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Abstract: The results of this open-top chamber study show that the variety of chard cv. Fuenlabrada,
cultivated on the outskirts of Madrid, can be considered moderately sensitive to ozone. A significant
loss of marketable production, the alteration of pigment concentration and alteration of nutritional
quality was measured in the plants exposed to different ozone levels. Swiss chard has a high
nutritional value due to its high macronutrient content and the presence of micronutrients essential
for human health. The results of this study showed a significant reduction in the concentration of Mg
and Ca in commercial chard leaves of the local variety Fuenlabrada. These results suggest that ozone
can induce a loss of nutritional quality in leafy crops with negative consequences for human health.
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1. Introduction

Tropospheric ozone (O3) is an important greenhouse gas. It is considered one of the
most damaging air pollutants to vegetation due to its phytotoxicity and prevalence at high
concentrations over large areas across the globe [1–5].

The photochemical pollution in Southern Europe is a subject of great environmental
importance [6]. Despite the considerable improvements in air quality during the last
decade in Europe, 80% of the urban areas were exposed to ozone levels exceeding the
WHO guidelines. A recent study on ambient air quality in Spain showed a substantial
improvement in the last 25 years, with the exception of tropospheric ozone [7]. The same
trend was observed in the Madrid air basin [8]. During the ozone episodes in summer, high
ozone concentrations in rural and urban stations were recorded [9,10].

The ozone impact assessments for crops were mainly based on modelling conducted
for changes on crop yield. The estimated global impact of O3 on crops suggests a yield
reduction in major crops by 3–7%, causing high economic losses [11–14]. However, most
estimates of the impact of current O3 levels on crop production do not include horticultural
production. These crops cover small areas, but they are of great economic importance.

Horticultural crops have been identified as extremely sensitive to O3 damage [1,15–18].
Ozone causes a wide variety of damage to agricultural crops, including visible damage,
reduced photosynthesis, alterations in carbon allocation, and a reduction in the quantity
and quality of yield [1,17,19–21]. Visible leaf damage has been recorded in leafy crops, in
some cases reaching a total loss of harvest in the field [15,22,23]. The effects of chronic
exposure to O3 on physiology or performance were studied for species such as lettuce,
spinach or palak [24–30]. However, little information is available about the risk of ozone
effects on quality traits.

Swiss chard is consumed all over the world, due to its organoleptic properties as
well as its numerous benefits for human nutrition [31]. In addition, chard has a high
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nutritional importance as it contains fiber, vitamins A C E K B and minerals (calcium, iron,
zinc phosphorus, magnesium, potassium, iron and manganese) [32–34].

Cumulative metrics for O3 exposure have been used along with estimations of the
minimum thresholds for damage in order to estimate crop yield losses due to O3. Ozone
threshold values (critical levels) were first established within the framework of the Conven-
tion on Long-Range Transboundary Air Pollution (CLRTAP, UNECE) for the protection of
different vegetation types [35]. These critical levels are the basis for defining the objective
values for plant protection in the European Air Quality Directive (2008/50/EC) and are the
main tools for O3 risk assessment studies.

2. Material and Methods
2.1. Experimental Field Facilities and Plant Material

The ozone fumigation experiments were carried out in an open-top chamber (OTC)
facility located in central Spain: Finca Experimental La Higueruela (CSIC) (Santa Olalla,
Toledo, 450 m.a.s.l.; 40◦3′ N, 4◦26′ W). Swiss chard plants were exposed to four O3 treat-
ments: charcoal filtered air (FA) with over 50% filtration efficiency, which kept O3 levels
below background concentrations; non-filtered air (NFA), reproducing current ambient
levels; non-filtered air supplemented with 20 nL L−1 O3 (NFA+); and non-filtered air
supplemented with 40 nL L−1 O3 (NFA++). Additional O3 supply for NFA+ and NFA++
treatments was applied during 8 h per day, 7 days a week using an O3 generator system
(Model 16, A2Z Ozone Systems Inc., Louisville, KY, USA) fed with pure oxygen. The exper-
iment followed a random block design with four O3 treatments, each replicated three times
(three OTCs per O3 treatment). More details about the facility are provided in Calvete-Sogo
et al. (2014).

The study was carried out on a native variety of chard (Beta vulgaris L. var cicla) from
Fuenlabrada. The seeds were grown according to greenhouse standards until the plants
were large enough for transplantation. Seedlings were transplanted to 2.5 L pots with a mix
of unfertilized blond peat (60%), perlite (20%) and vermiculite (20%). Fertilization was car-
ried out with Nutricote (NPK:18-6-8) at the time of transplanting. In each chamber, 4 plants
were exposed to different ozone treatments for 43 days (from 4 April to 25 May).

A risk assessment study of ambient ozone effects on a native variety of chard, cv. Fuen-
labrada, was carried out at a peri-urban agricultural area: Parque Agrario de Fuenlabrada
(Fuenlabrada, Madrid, 660 m.a.s.l., 40◦17′ N, 3◦51′ W). The chard trial was carried out
with organic mulch on the surface before planting (4 kg/m2), and then triple 15 fertilizer
(150 kg/ha) was added. Equlibrium and Nutriseck were applied as a pest preventive
method. Irrigation was carried out by a sprinkler, the most suitable method for the sandy
soil of the area. Plant growth from transplantation to harvest in late summer was 43 days.

In parallel, the impact of ambient ozone levels was investigated through the quan-
tification of visible lesions in the leaves of O3-sensitive and -tolerant varieties in an O3
bioindicator garden. The experimental design of the ozone garden was carried out using
ozone tolerant/sensitive variety pairs. Six species were used (tomato, chard, bean, water-
melon, tobacco and wheat) with a total of 24 varieties. Environmental growing conditions
and ozone levels were collected from the Air Quality Network of the Community of Madrid
(Fuenlabrada Station).

2.2. Physiological Measurements
2.2.1. Biomass

The biomass production was determined at the maximum development of the plant.
All the leaves were collected and classified as commercial and non-commercial biomass.
This classification was based on the absence or presence of lesions on the leaves. The fresh
weight (FW) was determined for the total plant. A known FW sample from each category
was dried in a ventilated oven at 65 ◦C for 48 h to obtain the dry weight (DW). Data were
analyzed based on total biomass and commercial biomass per plant.
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2.2.2. Foliar Pigment Content

The content of chlorophyll, polyphenols (anthocyanins, flavonols) and the nitrogen
balance index (NBI®) were measured with DUALEX® (Force-A, Orsay, France) in fully
developed leaves in the external position of the plant. Four plants were measured by OTC.

2.2.3. Nutrient Analysis

For nutrient analysis, oven-dried samples from the final harvest were ground in a
stainless steel grinder. Elemental composition analysis was performed by an elemental
analyzer (TruSpect CHN-S, LECO Corporation, St. Joseph, MI, USA). Nutrients composition
(Mg, Ca, Na, K, Fe, Mn and Zn) was analyzed by an ICP-OES analyzer (5900 ICP-OES,
Agilent, Santa Clara, CA, USA).

The analyses were carried out using 150 mg of commercial biomass per plant. Four
plants per OTC. The values were expressed as mg/100 g DW.

2.2.4. Statistical Analysis

All statistical analyses were conducted using Statistica (TIBCO, Palo Alto, CA, USA).
Differences among O3 treatments in physiological parameters were tested through one
way analysis of variance (ANOVA). A probability level p < 0.05 was considered statistically
significant and p values between 0.05 and 0.1 were discussed as significant trends.

3. Results
3.1. Growing Conditions and Ozone Concentration

The growing conditions in OTC were sunny and warm. The temperature range
was 8–21 ◦C, and the relative humidity was 39–80% (Table 1), while the environmental
conditions in the peri-urban crops were warmer and drier in the summer months. The
ambient temperature was in the range of 16–33 ◦C, and the relative humidity was 12–57%
(Table 1).

Table 1. Environmental growing conditions and ozone exposure in OTC and a peri-urban field.
Charcoal filter air (FA), ambient (NFA), ambient plus 20 ppb ozone (NFA+) and ambient plus 40 ppb
ozone (NFA++).

Year Ozone Exposure (Days) (O3 ppb) a-AOT 40 (ppb·h)

OTC FA NFA NFA+ NFA++ RH (%) a T (◦C) a

2019
25 (17)-0 (36)-1869 (42)-4084 (49.5)-7158
43 (17)-0 (36)-3550 (42)-8075 (49.5)-13809 59 16

Peri-Urban Field Environmental O3 Concentration

Summer (JJA) (38)-10459 29 25
43 (40)-5840 25 25.5

T: air temperature; RH: air relative humidity; (O3 ppb): ozone concentration; AOT40: accumulated ozone
concentration over 40 ppb during daylight hours. a Averages 24 h.

The concentration of ambient ozone recorded in peri-urban crops exceeded the critical
level of vegetation protection (3000 ppb·h). Ozone peaks throughout the day were recorded
between 2:00 p.m. and 6:00 p.m., coinciding with the highest values of temperature and
lowest relative humidity throughout the day.

3.2. Visible Injury

The plants of Swiss chard var. Fuenlabrada showed an unspecific discoloration
after 25 days of treatment in the OTC. These white spots were more intense in the NF++
treatment. At the end of the experiment, these spots in ozone treatments were less apparent.

In the O3 bioindicator vegetable garden, no visible damage was detected in the chard
varieties. Ozone damage was only identified in a variety of sensitive tobacco (Bel W3) (data
not shown).
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3.3. Biomass

The total production of chard was similar between different treatments. When the
marketable production was selected, a significant reduction in the harvest was detected
in the ozone treatments (p < 0.01) and a significant increase in non-commercial biomass
in NF++ treatment (p < 0.05). The harvest of chard cv. Fuenlabrada was reduced in 30%
in the NF++ and 17% in the NF+ treatment compared to the filtered air treatment harvest
(Figure 1).
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Figure 1. Swiss chard (a) commercial biomass (g dry weight plant−1); (b) total biomass:commercial
ratio. Values are means ± standard errors for ozone treatments. Charcoal filter air (FA), ambient
(NFA), ambient plus 20 ppb ozone (NFA+) and ambient plus 40 ppb ozone (NFA++).

3.4. Pigments Concentrations

Pigment analysis at 25 days of the experiment showed a 15% reduction in chlorophylls
in the NF++ treatment (p < 0.01) (data not shown). At the end of the experiment (after
43 days of exposure to different concentrations of ozone), the leaves of plants in NF++
treatment showed a significant reduction of 15% (p < 0.001) in chlorophyll concentration.
They also showed a reduction of 15% in the nitrogen index (NIB) (p < 0.01) and an increase
of 10% in the concentration of anthocyanins (p < 0.001) in plants exposed to a higher con-
centration of ozone (NF++), while no differences were obtained in flavonoids (Figure 2).
Measurements with “Dualex” in peri-urban crops at different foliar ages showed a sig-
nificant reduction in flavonoids (p < 0.001) and an increase in NBI in the youngest leaves
(p < 0.001), located in the center of the plant.
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Those measured in the field were classified according to the age and position of the leaf. E = external,
I = internal and C = center.
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3.5. Nutrient

The main nutrients in the chard leaves grown in the OTC were K, Na, Mg and Ca
(Table 2). At the end of the experiment, a significant reduction in Mg of 25% and Ca (30%)
(p < 0.05) was observed in the NF++ treatment plants. Additionally, a non-significant reduc-
tion in Mn of 10% and in Zn of 5% was observed in the same treatment. The concentration
of K was significantly higher in the plants of the NF++ treatment (p < 0.001) with respect
to NF and NF+ but not with respect to FA. The concentration of other nutrients, such as
nitrogen (N) or phosphorus (P), increased slightly with the increased exposure to ozone
(Table 2).

Table 2. p-values of ozone effects on nutrient levels and nutrient concentrations (mg/100 g DW)
in commercials leaves after 43 days of exposition to different ozone treatments. Values are
means ± standard errors for ozone treatments. The letters denote differences between ozone treat-
ments in the post hoc tests n.s. = not significant. The ozone treatments are: air with carbon filter (FA),
ambient (NFA), ambient plus ozone 20 ppb (NFA+) and ambient plus ozone 40 ppb (NFA+).

Factor N Mg Ca K Na P Fe Mn Zn Cu

O3 n.s. 0.02 0.03 0.01 n.s. n.s. n.s. n.s n.s. n.s.
FA 3482 ± 160 1370 ± 57 a 877 ± 66 a 3690 ± 137 ab 3500 ± 135 256 ± 17 21 ± 2.4 17 ± 0.9 9.16 ± 0.39 2.59 ± 0.20

NFA 3336 ± 171 1229 ± 105 b 770 ± 91 a 3145 ± 163 b 3636 ± 164 240 ± 7.6 18 ± 1.8 18 ± 1.1 9.77 ± 0.66 2.44 ± 0.22
NFA+ 3354 ± 190 1236 ± 127 b 727 ± 106 ab 3160 ± 231 b 3727 ± 201 253 ± 21 19 ± 1.3 16 ± 1.5 8.63 ± 0.91 2.37 ± 0.19
NFA++ 3836 ± 200 960 ± 60 b 541 ± 38 b 3836 ± 143 a 3240 ± 93 287 ± 15 17 ± 0.9 15 ± 1.2 8.45 ± 0.53 2.75 ± 0.17

The variation of Mg with respect to the exposure to ozone showed a high correlation
with the changes in the concentration of chlorophylls (R2 = 0.9) measured after 43 days of
exposure.

4. Discussion

The results of this study in the OTC show that the variety of chard cv. Fuenlabrada
cultivated on the outskirts of Madrid can be considered moderately sensitive to ozone. The
alteration in the concentration of pigments was detected earlier, with a lower accumulated
ozone exposure. As a result, a significant loss of marketable production and an alteration
in nutritional quality was measured at the end of the experiment in the plants exposed to
high ozone levels.

Usually, leafy crops with visible damage are often not marketable; consequently,
the production of leaf crops is reduced where ambient O3 concentration reaches high
levels [15,18,36,37]. Yield quality traits are studied in a limited number of crops.

The alterations in pigment concentrations were recorded after ozone exposure in
numerous studies [20], and the reduction in chlorophyll was detected in leafy crops [27,28].
These changes were more evident in old leaves and were dependent on the variety stud-
ied [37]. Other studies showed a seasonal response [29]. The earlier chlorophyll breakdown
could be related to a premature and accelerated senescence due to ozone [21,38]. Enhanced
senescence will also reduce photosynthesis and the length of time over which nutrients
will be extracted from the soil [39]. The response of increased anthocyanin concentration
measured in the plants exposed to high ozone leaves has been linked to the response to
oxidative stress.

Chlorophyll reduction is not a specific effect of ozone. A low concentration of chloro-
phyll is also observed in young leaves. The values obtained from anthocyanins, flavonoids,
or NBI index measured with a “Dualex device” could help to discern between the effect
of ozone and the age of the leaf. Low values of flavonoid and high-index NBI values
(measured with Dualex) were related to less leaf development. This same pattern was
observed in tobacco plants grown in the bioindicator garden.

The chlorophyll content in chard leaves was highly correlated (R2 = 0.9) with the
concentration of Mg in these plants. Both traits showed a significant reduction in NF++
treatment. These measurements were determined on green leaves without visible symp-
toms. A lower correlation value was recorded with Ca and Fe. However, an inverse
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relationship with nitrogen concentration was detected. Plants with a lower concentration
of chlorophylls have a higher concentration of nitrogen. However, the differences in N
concentration were not significant. The increase in nitrogen with exposure to ozone has
been reported in different studies, especially in wheat grains. This means that grain quality
is improved with respect to its concentration, but the amount of accumulated proteins and
minerals per unit area is reduced, which can have serious effects on human nutrition [39].

Chard has traditionally been used for its health benefits [31,32]. Regarding the mineral
content, the abundance of macro elements, such as Mg, Ca or K, and the presence of the
microelements Fe, Cu, Mn and Zn, are some of the most interesting aspects of the use of
this crop in human nutrition. Mineral deficiency is one of the causes of numerous chronic
and degenerative disorders. The consumption of a plate (200 g) of fresh Swiss chards leaves
could cover around 20% and 40% of Fe, 100% Mg and 15% of Ca (RDA) (recommended
dietary allowance). Exposure to ozone reduces the concentration of Mg, Ca or Fe by 5–20%,
causing a reduction in RDA in the diet. A similar reduction in nutrients was recorded in
palak when the plants were exposed to ozone in winter, but no differences were recorded in
summer [29]. The reductions in Mg, Ca, Fe and Zn were related to the increasing senescence
in the exposure of the leaves to ozone [38].

The OTC results in chard cv Fuenlabrada showed that this cultivar was moderately
sensitive to ozone. The first effect of ozone (chlorophyll reduction) was detected with the
accumulated ozone concentration in the range of 4000 ppb·h (AOT40). A reduction in
marketable biomass and a moderate loss of quality was detected with a cumulative ozone
concentration of 13,800 ppb·h (AOT40).

Ozone effects were not clearly detected in the field. No visible symptoms or reductions
in growth were detected, and pigment concentration values were in the range of healthy
plants. Different results could be related to the meteorological conditions and to lower
ozone exposures during the growth of the crop. In the OTC facilities, the conditions
were milder than in the peri-urban field, where very low relative humidity values were
recorded in the summer months, coinciding with the maximum ozone concentration. Drier
conditions could reduce the absorption of pollutants [20,21].

The evaluation of O3 pressure on global agriculture should include quality and nu-
tritional aspects with a direct consideration of the potential for adverse health effects and
malnutrition associated with the reduced production of proteins and a variety of minerals.
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