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Abstract: A review of quality control for large irradiance datasets is applied as a case study for
the Southern African Universities Radiometric Network (SAURAN) database. The quality control
procedure is automated and applied to 24 stations from the database with a total of 848,189 hourly
datapoints. From this, the individual station’s data quality is also analysed. The assessment validates
the automated methodology without the need for a user-based review of the data. The SAURAN
database can play a significant role in advancing solar and wind energy; however, the number of
offline stations hinders this process. Data scarcity remains an obstacle to these goals, and therefore,
recommendations are provided to address this. Recommendations regarding each site’s usability in
time-series and discrete applications are made, which provides an overall indication of the SAURAN
database’s irradiance measurement quality. Of the 24 measuring stations assessed, eight are recom-
mended, 11 are recommended with cautious use, and five are recommended with extremely cautious
use. These recommendations are based on multiple factors, such as whether a dataset has more than
one full year of data or is missing minimal datapoints. Further, a study of the irradiance correlation
between the stations was conducted. The results indicated groupings of different stations that showed
highly correlated irradiance measurements and similar weather patterns. This is useful if a proposed
renewable energy power plant, such as PV, falls within a cluster where the data from the SAURAN
database can be used as a substitute if no data is available. SAURAN presents an opportunity for
Southern Africa to increase its research outputs in solar and wind energy and lessen its dependency
on fossil fuel-based energy production.

Keywords: quality control; data processing; automated quality control; ground-based measurements;
irradiance dataset

1. Introduction

There is a growing globalised movement to avoid fossil-fuel-based energy production
and increase the adoption of renewable energy sources. Solar photovoltaic (PV) systems
are ideal for harvesting solar energy into electrical energy. High-quality radiation measure-
ments are required for accurate designs and performance monitoring of PV systems [1,2].

Data-driven techniques such as power plant maintenance and operations, forecasting,
and designing require good-quality irradiance measurements. Ground-based data contains
periods, even if brief, of erroneous data caused by various reasons [3]. Quality control (QC)
of large irradiance datasets is therefore instrumental in ensuring the continuing growth of
PV systems. Automating these quality control procedures can speed up the process of the
life cycle phases of PV systems by removing the laborious manual QC process [2].

The Southern African Universities Radiometric Network (SAURAN) is an initiative
of the Centre for Renewable and Sustainable Energy Studies (CRSES) at Stellenbosch
University and the Group for Solar Energy Thermodynamics (GSET) at the University of
KwaZulu-Natal [4]. SAURAN aims to ‘make high-resolution, ground-based solar radio-
metric data available from stations across the Southern African region’. South African data
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can be freely obtained from SAURAN [4]. The research indicates that there has not been a
large-scale quality control assessment of the database’s irradiance measurements, and this
paper aims to address this. To the author’s knowledge, an extensive automated survey has
yet to be conducted on SAURAN in this manner.

SAURAN provides a guide and resources to QC, as per the terms of use, that the ‘data
quality is not assessed as part of the SAURAN initiative’. A QC program is provided as a
guideline for the user in Python. The program provided does not provide QC measures on
all the database stations. The program uses criteria such as the comparison of theoretical
calculations of direct normal irradiance (DNI) with the measured values, filtering lower
irradiance levels (such as values less than 5 W/m2) and assessing missing timestamps [4,5].
The suggested quality control measures provide a guideline for a semi-automatic process,
where the user must review data or add additional manual QC checks.

The goal of this paper is two-fold: to validate the automated QC methodology pro-
posed by [2] with an application to the SAURAN database and to assess the quality of
the SAURAN database. This is performed to prove that the proposed automated quality
control process is sufficient as a minimum measure for ensuring a high standard of data
quality. Each station is assessed individually to ensure that the automated QC procedure
is sufficient in removing erroneous data from a dataset. Each station is evaluated until 31
October 2022, and hourly-aggregated irradiance measurements from the database are used.
Only the hourly irradiance data, meaning the diffuse horizontal irradiance (DHI), global
horizontal irradiance (GHI) and DNI, are assessed for this study and not additional meteo-
rological measurements such as temperature, wind, and UV measurements. The evaluation
will indicate the advantages and shortcomings of large irradiance datasets and their quality
control. The SAURAN database is highlighted to further the exposure for other researchers
and users of its value to the worldwide goal of improving sustainability. A manual quality
control process and review of each datapoint of the dataset is a highly time-consuming
process and increases as the datasets get larger. Removing this step without compromising
on the overall integrity of the database is a step forward for modelling and monitoring
these systems, applicable specifically to PV and concentrating solar power.

2. Background

PV systems require solar radiation data for design and monitoring purposes. Irra-
diance measurements such as DHI, GHI and DNI are usually used for these purposes.
Common errors in irradiance datasets include errors caused by equipment, operational
problems, and data-processing errors [6]. The most general errors are the cosine response,
azimuth response, temperature response, spectral selectivity, stability, non-linearity, shade-
ring misalignment, and nocturnal long-wave radiation errors [6,7]. The interested reader is
referred to [7].

Quality control of large irradiance datasets is a critical data-processing technique
that ensures common errors are flagged and removed from the dataset. There have been
significant publications on various QC methodologies [1,3,8–13]. The Baseline Surface
Radiation Network (BSRN) recommendations by [10] are a popular QC methodology and
have been used as a proposed QC methodology in various works [3,13–16]. Most of the
research previously mentioned includes a form of user review, which can become time-
consuming as dataset sizes increase. An automated QC procedure can significantly reduce
the manual time it would have taken for the user to review the data while ensuring a high
standard of data quality [2].

Figure 1 shows the weather stations of the SAURAN network over Southern Africa.
The orange and blue dots indicate online and permanently offline stations, respectively.
The SAURAN network is supported by partners such as The Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) and the United States Agency for International
Development (USAid) [4].
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Figure 1. SAURAN stations across Southern Africa [4].

With the use of the SAURAN database, the scientific community has been gaining
traction in recently published works [17–25]. Not all authors include documented QC
measures when using the SAURAN database.

Documented QC methodologies for SAURAN data in publications include Jacovides
et al. [26] in [27], McArthur [28]’s recommendations in [29] and Long and Shi [11]’s rec-
ommendations in [30]. In Mutombo et al. [21]’s study of the Mangosuthu University of
Technology (STA) station of the SAURAN database, the authors replaced missing data
with the previous years’ averages. They combined the missing data from different years
into one year [21]. This method is not ideal, as the integrity of the data is compromised.
Sun et al. [17] exclude all abnormal GHI measurements and timestamps where the solar
zenith angle θZ exceeded 85◦ [17]. Missing timestamps were replaced with satellite data in
the report of [18]. Nwokolo et al. [31] applied QC techniques such as using the clearness
index Kt, among other indices, that fall within the range of 0 to 1 [31].

A proposed QC methodology by [2] combines four QC methodologies [1,10,26,32].
An additional tracking error test was included. The results presented in the paper showed
adequate QC capabilities for an automatic procedure, i.e., automatic elimination. The data
is flagged based on whether the data conforms to certain limits. The paper only assessed
two stations for a period from 2019 to 2021.

This paper presents an in-depth analysis of the SAURAN stations by applying the
proposed QC methodology of [2] to assess the quality of all 24 available SAURAN stations
at the time of this study, but also determine if the automated QC procedure is valid without
a user review.

3. Methodology

This study will cover 24 stations at SAURAN [4]. A network summary is discussed,
followed by the QC procedure, which will be applied to each station.

3.1. SAURAN Station Summary

SAURAN allows the download of up to one year’s data at a time and not the entire
dataset. Data averaged by minute, hour and each day is available for download and is
usually downloaded in a comma-separated values (csv) format. The stations use Kipp
& Zonen radiometers for irradiance measurements, and a detailed summary of available
measurements and equipment can be seen in Table 1 [4,9].

Table 2 provides a summary of the SAURAN stations: the location, coordinates, as well
as elevation. All data is hourly-averaged measurements and is available on the SAURAN
website as of 31 October 2022.

Table 1. Measurements and equipment of SAURAN stations [4].

Parameter Typical Instrument Unit

GHI Kipp&Zonen CMP11 pyranometer W/m2

DNI Kipp&Zonen CHP1 pyrheliometer W/m2

DHI Kipp&Zonen CMP11 pyranometer W/m2
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Table 2. SAURAN station summary [4].

Label Name (Location) Coordinates (Lat (◦S), Long (◦E)) Elevation (m)

1 CSIR CSIR Energy Centre (Pretoria, South Africa) 25.747, 28.279 1400
2 CUT Central University of Technology (Bloemfontein, South Africa) 29.121, 26.216 1397
3 FRH University of Fort Hare (Alice, South Africa) 32.785, 26.845 540
4 GRT Graaff-Reinet (Graaff-Reinet, South Africa) 32.485, 24.586 660
5 HLO Mariendal (Mariendal, South Africa) 33.854, 18.824 178
6 ILA Ilanga CSP Plant (Upington, South Africa) 28.490, 21.520 884
7 KZH University of KwaZulu-Natal Howard College (Durban, South Africa) 29.871, 30.977 150
8 KZW University of KwaZulu-Natal Westville (Durban, South Africa) 29.817, 30.945 200
9 MIN CRSES Mintek (Johannesburg, South Africa) 26.089, 27.978 1521
10 MRB Murraysburg (Murraysburg, South Africa) 31.890, 24.056 1548
11 NMU Nelson Mandela University (Gqeberha, South Africa) 34.009, 25.665 35
12 NUST Namibian University of Science and Technology (Windhoek, Namibia) 22.565, 17.075 1683
13 PMB University of KwaZulu-Natal Pietermaritzburg (Pietermaritzburg, South Africa) 29.621, 30.397 680
14 RVD Richtersveld (Alexander Bay, South Africa) 28.561, 16.761 141
15 SALT Eskom Sutherland SALT (Sutherland, South Africa) 32.378, 20.812 1761
16 STA Mangosuthu University of Technology (Umlazi, South Africa) 29.970, 30.915 95
17 SUN Stellenbosch University (Stellenbosch, South Africa) 33.935, 18.867 119
18 SUT Sutherland (Sutherland, South Africa) 32.222, 20.348 1450
19 UBG Gaborone (Gaborone, Botswana) 24.661, 25.934 1014
20 UFS University of Free State (Bloemfontein, South Africa) 29.111, 26.185 1491
21 UNV Venda (Vuwani, South Africa) 23.131, 30.424 628
22 UNZ University of Zululand (KwaDlangezwa, South Africa) 28.853, 31.852 90
23 UPR University of Pretoria (Pretoria, South Africa) 25.753, 28.229 1410
24 VAN Vanrhynsdorp (Vanrhynsdorp, South Africa) 31.617, 18.738 130
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3.2. Automated Quality Control

The proposed QC methodology by [2] suggests a time-series visualisation and removes
duplicate and missing timestamps. An automated QC methodology is applied where
erroneous datapoints are automatically eliminated from the dataset without needing a
user review.

The automatic elimination flagging procedure includes datapoints which are phys-
ically impossible (from [10]), removing timestamps where no irradiance is recorded, i.e.,
night-time values (using [1,26]) K-tests (from [32]) and tracking errors. These QC proce-
dures are well-established and used within the available literature [2].

The automatic elimination process consists of three parts: removing night-time values,
K-tests, and then the individual limits of GHI, DHI, and DNI. The K-tests involve the direct
beam transmittance Kn, diffuse transmittance Kd and Kt. These K-values are given as:

Kt =
GHI

I0n cos θZ
, (1)

Kd =
DHI
GHI

, (2)

Kn =
DNI
I0n

. (3)

I0n is the extraterrestrial irradiance on a normal surface:

I0n = ISC

(
1 + 0.033 · cos

(
360 · n

365

))
(4)

where n denotes the day of the year and ISC denotes the solar constant (1367 W/m2).
The horizontal extraterrestrial irradiance G0h is defined by:

G0h = I0n · cos θZ. (5)

GHI, DHI and DNI units are in W/m2, and all K-values (Kt, Kn and Kd) are unitless.

3.2.1. Night-Time Values

The night-time values are removed using:

GHI > 5, (6)

θZ < 85◦. (7)

Most flagged data should remove the night-time constraints where irradiance levels
are very low, and the sun is close to sunrise or sunset.

3.2.2. K-Tests

K-tests are applied by assessing the Kd, Kn and Kt-space. The BSRN tests, as well as
the K-tests, are applied as follows:

Kd < 1.05 for GHI > 50 and θZ < 75◦, (8)

Kd < 1.10 for GHI > 50 and θZ > 75◦, (9)

Kn < 0.8, (10)

Kd < 0.96 for Kt > 0.6. (11)



Solar 2023, 3 601

3.2.3. Individual Limits

The individual limits for GHI, DHI, and DNI are assessed using:

−4 < GHI < 1.5I0n(cos θZ)
1.2 + 100, (12)

−4 < DHI < 0.95I0n(cos θZ)
1.2 + 50, (13)

−4 < DNI < I0n, (14)

DHI < 0.8 · G0h, (15)

GHI − DHI < G0h, (16)

DNI < 1100 + 0.03Elev. (17)

Elev is the elevation in m.

3.2.4. Tracking Error

A tracking error is included when GHI ≈ DHI and DNI ≈ 0:

0.8 < Kd < 1.2 and Kn < 0.01. (18)

The removal of night-time values should be conducted first. This optimises the
computational processing, which will immediately exclude unusable datapoints. The
tracking error test is a proposed way of automatically deducing whether a dataset has a
tracking error.

3.3. Correlation Assessment

The stations’ irradiance relationships are assessed by analysing the subsequent cor-
relation matrix. An analysis of highly correlated stations identifies areas within Southern
Africa with similar irradiance patterns. Potential PV plant locations within these areas can
use the SAURAN database if no on-site irradiance data is available. This was performed by
assessing the stations’ overlapping timestamps, as shown in Figure 2. Therefore, stations
with no overlapping timestamps will not have a calculated correlation.

Figure 2. Overlapping periods of stations within SAURAN database.
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The Pearson correlation coefficient ρ indicates the correlation between data and is
defined as:

ρ =
∑(xi − x̄)(yi − ȳ)√(

∑(xi − x̄)2
)(

∑(yi − ȳ)2
) (19)

where xi and yi is the i-th measurement of the x and y variables, and x̄ and ȳ are the mean
of the values of the x and y variables.

Therefore, closer to −1 has a negative correlation, meaning if one variable increases,
the other decreases. In contrast, closer to 1 has a positive correlation, meaning if one
variable increases, the other would also [33].

4. SAURAN Database Review

Figures 3 and 4 show a practical example of applying the QC procedure to a dataset.
Each figure shows a period in the dataset where data has been automatically flagged
as erroneous. Underneath the time-series visualisation, the different flags according to
Sections 3.2.1–3.2.4 are highlighted if the automatic QC process has flagged them.

Figure 3. Application of quality control procedure: identifying faulty data.

Figure 4. Application of quality control procedure: identifying tracking error.

Figure 3 shows substantial datapoints flagged as missing data. Night-time datapoints
were flagged as expected, as well as the individual limits and K-tests. It is clear from the
figure that there are faulty measurements in this dataset, which the QC procedure has
automatically flagged.

Figure 4 has no missing data, and the night-time datapoints were also flagged as
expected. It is visually evident in Figure 4 that a tracking error starts to occur on the third
day, which was automatically flagged by the K-tests and tracking error flag. In comparison,
the first day in Figure 4 shows how the very low irradiance levels at sunrise and sunset are
triggered by the different flags that will be removed from the dataset accordingly.

The observed trend is that if there is faulty data, it is usually flagged by more than one
limit. The QC process is, therefore, also useful as a real-time monitoring tool to identify
any faulty measurement tools and correct them accordingly. The individual stations will
show the missing, night-time datapoints and the other corresponding flags, as discussed in
Sections 3.2.2–3.2.4.
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Each station is assessed on an individual level. A time-series visualisation of the
dataset is presented, which shows how the automatic QC procedure flags the erroneous
data. Three groupings of flagged data are presented:

1. missing data;
2. night-time values;
3. and K-tests, individual limits and tracking error.

This is performed to present a visual tool for how the QC process works to identify
erroneous data. An overall summary of the SAURAN network data is tabulated with
recommendations for the usability and quality of each station. Table 3 summarises the
stations’ dataset sizes before and after QC, as well as the start and end dates of the datasets.
This study assesses 848,189 hourly datapoints from the SAURAN database.

Table 3. SAURAN datasets [4].

Station

Dataset Size

Start Date End DateBefore QC
Night-Time &

Duplicates
Removed

Other Flags
Removed After QC

CSIR 46,434 26,539 9560 (21%) 16,979 (37%) 11 March 2017 31 October 2022
CUT 28,077 14,619 2737 (10%) 11,882 (42%) 24 October 2017 31 October 2022
FRH 40,895 22,233 8148 (20%) 14,085 (34%) 7 February 2017 24 February 2022
GRT 18,541 9774 2438 (13%) 7336 (40%) 27 November 2013 24 January 2016
HLO 21,532 11,728 3503 (16%) 8225 (38%) 8 October 2015 27 October 2020
ILA 8832 4676 1057 (12%) 3619 (41%) 13 October 2021 31 October 2022
KZH 52,323 38,898 29,612 (57%) 9286 (18%) 7 December 2015 07 August 2022
KZW 20,291 10,756 4503 (22%) 6253 (31%) 7 December 2015 12 December 2018
MIN 8185 4423 1308 (16%) 3115 (38%) 28 October 2021 31 October 2022
MRB 4201 2462 850 (20%) 1612 (38%) 17 March 2017 22 October 2019
NMU 39,969 23,130 11,171 (28%) 11,959 (30%) 10 December 2015 30 September 2022
NUST 52,004 27,401 6096 (12%) 21,305 (41%) 26 July 2016 31 October 2022
PMB 9773 5415 2337 (24%) 3078 (31%) 13 July 2021 31 October 2022
RVD 63,716 34,457 8234 (13%) 26,223 (41%) 27 March 2014 28 July 2021
SALT 14,151 9908 7526 (53%) 2382 (17%) 21 July 2017 22 December 2020
STA 40,256 21,751 10,413 (26%) 11,338 (28%) 7 December 2015 19 April 2021
SUN 87,720 47,733 14,304 (16%) 33,429 (38%) 24 May 2010 31 October 2022
SUT 1715 902 115 (7%) 787 (46%) 8 February 2017 20 April 2017
UBG 38,917 20,646 6534 (17%) 14,112 (36%) 26 November 2014 6 November 2020
UFS 31,665 17,152 4060 (13%) 13,092 (41%) 16 January 2014 30 August 2017
UNV 59,100 33,144 15,226 (26%) 17,918 (30%) 23 April 2015 31 October 2022
UNZ 56,399 30,373 18,953 (34%) 11,420 (20%) 11 July 2014 31 October 2022
UPR 78,792 42,128 10,464 (13%) 31,664 (40%) 19 September 2013 31 October 2022
VAN 24,701 13,234 3414 (14%) 9820 (40%) 26 August 2016 10 July 2019

4.1. Quality Control of SAURAN Stations

An automated quality control procedure is applied to each station of the SAURAN
database. Each station is discussed and summarised, and a final recommendation is given
in Section 5.

4.1.1. CSIR

The CSIR Energy Centre (CSIR) station is in Pretoria, South Africa. The location’s
information is described in Table 2. The earliest available data is from March 2017, and
the station is shown as currently online [4]. The pre-processed CSIR data are shown in
Figure 5, with the flags triggered by the automated QC procedure. Unusually high DHI
measurements and physically impossible DHI measurements are noticed. There are also
two significant gaps in the dataset, which have been flagged accordingly. These datapoints
will be removed from the dataset accordingly.



Solar 2023, 3 604

Figure 5. Pre-processed CSIR station with flagged datapoints.

4.1.2. CUT

The Central University of Technology (CUT) station is in Bloemfontein, South Africa
(see Table 2 for information regarding the station’s geographical information). Available
data starts from October 2017, and the station is currently online [4]. Figure 6 visualises
the pre-processed CUT dataset and how the QC procedure has flagged the dataset. There
are significant missing data gaps in the set, and it would be ideal to have at least one
year’s worth of quality data available for research applications. The K-tests do not entirely
encapsulate faulty DHI measurements around December 2012—a flaw of the automated
QC procedure. However, the automated QC does remove the greater majority of faulty
measurements.

Figure 6. Pre-processed CUT station with flagged datapoints.

4.1.3. FRH

The USAid University of Fort Hare (FRH) station is in Alice, South Africa, and the
station’s geographical description is in Table 2. The data is available from February 2017,
and the station is permanently offline from February 2022 [4]. Figure 7 visualises the
pre-processed FRH dataset with the associated flagged data. A tracking error was observed
during 2017, and there is a significant missing data period. The QC procedure successfully
identifies the erroneous data by flagging them accordingly.

Figure 7. Pre-processed FRH station with flagged datapoints.
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4.1.4. GRT

The GIZ Graaff-Reinet (GRT) station is situated in Graaff-Reinet, South Africa, and the
stations’ geographical properties are described in Table 2. Data is available from November
2013 to January 2016 and is permanently offline [4]. Figure 8 visualises the pre-processed
GRT dataset. Other than the small missing data gap, the dataset has no obvious flaws.

Figure 8. Pre-processed GRT station with flagged datapoints.

4.1.5. HLO

The Mariendal (HLO) station is located in Mariendal, South Africa, and the geographi-
cal description is summarised in Table 2. The dataset spans from October 2015 until October
2020 and is permanently offline [4]. Figure 9 visualises the pre-processed HLO dataset.
There are significant gaps in the data and unusual measurements visible. There is not an
entire year’s worth of data available.

Figure 9. Pre-processed HLO station with flagged datapoints.

4.1.6. ILA

The Ilanga CSP plant (ILA) is situated in Upington, South Africa, and its geographical
properties are listed in Table 2. The pre-processed dataset of ILA with the associated flags
is presented in Figure 10. Data is available from October 2021 onwards, and the station
is online [4]. It is noted that the station has very low DHI measurements in general. The
station is relatively new, and the flagged data combined with the visualised time series
shows that there is not one reliable year’s worth of data available.

Figure 10. Pre-processed ILA station with flagged datapoints.



Solar 2023, 3 606

4.1.7. KZH

The University of KwaZulu-Natal Howard College (KZH) station is in Durban, South
Africa, and the geographical location is described in Table 2. Figure 11 visualises the
pre-processed KZH dataset. Data is available from December 2015 to August 2022, but
there is a significant amount of missing data and the dataset is unreliable from June 2019 to
August 2022. The station is permanently offline [4].

Figure 11. Pre-processed KZH station with flagged datapoints.

4.1.8. KZW

The University of KwaZulu-Natal Westville (KZW) station is located in Durban, South
Africa, and its geographical properties are listed in Table 2. Data is available from December
2015 to December 2018, and the station is permanently offline [4]. Figure 12 visualises the
pre-processed KZW dataset. There are physically impossible DNI measurements and a
noticeable gap in the dataset.

Figure 12. Pre-processed KZW station with flagged datapoints.

4.1.9. MIN

The Mintek (MIN) station is located in Johannesburg, South Africa, and its geographi-
cal description is in Table 2. The dataset has data available from October 2021 onwards and
is currently online [4]. The pre-processed MIN dataset is shown in Figure 13. A tracking
error was observed at the end of 2021. The MIN station is relatively new, and there is not
one reliable year’s worth of data available.

Figure 13. Pre-processed MIN station with flagged datapoints.
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4.1.10. MRB

The GIZ Murraysburg (MRB) station is located in Murraysburg, South Africa, and
its geographical properties are listed in Table 2. Data is available from March 2017 until
October 2019; however, it should be noted that there is considerable missing data from
5 September 2017 onwards. Figure 14 visualises the pre-processed dataset. The dataset is
empty for most of 2018 and 2019, with a few singular datapoints in 2019. The dataset is not
ideal as there is not a complete year available.

Figure 14. Pre-processed MRB station with flagged datapoints.

4.1.11. NMU

The Nelson Mandela University (NMU) is located in Gqeberha (previously known as
Port Elizabeth), South Africa, and Table 2 describes the geographical location properties.
Data is available from December 2015 to September 2022, and the station is permanently
offline [4]. In Figure 15, the pre-processed NMU dataset indicates obvious missing data
gaps, tracking errors, and unusually high DNI measurements. There is not a complete year
available in the dataset.

Figure 15. Pre-processed NMU station with flagged datapoints.

4.1.12. NUST

The USAid Namibian University of Science and Technology (NUST) is located in
Windhoek, Namibia, and Table 2 summarises the geographical properties of the station.
Data is available from July 2016, and the station is currently online [4]. Figure 16 visualises
the pre-processed dataset. Low DHI measurements are observed, which could be attributed
to the locations’ climate, and a tracking error was observed in 2021.
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Figure 16. Pre-processed NUST station with flagged datapoints.

4.1.13. PMB

The University of KwaZulu-Natal Pietermaritzburg (PMB) station is located in Pieter-
maritzburg, South Africa, and its geographical properties are listed in Table 2. Data is
available from July 2021, and the station is currently online [4]. Figure 17 shows the pre-
processed dataset. The station is relatively new, and there are missing data periods. Thus, a
full year’s worth of data is unavailable in the figure.

Figure 17. Pre-processed PMB station with flagged datapoints.

4.1.14. RVD

The Richtersveld (RVD) station is located in Alexander Bay, South Africa, and Table 2
describes the station’s geographical properties. Data is available from March 2014 to July
2021, and the station is permanently offline [4]. Figure 18 visualises the pre-processed
dataset. Other than the tracking error where DHI ≈ GHI is observed for an interval
at the end of 2019, there seem to be minimal additional problems with the dataset. The
QC procedure removes most of the faulty data. However, it was noted that there were
suspicious DHI data for a short period, which the K-tests and Individual Limits tests did
not flag.

Figure 18. Pre-processed RVD station with flagged datapoints.

4.1.15. SALT

The Eskom Sutherland SALT (SALT) station is located in Sutherland, South Africa,
and Table 2 describes the location. Data is available from July 2017 to December 2020, and
the station is permanently offline [4]. The previous station, abbreviated as SUT, has data
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available from February 2017 to April 2017 [4] and will be discussed separately due to the
location change. Figure 19 visualises the SALT dataset. The dataset is incomplete, especially
after applying the QC procedure, when the tracking error (DHI ≈ GHI) is removed.

Figure 19. Pre-processed SALT station with flagged datapoints.

4.1.16. STA

The STA station is located in Umlazi, South Africa, and the geographical properties are
described in Table 2. Data is available from December 2015 to April 2021, and the station is
permanently offline [4]. Figure 20 visualises the pre-processed dataset. There are unusual
DNI measurements that indicate that the data is faulty. A tracking error is also observed
where DHI ≈ GHI. After the QC steps are applied, as shown in Figure 20, the tracking
error is not entirely removed. This could be because of faulty DNI measurements. The GHI
and DHI data are still usable for applications.

Figure 20. Pre-processed STA station with flagged datapoints.

4.1.17. SUN

The Stellenbosch University (SUN) station is located in Stellenbosch, South Africa,
and its geographical description is in Table 2. Data is available from May 2010 and is
currently online [4]. Figure 21 visualises the pre-processed dataset. There are unusually
high DNI measurements and prominent gaps in the dataset, specifically from 2010 to 2013.
The K-tests and Individual Limit tests do not entirely remove faulty DHI, as with the CUT
and RVD datasets; however, most faulty data was removed.

Figure 21. Pre-processed SUN station with flagged datapoints.
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4.1.18. SUT

The Sutherland (SUT) station is located in Sutherland, South Africa, and its geograph-
ical properties are listed in Table 2. Data is available from February to April 2017, after
which it was moved to the SALT station [4]. The pre-processed dataset is visualised in
Figure 22. The dataset does not include an entire year’s worth of data; however, the dataset
presented does have minimal missing data.

Figure 22. Pre-processed SUT station with flagged datapoints.

4.1.19. UBG

The USAid Gaborone (UBG) station is located in Gaborone, Botswana, and its ge-
ographical properties are described in Table 2. Data is available from November 2014
until November 2020, and the station is permanently offline [4]. Figure 23 visualises the
pre-processed UBG dataset. There is missing data in the dataset and unusually high DHI
measurements. A period of a tracking error is noticeable (where DHI ≈ GHI). The QC
steps remove these errors, except for the extremely low irradiance not flagged by the
automated QC steps.

Figure 23. Pre-processed UBG station with flagged datapoints.

4.1.20. UFS

The GIZ University of Free State (UFS) is situated in Bloemfontein, South Africa, and
the geographical information is shown in Table 2. Data is available from January 2014
until August 2017, and the station is permanently offline [4]. Figure 24 visualises the
pre-processed UFS dataset. There are no apparent flaws in the dataset.

Figure 24. Pre-processed UFS station with flagged datapoints.
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4.1.21. UNV

The USAid Venda (UNV) station is in Vuwani, South Africa, and Table 2 describes
its geographical properties. Data is available from April 2015 onwards and is currently
online [4]. Figure 25 visualises the pre-processed dataset. The dataset has missing data
and unusually high DHI and DNI measurements. The dataset has more than one full year
of data.

Figure 25. Pre-processed UNV station with flagged datapoints.

4.1.22. UNZ

The University of Zululand (UNZ) station is located in KwaDlangezwa, South Africa,
and Table 2 describes its geographical location. Data is available from July 2014 and is
currently online [4]. Figure 26 visualises the pre-processed dataset. A significant period of
a tracking error is noticeable (where DHI ≈ GHI).

Figure 26. Pre-processed UNZ station with flagged datapoints.

4.1.23. UPR

The University of Pretoria (UPR) station is situated in Pretoria, South Africa, and its
geographical properties are listed in Table 2. Data is available from September 2013 and is
currently online [4]. Figure 27 visualises the pre-processed dataset where a tracking error
where DHI ≈ GHI is noted for a short period.

Figure 27. Pre-processed UPR station with flagged datapoints.
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4.1.24. VAN

The GIZ Vanrhynsdorp (VAN) station is situated in Vanrhynsdorp, South Africa, and
Table 2 describes its geographical properties. Data is available from August 2016 until
July 2019, and the station is permanently offline [4]. Figure 28 visualises the pre-processed
dataset. There is a tracking error visible where the DHI ≈ GHI.

Figure 28. Pre-processed VAN station with flagged datapoints.

4.2. SAURAN Data Correlation Assessment

Table 4 shows the correlation matrix for the DNI of the different stations. The darker
shades of blue in Tables 4–6 indicate a higher positive correlation. As discussed in Section
3.3, the relationships were analysed according to overlapping periods, as visualised in
Figure 2. Noteworthy correlations are the CSIR and UPR stations, HLO and SUN stations
and the KZH and KZW stations. These stations are very geographically close.

Table 4. DNI correlation matrix.
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CSIR 1.00
CUT 0.37 1.00
FRH 0.20 0.34 1.00
GRT 1.00
HLO 0.01 0.18 0.19 0.44 1.00
ILA 0.25 0.37 0.05 1.00
KZH 0.33 0.29 0.24 0.19 0.07 1.00
KZW 0.28 0.28 0.21 0.26 0.07 0.90 1.00
MIN 0.68 0.42 0.10 0.21 1.00
MRB 0.27 0.09 0.49 0.36 0.18 0.15 1.00
NMU 0.12 0.23 0.37 −0.04 0.29 0.27 0.15 0.12 0.05 0.51 1.00
NUST 0.26 0.31 0.18 0.13 0.47 0.16 0.09 0.23 0.35 0.18 1.00
PMB 0.41 0.40 0.10 0.21 0.38 0.18 0.18 1.00
RVD 0.06 0.19 0.18 0.29 0.39 0.07 0.03 0.33 0.25 0.27 0.11 1.00
SALT 0.18 0.36 0.28 0.37 0.11 0.12 0.69 0.34 0.27 0.40 1.00
STA 0.01 0.07 0.01 −0.05 0.00 0.08 0.09 −0.12 −0.02 0.00 −0.10 0.04 1.00
SUN −0.05 0.11 0.13 0.29 0.92 0.21 0.03 0.01 −0.09 0.33 0.25 0.09 0.03 0.37 0.35 0.01 1.00
SUT 0.03 0.22 0.67 0.07 0.10 0.50 0.28 0.11 0.44 −0.14 0.44 1.00
UBG 0.40 0.42 0.21 0.26 0.11 0.27 0.24 0.29 0.12 0.23 0.16 0.28 0.00 0.07 0.15 1.00
UFS 0.51 0.28 0.33 0.28 0.29 0.28 0.49 0.24 0.36 0.24 0.44 0.03 0.18 0.28 0.43 1.00
UNV 0.36 0.15 0.13 0.16 −0.03 −0.07 0.14 0.14 0.41 0.13 0.02 0.16 0.14 0.03 0.13 −0.03 −0.08 0.15 0.39 0.20 1.00
UNZ 0.35 0.23 0.18 0.16 0.07 0.03 0.58 0.57 0.21 0.12 0.11 0.12 0.52 0.05 0.13 0.01 0.00 0.24 0.31 0.25 0.28 1.00
UPR 0.95 0.38 0.21 0.17 0.03 0.23 0.32 0.28 0.72 0.28 0.10 0.27 0.37 0.06 0.15 0.00 −0.04 0.06 0.51 0.38 0.39 0.38 1.00
VAN 0.04 0.18 0.20 0.57 0.05 0.02 0.45 0.32 0.16 0.50 0.57 −0.04 0.58 0.66 0.08 0.19 −0.03 0.00 0.01 1.00

In Table 5, the correlation matrix for the GHI is presented. The GHI of most stations
are relatively correlated; however, noteworthy-correlated groupings are CSIR-MIN-UPR,
KZH-KZW-STA, CUT-MRB-SALT and VAN-HLO-RVD-SUN-SUT. The GHI correlation
analysis by Farmer and Rix shows similar results [34].
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Table 5. GHI correlation matrix.
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CSIR 1.00
CUT 0.85 1.00
FRH 0.81 0.86 1.00
GRT 1.00
HLO 0.72 0.80 0.79 0.82 1.00
ILA 0.82 0.88 0.82 1.00
KZH 0.84 0.83 0.82 0.79 0.71 1.00
KZW 0.81 0.80 0.78 0.79 0.68 0.96 1.00
MIN 0.94 0.84 0.81 0.81 1.00
MRB 0.85 0.94 0.89 0.85 0.78 0.78 1.00
NMU 0.78 0.85 0.90 0.86 0.84 0.86 0.79 0.78 0.78 0.89 1.00
NUST 0.76 0.80 0.75 0.78 0.87 0.69 0.65 0.75 0.85 0.77 1.00
PMB 0.86 0.83 0.85 0.76 0.85 0.79 0.68 1.00
RVD 0.73 0.80 0.79 0.84 0.90 0.70 0.67 0.85 0.84 0.86 0.65 1.00
SALT 0.80 0.86 0.85 0.88 0.74 0.73 0.95 0.89 0.84 0.89 1.00
STA 0.85 0.83 0.84 0.76 0.74 0.96 0.94 0.83 0.82 0.70 0.72 0.73 1.00
SUN 0.68 0.77 0.78 0.84 0.97 0.84 0.70 0.67 0.67 0.82 0.83 0.77 0.65 0.90 0.87 0.72 1.00
SUT 0.73 0.79 0.95 0.72 0.70 0.88 0.85 0.78 0.91 0.75 0.91 1.00
UBG 0.90 0.88 0.84 0.84 0.81 0.83 0.80 0.89 0.82 0.81 0.81 0.89 0.84 0.78 0.78 1.00
UFS 0.90 0.83 0.87 0.83 0.83 0.83 0.91 0.85 0.80 0.81 0.90 0.85 0.80 0.81 0.88 1.00
UNV 0.86 0.81 0.77 0.79 0.68 0.73 0.80 0.78 0.85 0.78 0.75 0.72 0.82 0.70 0.75 0.80 0.65 0.74 0.86 0.81 1.00
UNZ 0.88 0.83 0.84 0.77 0.71 0.69 0.90 0.90 0.81 0.80 0.80 0.68 0.88 0.67 0.76 0.91 0.67 0.74 0.83 0.82 0.83 1.00
UPR 0.97 0.86 0.82 0.79 0.72 0.81 0.83 0.81 0.93 0.86 0.79 0.76 0.85 0.73 0.80 0.84 0.69 0.71 0.90 0.86 0.86 0.85 1.00
VAN 0.74 0.81 0.80 0.93 0.70 0.67 0.87 0.87 0.82 0.94 0.92 0.73 0.93 0.94 0.81 0.81 0.68 0.71 0.73 1.00

Table 6 shows the correlation matrix of the DHI of the SAURAN database. Based on
the GHI and DNI correlation matrix, the CSIR is highly correlated with MIN and UPR.
Further, the SUN and HLO stations are highly correlated, as well as the KZH-KZW-STA
grouping.

Table 6. DHI correlation matrix.
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CSIR 1.00
CUT 0.43 1.00
FRH 0.35 0.39 1.00
GRT 1.00
HLO 0.21 0.22 0.27 0.53 1.00
ILA 0.33 0.31 0.12 1.00
KZH 0.45 0.36 0.34 0.21 0.23 1.00
KZW 0.43 0.34 0.33 0.30 0.27 0.93 1.00
MIN 0.85 0.57 0.31 0.32 1.00
MRB 0.30 −0.10 0.49 0.22 0.16 0.18 1.00
NMU 0.25 0.26 0.53 0.42 0.36 0.17 0.26 0.28 0.32 0.44 1.00
NUST 0.39 0.33 0.23 0.24 0.45 0.29 0.26 0.36 0.19 0.21 1.00
PMB 0.51 0.48 0.30 0.26 0.47 0.25 0.27 1.00
RVD 0.19 0.17 0.20 0.23 0.35 0.18 0.17 0.22 0.21 0.24 0.09 1.00
SALT 0.22 0.27 0.22 0.33 0.17 0.21 0.55 0.32 0.21 0.37 1.00
STA 0.44 0.34 0.36 0.15 0.22 0.91 0.87 0.17 0.27 0.29 0.18 0.17 1.00
SUN 0.16 0.19 0.24 0.28 0.94 0.19 0.15 0.16 0.17 0.18 0.27 0.18 0.13 0.29 0.33 0.16 1.00
SUT 0.04 0.17 0.50 0.06 0.11 0.53 0.15 0.21 0.36 0.04 0.28 1.00
UBG 0.62 0.50 0.30 0.27 0.21 0.40 0.43 0.23 0.25 0.41 0.19 0.26 0.39 0.14 0.15 1.00
UFS 0.55 0.32 0.31 0.36 0.40 0.41 0.49 0.33 0.49 0.28 0.16 0.40 0.22 0.28 0.50 1.00
UNV 0.51 0.30 0.34 0.23 0.15 −0.03 0.33 0.34 0.42 0.17 0.27 0.29 0.35 0.12 0.20 0.33 0.12 0.14 0.51 0.33 1.00
UNZ 0.45 0.30 0.33 0.27 0.21 0.16 0.68 0.70 0.45 0.14 0.23 0.24 0.65 0.15 0.15 0.63 0.11 0.17 0.47 0.35 0.42 1.00
UPR 0.98 0.44 0.35 0.30 0.19 0.33 0.46 0.46 0.86 0.31 0.26 0.41 0.48 0.18 0.18 0.44 0.15 0.12 0.68 0.48 0.52 0.52 1.00
VAN 0.19 0.20 0.24 0.56 0.18 0.18 0.39 0.30 0.20 0.38 0.59 0.18 0.54 0.59 0.14 0.23 0.07 0.12 0.15 1.00

5. Discussion
5.1. Data Quality and Recommendations

Table 7 shows a summary and recommendation for each SAURAN measuring station.
The following recommendation titles are: recommended, use with caution and use with extreme
caution. In Table 7, the checkmarks (3) and crossmark (7) represent whether the criteria are
met or unmet, respectively.
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Table 7. SAURAN station recommendations.

Station
Summary

RecommendationMinimum One
Complete Year

Minimal Missing
Data Currently Online 1

CSIR 3 7 3 Recommended
CUT 7 7 3 Use with caution
FRH 3 7 7 Recommended
GRT 3 3 7 Recommended
HLO 7 7 7 Use with caution
ILA 7 3 3 Use with caution
KZH 3 7 7 Recommended
KZW 7 7 7 Use with caution
MIN 7 7 3 Use with caution
MRB 7 7 7 Use with extreme caution
NMU 7 7 7 Use with extreme caution
NUST 3 7 3 Recommended
PMB 7 7 3 Use with caution
RVD 3 3 7 Recommended
SALT 7 7 7 Use with extreme caution
STA 7 7 7 Use with extreme caution
SUN 3 7 3 Use with caution
SUT 7 3 7 Use with extreme caution
UBG 3 7 7 Use with caution
UFS 3 3 7 Recommended
UNV 3 7 3 Use with caution
UNZ 3 7 3 Use with caution
UPR 3 3 3 Recommended
VAN 3 7 7 Use with caution

1 Station status as viewed on 4 November 2022

Recommended states that the data should be used for applications after applying the
QC procedure. These are datasets with minimal missing data and at least one complete
year of data available. This assessment is based on all three irradiance components (DNI,
DHI and GHI).

Use with caution suggests that the user should consider discrete data applications rather
than time-series applications, as well as implementing shorter intervals of monitoring or
modelling applications. The data is not ideal for long-term monitoring and performance
modelling. These datasets have missing data or multiple incomplete years of data. As with
the Recommended criteria, these are based on all three irradiance components.

Use with extreme caution is unusable for time-series and long-term monitoring/modelling
applications due to significant gaps in the data after applying the QC procedure; however,
it can be used for shorter-term applications. For time-series applications, removing incom-
plete months from the dataset is recommended. The user can also consider interpolating
the data based on historical trends, but it can be difficult if a considerable amount of data
is unavailable or faulty. At least one full year’s data is required to represent the weather
patterns. Incomplete annual hourly data can result in seasonally biased models. A concern
worth noting is how to perform quality control on datasets that do not consist of all three
irradiance measurements. Significant tracking error data can still be utilised when only the
GHI is used.

Eight stations (CSIR, FRH, GRT, KZH, NUST, RVD, UFS and UPR) are recommended
for most data-driven applications. Eleven stations (CUT, HLO, ILA, KZW, MIN, PMB, SUN,
UBG, UNV, UNZ and VAN) are recommended with caution meaning that the user should
apply a QC assessment and scrutinise the data. Five stations (MRB, NMU, SALT, STA and
SUT) are recommended with extreme caution for data-driven applications. The network
has ten online stations: CSIR, CUT, ILA, MIN, NUST, PMB, SUN, UNV, UNZ and UPR.
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5.2. Irradiance Patterns

Figure 29 shows the distribution of the highly correlated stations across Southern
Africa, highlighted in blue. The criteria for these clusters are based on the correlation of the
irradiance patterns concerning each station.

Figure 29. Highly and moderately correlated SAURAN stations indicated with blue and orange,
respectively [4].

Due to its close location proximity to other nearby stations, it is assumed that the
following clusters have highly correlated irradiance patterns:

• RVD-VAN-SUT-SALT-HLO-SUN;
• SUT-SALT-MRB-UFS-CUT;
• PMB-STA-KZW-KZW-UNZ;
• UPR-CSIR-MIN.

Some relationships could be closely linked based on their location. The following
groupings, which have relatively highly correlated GHI but moderate correlations with
DHI and DNI, are shown in Figure 29 in orange:

• GRT-FRH-NMU;
• NUST-RVD-VAN;
• UBG-UPR-CSIR.

The correlation assessment of stations can be used, for example, in the design, mod-
elling and monitoring phases of renewable energy systems if on-site data is not available.
The spatial relationships can also assist renewable energy providers in the spatial mapping
of PV systems across the Southern African region.

6. Conclusions

This paper presented a case study of the SAURAN network by assessing an auto-
mated quality control procedure. The 24 stations from the SAURAN database up to 31
October 2022 were evaluated using a quality control procedure. An in-depth summary of
the individual stations is discussed with usage recommendations, which can provide an
overall assessment of the quality of the SAURAN database. The results showed that the
automated QC methodology is sufficient in removing erroneous data. The proposed QC
methodology has only been applied to scenarios where all three irradiances, DHI, GHI and
DNI, are available. However, this is only feasible when expensive equipment is available
for measuring and storing data. For a minimum procedure, the authors propose that if only
one of the irradiance components is available, the applicable tests can only be applied to
that irradiance. For example, the GHI-only tests are then applied to GHI.

The proposed QC procedure is especially beneficial in identifying faulty measure-
ment equipment during a real-time monitoring application: consecutively flagged data,
excluding night-time measurements, is a quick and easy way to identify system errors.
The recommendation is that more than six consecutive hourly flagged datapoints within
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daylight hours can indicate that the measurement equipment is faulty and should be
addressed.

The SAURAN network presents an incredible opportunity to increase the research
development of PV systems in South Africa. However, many of the stations have been
switched offline permanently. Reasons for switching off weather stations could be due to
the lack of funding to keep these stations operational and the lack of workforce to keep the
network up to date. This hinders the development of accurate models and research and
development in PV systems in developing countries. South Africa is heavily investing in
renewable energy generation, and advanced research will only decrease its dependency on
fossil fuel-based power generation. Doing so will reduce the country’s carbon footprint
and its contribution to climate change. The SAURAN network significantly contributes
to global research output, and the continuation of good-quality data in the network is of
utmost importance.
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