Previous Issue
Volume 5, December
 
 

Solar, Volume 6, Issue 1 (February 2026) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 3838 KB  
Article
Fire Behaviour of Building-Integrated Photovoltaic Claddings Under Different Cavity Conditions: Glass Failure to Ignition
by Yoon Ko, Dana Duong, Reidar Stølen and Janne Siren Fjærestad
Solar 2026, 6(1), 1; https://doi.org/10.3390/solar6010001 - 19 Dec 2025
Abstract
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results [...] Read more.
This study investigates the fire behaviour of building-integrated photovoltaic (PV) claddings, focusing on the progression from glass failure to ignition under different cavity conditions. Experimental tests were conducted on two common PV cladding types: bifacial dual-glass (GG) and monofacial glass–plastic (GP) modules. Results revealed that GP modules exhibited faster burning and higher peak heat release rates (HRR), reaching up to 600 kW, while GG modules burned more slowly with peak HRR between 50 and 100 kW. Cavity conditions, including depth, ventilation, and operational energization, were found to be vital in determining glass breakage, occurring between 400 and 550 °C, and cavity ignition and subsequent flame spread. The relationship between cavity fire dynamics and glass breakage suggests the importance of system design, particularly regarding cavity ventilation and flame barriers, for mitigating upward fire propagation. These results establish a basis for advancing numerical fire models through integration of critical parameters such as material properties, glass breakage, cavity ignition, and cavity configuration. This approach supports comprehensive real-scale analysis to guide the development of effective design recommendations, ultimately improving fire safety in PV-integrated construction. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop