uniag.sk (Ž.B.); milan.chnapek@uniag.sk (M.C.)

* Correspondence: katarina.razna@uniag.sk; Tel.: +421-37-641-4240
† Presented at the 2nd International Electronic Conference on Plant Sciences—10th Anniversary of Journal

Plants, 1–15 December 2021; Available online: https://iecps2021.sciforum.net/.

Abstract: Regulatory potential of microRNAs in growth, metabolism, and stress adaptation is well
known. In total, 15 common oat genotypes were performed by miRNA-based markers. Markers
involved in MiRNAs sequences provide an effective type of putative functional markers. Markers
involved to photosynthesis regulation, growth, and biomass production (miR408, miR156) generated
40% of all amplified loci. Those associated with nutrition accumulation and homeostasis (miR827
and miR399) generated 29% and stress-responsive markers (miR398 and miR858) 31%. Proteomics
approaches (SDS and A-PAGE electrophoresis) detected sufficient diversity between the analyzed
samples and genetic-related dendrograms were constructed based on the electrophoretic profiles.
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1. Introduction

Due to the significantly changing climatic conditions, it is necessary to apply ap-
proaches to identify the genomic potential of plant genetic resources for adaptation to
abiotic stress and thus provide a platform for successful genotype selection. The plant
organism must cope with environmental stresses in natural and agricultural conditions. A
genetic background allows plants to adapt to the environment by various mechanisms at
the molecular level. From this point of view, genome screening by functional markers may
provide knowledge for identifying added value of plant genetic resources.

MicroRNAs (miRNAs) have been identified to be involved in regulation of plant stress
responses [1–3]. The high conservation of miRNA sequences allowed us to develop an
effective type of putative functional markers [4–7]. The fundamental potential of miRNA-
based markers relies on the primer design based on the consensus sequences of mature
miRNAs which are part of the step-loop structures. The advantages of this marker system
include high polymorphism, reproducibility, and inter-species transferability [4,5]. The
abundance of mature miRNAs, which is linked to the expression of MIRNA genes, varies
greatly among miRNAs, tissue types or developmental stages, indicating the spatially and
temporally regulated expression patterns of plant miRNAs [8,9]. Polymorphism amplified
by the application of miRNA markers indicates changes in miRNA loci sequences, which
may result in changes in target gene regulation [4,10].

Plant seed storage proteins are characterized by a polymorphism due to the existence
of several discrete forms because of heterozygosity. The polymorphism results from the
in vivo hybridization of protein subunits, controlled by independent genes of different
chromosome loci that are expressed at different times. Polymorphism can also be induced
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by post-translational changes in proteins, such as acylation, glycosylation, phosphorylation,
deamination, decarboxylation, methylation, etc. [11].

The aim of our study was to detect the polymorphism of miRNA-based markers to
characterize the oat genotypes. Proteomics approaches detected diversity between the
analyzed samples.

2. Materials and Methods
2.1. Biological Material

Grains of oat varieties (Avena sativa L.) Vaclav, Valentin, Vendelin, Viliam, Vit, Flam-
ingsgarand, Flamingsregent, Fuchs, Arne, Magne, Calibre, Cascade, Lord, Senator, and
Marloo were analyzed. Samples were obtained from the Gene Bank of Seed Species of the
Slovak Republic NPPC VÚRV in Piešt’any.

2.2. Selection of Markers and Primers Design

The suitable microRNA markers were selected based on their functional involvement
in the Poaceae family (wheat, barley, maize, rice) [12–15]. Database miRBase (https://www.
mirbase.org (accessed on 16 March 2021)) (release 22.1) [16] was used to search and browse
microRNA sequences. Sequences-based homology search was carried out by BLASTn
(https://blast.ncbi.nlm.nih.gov/Blast (accessed on 16 March 2021)) and CLUSTAL OMEGA
(https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 16 March 2021)) algorithms.
The primers were designed according to the methodologies [4,5].

2.3. MicroRNA-Based Marker Assay

Plants were grown in pot experiments under controlled growth chamber conditions
(23 ◦C, 16/8 h photoperiod, 50% humidity). After 15 days of growth, bulk leaf samples
(10 plants) were taken for DNA extraction. Total genomic DNA was extracted using
the NucleoSpin™ Plant II (Macherey-Nagel™, GmbH & Co. KG, Düren, Germany) and
quantified by the Implen NanoPhotometer®. The miRNA-based marker assays were
performed based on protocols [4,5], modified by [17]. MiRNA-based PCR amplicons were
separated on 15% TBE-UREA PAGE gels and scored for their length and gel migration
characteristics by GeneTool™ gel analysis software version 4.3.10.0 (Syngene, Synoptics
Ltd., Cambridge, UK).

2.4. SDS-PAGE

Electrophoretic analysis of oat seed stock protein polymorphism was performed on
SDS-PAGE according to [18]. Electrophoretic profiles of individual varieties were scanned
with a GS-800 Calibrated Densitometer (BioRad, BioRad Laboratories Inc., Berkeley, CA,
USA) and evaluated using Doc-It LS Image analysis and GelAnalyzer. A dendrogram using
the Jaccard similarity coefficient and the UPGMA algorithm for statistical interpretation of
electropherograms was constructed in the DendroUPGMA program, which is available
online (http://genomes.urv.cat/UPGMA/ (accessed on 26 August 2021)).

3. Results and Discussion
3.1. MiRNA-Based Assay

For genomic screening of 15 oat genotypes originating from six countries (Austria-AUS-
1, Australia-AUT-2, Canada-CAN-2, Deutschland DEU-3, Slovakia SVK-5, and Sweden
SWE-2), six different miRNA-based markers (miR156, miR398, miR399, miR408, miR827
and miR858) were used. In total, 849 miRNA-based loci were amplified, which represents
an average of 57 fragments per genotype. Balanced amplification was also observed
depending on the origin of the genotype. The range of amplified fragments varied from
46 (Flamingsregent, DEU) to 67 (Senator, AUT). The representation of individual types of
miRNA loci was marker specific.

A predominance of the miR398 (22% of the total number of amplified fragments)
marker was observed in the genome of the analyzed oat samples. MiRNA398 (miR398) is

https://www.mirbase.org
https://www.mirbase.org
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https://www.ebi.ac.uk/Tools/msa/clustalo/
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considered a stress-responsive miRNA involved in the plant stress regulation
mechanism [1,12]. MiR398 has been reported to be associated with various stress conditions
such as oxidative stress [19], water deficit [20], salt stress, and abscisic acid stress [21]. Due
to optimal and controlled growth conditions, it is not possible to predict the influence of
any of the above stress factors, considering the short time interval (15 days) of growth. The
predominant presence of miR398 loci may indicate the genomic potential of the analyzed
genotypes in terms of their tolerance to abiotic stress, whereas miR398 represents a highly
conserved miRNA in diverse monocots and dicots, and it can be assumed that it is im-
portant for plants stress tolerance [1,12]. The highest number of loci (16) was recorded in
genotype Vaclav and the lowest in genotype Valentine (9) both originating from Slovakia.

The second most represented type of miRNA-based marker was miR408 (21% of the
total number of amplified fragments) (Figure 1). The highest number of loci (14) was
recorded in genotypes Cascade (CAN) and Magne (SWE) and the lowest in genotypes
Vendelin and Vit (9) both from Slovakia. Studies have shown that miR408 is involved in
the development, light signaling pathway, and biotic stress reactions as well as biomass
production [2,3]. Constitutive expression of miR408 affects various stages of development
and promotes intense plant growth and seed yield by increasing the efficiency of photo-
synthesis. Therefore, miR408 is likely to have a pleiotropic effect on plant growth and
development [22].

Similar to marker miR408, the marker miR156 having 19% representation within
amplified loci is also considered as the most conserved miRNAs indicating that its role is
essential for the development and existence of plants [23,24]. The highest number of loci (4)
was recorded in genotype Calibre (CAN) and the lowest (9) in genotypes Lord and Senator
(AUT), Marloo (AUS), and Vendelin (SVK).

Figure 1. A representative genome fingerprinting of oat samples based on electrophoretic separation
of “touch-down” PCR products amplified by miR408-based primers. Genotypes: 1—Arne; 2—Calibre;
3—Cascade; 4—Flamingsgarand; 5—Flamingsregent; 6—Fuchs; 7—Lord; 8—Magne; 9—Marlov;
10—Senator; 11—Vaclav; 12—Valentin; 13—Vendelin; 14—Viliam; 15—Vit.

The representation of the marker miR827 was recorded at the level of 16% of the total
number of amplified fragments. MiR827 plays an important role in regulatory mechanisms
related to nutrient homeostasis, especially phosphorus. It is characterized by increased
activity in conditions of phosphorus deficiency [25,26]. The highest number of amplified
miR827 loci (15) was recorded in genotype Senator (AUT) and the lowest (4) in Vendelin
(SVK) and Flamingsregent (DEU).

Several studies confirmed the roles of miR399 in the regulation of phosphate accumula-
tion and homeostasis [27]. However, its responsiveness may be species- and tissues/organ-
specific [28]. Genotype Vit (SVK) recorded the highest number (15) of miR399 loci and the
lowest (3) was recorded in Calibre from Canada. Total representation of the marker miR399
was 13% of the total number of amplified fragments.
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Finally, the least represented type of markers was miR858 (9%), with the highest
number of loci (9) in genotype Magne (SWE). Amplification was not recorded for multiple
genotypes (Calibre, Flaminsgarand, Flamingsregent, and Vaclav). The role of miR858
was described in the regulation of flavonoid biosynthesis. Flavonoids are known for
their antifungal activity and miR858 functions as negative regulator of plant immunity by
controlling biosynthesis of flavonoids [29]. We can therefore assume that the activity of this
type of marker was below the level of detection.

3.2. SDS-PAGE Analyses

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is one of the
most common methods suitable for the identification and differentiation of plant genotypes
based on their electrophoretic profiles. SDS-PAGE has also been shown to be suitable for
the detection of oat genetic diversity (Figure 2). By the action of a constant electric current,
the grain storage proteins of individual genotypes were divided into three groups based on
different molecular weights, namely HMW-GS (high molecular weight glutelin subunits),
LMW-GS (low molecular weight glutelin subunits), and prolamins, as well as residual
albumins and globulins, which have the lowest weight [11,30].

Electropherograms show that the molecular weight of HMW-GS oats was 85 kDa to
80 kDa, LMW-GS ranged from 65 kDa to 30 kDa, and residual albumins and globulins
ranged from 28 kDa to 4 kDa. The results further show that on average in the samples
there were 3.77% HMW-GS (range 2.71–5.58%), 42.55% LMW-GS and prolamins (range
40.21–44.64%), and 53.69% of residual albumins and globulins (49.89–55.47%) (Figure 3).
These results correspond to the findings of other authors [11,30–33].

Figure 2. A representative PAGE gel. 1 Flamingsregent; 2 Fuchs; 3 Arne; 4 Magne; 5 Calibre;
6 Cascade; M—Triticum aestivum L.; L—Spectra Multicolor Broad Range Protein Ladder.

The dendrogram (SDS-PAGE) divided the analyzed varieties into two main clusters,
while the FUCHS variety was separated from the other varieties, which means that it is
genetically the most distant from the other varieties. In the second cluster, the remaining
fourteen varieties were separated into two further sub-clusters.

There were four varieties in the first sub-cluster and the remaining ten were in the
second sub-cluster. The most genetically similar in terms of glutelin polymorphism was
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Senator and Marloo, then Ame and Cascade. Similar dendrograms because of research
were achieved in their work [30–33].

Figure 3. Percentage of protein fraction in genotypes of oat analyzed by SDS-PAGE.

4. Conclusions

Because of the functionality of miRNA-based markers, their application is appropriate
in terms of characterizing the added value of plant genetic resources. The genome screening
points out that all tested genotypes should have sufficient genetic background in order the
provide biomass while having the potential for adaptability to environmental conditions.
From this point of view, we can assume that genotypes Magne (SWE) and Vaclav (SVK)
have available higher stress adaptation potential as the number of amplified loci of the
stress-sensitive markers miR398, miR858, and miR408 was the highest. On the other hand,
the lowest amplification of miR156-, miR408-, and miR827-based markers associated with
plant growth and nutrition homeostasis was observed in genotype Vendelin (SVK). SDS
-PAGE analysis allows us to detect the genetic diversity of tested oat genotypes based on
glutelin polymorphism.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/IECPS2021-11917/s1, The poster presentation. Figure S1: MicroRNA-Based
and Proteomics Fingerprinting of Avena sativa L. Genotypes.
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11. Gálová, Z.; Palenčárová, E.; Chňapek, M.; Balážová, Ž. Využitie Obilnín, Pseudoobilnín a Strukovín v Bezlepkovej Diéte, 1st ed.; [Use
of Cereals, Pseudo-Cereals and Legumes in a Gluten-Free Diet]; Slovenská Pol’nohospodárska Unierzita: Nitra, Slovakia, 2012;
182p, ISBN 978-80-552-0826-8.

12. Sunkar, R.; Zhou, X.; Zheng, Y.; Zhang, W.; Zhu, J.K. Identification of novel and candidate miRNAs in rice by high throughput
sequencing. BMC Plant Biol. 2008, 8, 25. [CrossRef]

13. Barrera-Figueroa, B.E.; Gao, L.; Wu, Z.; Zhou, X.; Zhu, J.; Jin, H.; Liu, R.; Zhu, J. High throughput sequencing reveals novel and
abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol. 2012, 12, 132. [CrossRef]

14. Kehr, L. Systemic regulation of mineral homeostasis by microRNA. Front. Plant Sci. 2013, 4, 145. [CrossRef]
15. Akdogan, G.; Tufekci, E.D.; Uranbey, S.; Unver, T. MiRNA-based drought regulation in wheat. Funct. Integr. Genom. 2016,

16, 221–233. [CrossRef]
16. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 2004, 32, D109–D111. [CrossRef]
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