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Abstract: This paper presents the simulation of the novel prototype of a heterojunction perovskite
solar cell (PSC) based on CSGeI2Br/CSGeI3. The device consists of two absorber layers (CSGeI2Br,
CSGeI3), an electron transport layer (ETL) chosen as TiO2 and a hole transport layer (HTL) given as
poly(3-hexylthiophene) (P3HT). Within the simulation, the effects of thickness, doping and defect
density in each absorber layer and different back contact metal electrodes on electrical parameters
(efficiency, short circuit current, open circuit voltage, and fill factor) are evaluated. In addition, the
contribution of the HTL (doping density and thickness), temperature, shunt and series resistance
were also checked on the same electrical parameters. The simulations are conducted in standard
test conditions with the irradiation normalized as 0.1 W/cm2 using the SCAPS-1D platform. The
maximum efficiency obtained within the simulation of this device was about 31.86%. For this device,
the thickness of the CSGeI3 layer should be around 900 nm, while that of the CsGeI2Br should be
around 100 nm to facilitate optimal absorption of the incident photons. The doping density in the
absorber layer is such that in CsGeI3 should be around 1018 cm−3 and around 1016 cm−3 in the
CsGeI2Brlayer. The defects densities in both layers of the perovskite materials should be around
1014 cm−3. Concerning the HTL, the thickness and the doping density of the P3HT should be around
50 nm and 1018 cm−3, respectively. In terms of the back contact electrode, the work function of the
metal should be at least equal to 5 eV, corresponding to gold (Au) metal. The series resistance due to
the connection of the cell to the external load should be very small, while the shunt resistance due to
the leakage current in the solar cell should be high. Furthermore, the operating temperature of the
new PSC should be maintained at an ambient level of around 25 ◦C in order to deliver high efficiency.

Keywords: SCAPS-1D; perovskite; heterojunction; electrical parameters; simulation

1. Introduction

For decades, the major sources of energy used by humans—fossil fuels—have been
polluting the environment. They cause serious climate change due to greenhouse gases
ejected into the environment. From this perspective, the development of non-polluting
energy sources such as thermoelectric energy [1], wind energy [2], and photovoltaic en-
ergy [3], to name a few, should be developed on a large scale in order to solve this problem.
Given the abundance of solar radiation arriving per second on Earth, photovoltaic (PV)
energy appears to be a viable solution. This energy is obtained by the direct transformation
of light into electricity through a PV cell. Generally, a PV cell is made up of a combination
of N- and P-type semiconductors [4]. Most PV technologies around the world are based on
silicon due to its abundance and also its high stability (mechanical and thermal). While still
the best in the market, silicon-based PV solar cells are not readily accessible to low-income
population groups due to their high cost of manufacturing. Fortunately, perovskite solar
cells (PSC) meet low-cost and high-efficiency requirements of PV technology that can be
up scaled to meet the energy demands of low incomes communities. However, one of the
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main challenges of PSCs is their stability (thermal and mechanical). Thus, many efforts
have been made such that the efficiency of PCS has increased from 3% in 2006 to about
20% in 2020 [5–9].

However, a PSC is generally made up of three main parts. The first is the electron
transport layer (ETL). This layer is N-doped (donor) and responsible for removing the
photoelectron produced in the absorber layer by the incoming photon flux. Several ETL
materials are mentioned in the literature: these include TiO2, Cd1−xZnxS, ZnO and SnO2
[10–14]. Secondly, there is the hole transport layer (HTL). This layer is P-doped (acceptor),
and it promotes the extraction of holes from the absorber layer: such that CuI, CuO, P3HT,
Spiro-OMeTAD, Cu2O, CuSCN and CuSbS2 [15–17]. The third main layer sandwiched
between the HTL and ETL is the absorber layer made up of perovskite material. This is
where the photo-generation of the electron–hole pair takes place. Perovskite materials
offer many advantages. Depending on the composition of the material, the band gap of
the perovskite material can easily be turned and, therefore, the absorption coefficient also.
Perovskites are fairly easy and relatively cheap to manufacture and do not necessarily
need processing energy, such as in the case of silicon solar cells. However, most PSCs are
still based on toxic materials, such as lead (Pb), and corrosive materials, such as methyl-
ammonium (MA) and formamidinium (FA) [18–24], due to their high efficiency. In this
regard, very few researchers have developed homojunction (single absorber layer) PSC with
less corrosive and without the toxic element in the absorber layer such that Cs2GeSnCl6 [25],
Cs2GeSnBr6 [26], CsSnBr3 [27], and A2NiMnO2(A=La, Eu and Dy) [28] just to name few.
However, very few researchers have focused their attention on the CsGeIxBr3−x perovskite
material due to its band gap, which can be tuned depending on the iodine composition and
its high thermal stability up to 350 ◦C [29]. Thus, Miah et al. simulated a novel structure
Pb-free CsGeI3-based all-inorganic perovskite solar cells with SCAPS-1D software using
MnO3 as HTL and obtained an efficiency of 22.85%. They showed that the work function
of the rear contact electrode lies between 5eV to 5.7eV and that the defect density should
be around 1012 cm−3 [30]. In the same direction, Saikia et al. simulated with SCAPS-1D
software a PSC using the same absorber layer (CsGeI3) with CuI as HTL and carbon as an
electrode. They achieved an efficiency of 10.8%, and they found that the carbon electrode
can be used to fabricate PSCs at low-cost [31]. In 2022, Das et al. simulated CsGeI3-based
perovskite solar cells with SCAPS-1D software and used a graphene oxide interfacial
layer to improve device performance and P3HT as HTL. They found that the presence of
graphene reduced the recombination effect, and PSC offers an efficiency of 20.05% [32].
Ahmad et al. recently simulated CsGeI3-based perovskite solar cells with carbon/copper
as a charge transport layer with SCAPS-1D software and obtained an efficiency of 17.61%.
They discovered that the effect of doping the absorber layer on the performances of the
PSC decreases as its thickness increase. They also noted a strong degradation of the device
when both the defect density and the operating temperature increased [33]. Tulka et al.
also simulated with SCAPS-1D software a solar cell that used CsGeI3 as the absorber layer,
CZTSe as HTL and Gold(Au) as the back metal and achieved an efficiency of 26.89%. They
observed that the defect density of the absorber layer and the operating temperature at
the optimum power stands around 1012 cm−3 and 25 ◦C, respectively [34]. From these
above-mentioned works simulated using SCAPS-1D software, it was realized that the
CsGeIxBr3−x perovskite material was used for an iodine composition equal to 3. They also
found that the thickness, doping and defect density of the absorber layer, the choice of
the HTL (thickness, doping, and defect density), the back metal contact and the operating
temperature of the solar cell are the main factors limiting the performance of a PSC.

In 2023, Sarkar et al. made a significant advance in the numerical study of the
CsGeIxBr3−x perovskite material using Density Functional Theory (DFT) to determine
the electronic band gap and density of state while SCAPS-1D software was used to simulate
the electrical parameters of a PSC for a set of iodine compositions (x = 0, 1, 2, 3). During their
simulations, Spiro-OMeTAD was used as HTL, gold(Au) as the back contact electrode and
TiO2 as ETL. They found that the PSC has a theoretical efficiency of around 16.5%, 18.5%,
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25.63%, and 27.63% corresponding to iodine compositions 0, 1, 2 and 3, respectively. They
also found that the CsGeI3 perovskite material offers the highest efficiency at a thickness
and defect density of 800 nm and 1015 cm−3, respectively [29]. This latest research output
shows a great desire to focus our attention on this specific perovskite material in order to
improve the performance of cesium–germanium–iodine–bromine-based PSC. However,
27.63% is not really enough to compete with polluting energy sources and meet energy
demand. Thus, several optimization techniques done through simulation with SCAPS-1D
software are based on the choice of HTL, ETL, back contact metal, doping, defect density,
the temperature, which limit the performances of the homojunction PSC. Other techniques
that rely on adding an extra absorber layer capable of increasing the absorption spectrum of
the PSCs to achieve a heterojunction are usually performed. Therefore, to our knowledge,
the new CsGeI2Br/CsGeI3 heterojunction PSC prototype that we plan to investigate in this
work has not yet been studied. The aim is to simulate the dynamics of this heterojunction
PSC using SCAPS-1D software. Within the simulation, the main parameters limiting the
performance of this prototype are such that the thicknesses, doping and defect density of
the absorber layer are checked on the electrical performance of the designed model. The im-
pact of the thickness and doping of the HTL was also checked. The contribution of the back
contact electrode, temperature, shunt and series resistance is also checked on the dynamics
of the electrical performance of the new prototype of PSC based on CsGeI2Br/CsGeI3. In
the simulation, TiO2 is selected as ETL, while P3HT (poly(3-hexylthiophene) is the HTL.

The structure of this work is presented as follows. Section 2 describes the structure of
the heterojunction of PSC, the mathematical concept, properties (optical, electronics) of the
solar cell and the software platform dedicated to the simulations. Section 3 is dedicated to
the discussions of the results obtained during the simulation using SCAPS-1D. Section 4 is
dedicated to conclusion and perspectives.

2. Materials and Methods

The solar cell structure used throughout the study, as shown in Figure 1, has six main
layers. The solar cell configuration is presented as FTO/ETL/CsGeI2Br/CsGeI3/HTL/
Metal. In this system, light enters via the top FTO transparent layer. The work function of
FTO is 4.1 eV. This layer is in the link between the external load and the ETL. It facilitates
the extraction of electrons from the solar cell. In practice, the thickness of FTO stands
between 400 to 600 nm. Within the investigations, we have chosen 400 nm. Figure 1 is
simulated in SCAPS-1D with electrodes, electron and holes transport layers (ETL/HTL),
and the absorber layer CsGeI2Br/CsGeI3in which the photo-generation process occurs. The
FTO and ETL layers were fixed in all the simulation iterations. The metal electrodes assume
the role of the link between the HTL and the external load. It facilitates the collection of
holes in the external circuit due to its work function.
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The heterojunction PSC was modeled in this investigation using SCAPS-1D software
version 3.3.09, a device simulator created by the University of Ghent [35]. The accuracy of
this simulator was already made by comparing it with real experimental devices reported by
research teams [36,37]. Therefore, the SCAPS-1D is used throughout the investigations. The
kernel of the SCAPS-1D platform is essentially based on three distinct coupled differential
equations by numerically solving continuity and Poisson’s equations for electrons and hole
charge carriers as expressed by Equations (1)–(3) [38,39].

∂2ϕ

∂2x
= − q

εrεo
(p − n + ND − NA + pt − nt) (1)

1
q

∂Jn
∂x

− Rn + Gn = 0 (2)

1
q

∂Jp

∂x
− Rp + Gp = 0 (3)

where ϕ defines the electrostatics potential, q represents the elementary charge, εo repre-
sents the permittivity of free space while εr represents the relative permittivity, p, n are,
respectively, the hole and electron concentration, ND, NA designate, respectively, the donor
and acceptor density, pt, nt define the hole and electron trapped, Gp, Gn stands for the
generation rate of hole and electrons, respectively, Rp, Rn designate the recombination of
hole and electrons, respectively, Jp, Jn define the density current of the electron and hole
defined as Equations (4) and (5):

Jn = qµnn
∂ϕ

∂x
+ qDn

∂n
∂x

(4)

Jp = qµpp
∂ϕ

∂x
− qDp

∂p
∂x

(5)

In which µp, µn stands for hole and electron mobility, respectively, Dp, Dn define the
hole and electron diffusion coefficient. In addition, the mathematical expression of the
absorption coefficient used within the investigations is expressed as [35]:

α(hυ) = Bα

√
hυ− Eg (6)

where Bα designates an independent constant defined as 105 cm−1 eV−0.5 and hυ represents
the photon energy. The input parameters for SCAPS software used throughout this work
are given in Table 1.

Table 1. Properties of each layer.

Parameters FTO [22] ETL [24] CsGeI3 [29] CsGeI2Br [29] P3HT [39]

H (nm) 400 25 400 * 400* 150*
Eg (eV) 3.5 3.25 1.363 1.579 1.7
χ (eV) 4.1 4.08 3.76 3.76 3.5
εr 9 9 18 18 3

Nc (1/cm3) 2 × 1018 2 × 1021 1.56 × 1017 9.65 × 1017 2.2 × 1018

Nv (1/cm3) 1.8 × 1019 1.8 × 1020 2.86 × 1018 1.04 × 1018 2.2 × 1018

µn(cm2/Vs) 20 20 20 20 1.8 × 10−3

µp(cm2/Vs) 10 10 20 20 1.8 × 10−2

ND (1/cm3) 1020 1018 0 0 0
NA (1/cm3) 0 0 1016 * 1016 * 1018 *
Vt (cm/s) 107 107 107 107 107

Nt (1/cm3) 1014 1014 1014 * 1014 * 1014

* Varied.
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3. Results and Discussion

This section describes the effect of thickness, the doping rate and defect of the density
of the absorber layer, the thickness and the doping rate of HTL, temperature, back contact
metal, shunt and series resistance on open circuit voltage (Voc), short circuit current density
(Jsc), fill factor (FF) and power conversion efficiency (PCE). The simulations are conducted
in standard test conditions wherein the irradiation is normalized at 0.1 W/cm2.

3.1. Optimization of the Absorber Layer
3.1.1. Impact of the Thickness of the Absorber Layer

This subsection describes the contribution of the thickness of the absorber layer on
the electrical parameters, as shown in Figure 2. The thickness of the absorber layer is
an important parameter while determining the performance of a solar cell. This work
presents the effect of the absorber layer thicknesses on the solar cell parameters such as
open circuit voltage (Voc), short circuit current density (Jsc) fill factor (FF) and power
conversion efficiency (PCE) is presented here. In the simulations models used in this study,
the thicknesses of absorber layers varied from 100 nm to 1000 nm. It is indicative in Figure 2
that when the thickness of the CsGeI3 is below 300 nm, there are significant increases of Voc,
whereas, Jsc and PCE decreases with the increases of the CsGeI2Br thickness. Moreover,
Figure 2c shows that FF decreases slightly due to the Voc, Jsc and PCE results. This can be
attributed to the distance that the photons have to travel through the first layer (CsGeI2Br)
because of its high thickness, which acts as a barrier for the second layer (CsGeI3). Thus, the
photons cannot be efficiently absorbed by CsGeI3 layer due to its low thickness. Therefore,
photo-generation is unlikely to be significant in this layer, and the carriers cannot diffuse in
the crystal structure to produce current. Thus, in CsGeI3 layer, the majority of the carriers
photo-generated stands in the solar cell due to their low diffusion and contributes to the
increase of the voltage, as shown in Figure 2a.

In contrast, when the thickness of the CsGeI2Br is less than 300 nm, Voc decreases
while, Jsc, FF, PCE increase with the thickness of the CsGeI3, as in Figure 2. Indeed, few
photons are absorbed by layer CsGeI3 because of their small thickness size. This implies that
the absorption of photons can be improved when the thickness of the CsGeI3 layer is large,
as shown in Figure 2d. The photons can easily reach the CsGeI3 layer and contribute to the
carrier’s photo-generation in this layer. This means that the amount of carrier contributing
to the voltage decreases into the benefit of current as shown in Figure 2a,b because the
minority carriers photo-generated are kicked out of the solar cell. This observation shows
that the carriers have enough energy to leave the valence band to the conduction band
and can easily be collected. Therefore, within the implementation of this prototype of PSC,
the CsGeI3 layer should be thicker than the CsGeI2Br layer. In literature, the maximum
efficiency of a PSC is around 33% [40,41]. This high efficiency, as shown in Figure 2d, is also
due to considering the series and shunt resistance beyond the physically acceptable zone
during the simulation. In addition, the limit of short circuit and open circuit voltage with
respect to the band gap shows that the maximum current and voltage that can be delivered
by the CsGeI3 layer (1.363 eV) are 32 mA/cm2 and 1.14 V, respectively, while the CsGeI2Br
layer (1.579 eV) is 28 mA/cm2 and 1.2 V [40,41]. Thus, depending on the combination of
the thicknesses of the different absorber layers, the CsGeI2Br layer can operate beyond its
limits and can cause significant heating of the PSC and induce damage. Therefore, as shown
in Figure 2a,b,d, the contour plots in yellow must be avoided to maintain the stability of
the solar cell.
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3.1.2. Impact of the Doping of the Absorber Layer

Figure 3 depicts the impact of the doping of the two absorber layers on the electrical
parameters. Acceptor doping density plays a vital role in improving the performance of a
PSC. In this study, the range of acceptor density of the two absorber layers was 1014 cm−3

to 1019 cm−3.
We found that this PSC prototype offers high performance when the doping in the

CsGeI3 layer is higher than in the CsGeI2Br layer, as shown in Figure 3d. In fact, when
the doping in the CsGeI3 layer is higher than that of the CsGeI2Br layer, this favors the
movement of electrons and holes in the absorber layer. This gradient of doping creates an
internal electrical field in the absorber layer, and it is responsible for the significant amount
of electrons emitted from the solar cell, as shown in Figure 3b, and therefore reduces the
voltage, as shown in Figure 3a. However, when the doping CsGeI2Br layer is higher than
that of the CsGeI3 layer, the flow of carriers is reduced, and the solar cell turns to operate
as an open circuit. In this situation, the gradient of doping in the absorber layer creates an
electrical field in the opposite direction to the flow of carriers in the solar cell. Thus, the
carriers are photo-generated but cannot leave the solar cell and can only contribute to the
increase of the voltage, as shown in Figure 3a. In the same Figure 3a, we also noted that
the blocked carrier did not contribute to voltage for low doping in CsGeI3 because of the
recombination process. In addition, this configuration leads to a rapid rise in temperature
and can therefore damage the solar cell. Thus, within the implementation of this PSC
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prototype, the doping of the CsGeI3 layer should be higher than that of the CsGeI2Br
layer in order to preserve the device from damage, reduce the recombination process and
also improve its performance. In the literature, the maximum efficiency stands around
33% [40,41]. Thus, depending on the doping in the absorber layer, the stability of the PSC
can be affected when this latter operates beyond its limits. Thus, Figure 3a,b,d show that
the contour plots in yellow must be avoided to maintain the stability of the solar cell.
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3.1.3. Impact of the Defect Densities of the Absorber Layer

The impact of the defect density (Shockley–Read–Hall) of the absorber layer on the
performances of PSC is presented. Defect density influences the performance parameters
of solar cells. The contribution of the defect density study is located in the absorber layers
CsGeI3 and CsGeI2Br. Defect density modeling showed the imperfections in the device,
leading to the carriers’ recombination. These defects are mostly created during the doping
process and often during the assembly of the different layers for commercialization—there
are also natural defects in the crystal structure of the material. Within the investigation,
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the range of defect varied was 1013 cm−3 to 1017 cm−3. Figure 4 depicts the variations of
electrical parameters in terms of the defect of the two absorber layers.
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absorber layer, the stability of the PSC can be affected when this latter operates beyond 
its limits. Thus, Figure 3a,b,d show that the contour plots in yellow must be avoided to 
maintain the stability of the solar cell. 

3.1.3. Impact of the Defect Densities of the Absorber Layer 
The impact of the defect density (Shockley–Read–Hall) of the absorber layer on the 

performances of PSC is presented. Defect density influences the performance parameters 
of solar cells. The contribution of the defect density study is located in the absorber layers 
CsGeI3 and CsGeI2Br. Defect density modeling showed the imperfections in the device, 
leading to the carriers’ recombination. These defects are mostly created during the dop-
ing process and often during the assembly of the different layers for commercializa-
tion—there are also natural defects in the crystal structure of the material. Within the 
investigation, the range of defect varied was 10  cm  to 10  cm . Figure 4 depicts 
the variations of electrical parameters in terms of the defect of the two absorber layers. 
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We reveal that the defect density of the two absorber layers affects significantly the
electrical parameters, as shown in Figure 4. In fact, when the defect density increases, all
the electrical parameters of this PSC decrease. The defect density is modeling the trap of
carrier in a solar cell. This trap captures the carrier and favours the recombination process.
Otherwise, the defect in the solar cell facilitates the collision between the carriers. This
collision induces the losses of energy of the carriers during their journey in the crystal
structure. Thus, they can be easily recombined due to their low energy. However, when the
quantity of the trap increases, the number of carriers captured increases the recombination
process and therefore, the output performance of the PSC decreases, as shown in Figure 4.
This high recombination process can cause the device to heat up quickly and damage it.
From the limit acceptable in terms of the current and voltage delivered by the CsGeI3 layer
(1.363 eV) and CsGeI2Br layer (1.579 eV) [40,41], the defect density acceptable should be
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minimized as much as possible and is considered to be around 1014 cm−3 to avoid the
yellow areas, as shown in Figure 4a,b,d.

3.2. Impact of the Thickness and Doping of the HTL Layer

This section describes the impact of the hole transport layer (HTL) on the electrical
parameters of the solar cells. This layer promotes the formation of holes in the device.
Figure 5 depicts the contribution of thickness and doping of HTL on the electrical pa-
rameters of the PSC. The thickness varies from 50 nm to 300 nm while the doping from
1016 cm−3 to 1021 cm−3.
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Voc, (b) short circuit current Jsc, (c) fill factor FF, and (d) power conversion efficiency PCE.

We found that the PCE of the PSC is not affected when the thickness is less than
250 nm. In contrast, beyond 250 nm, PCE starts to be affected for low doping and recapture
when the doping is high. These results show that P3HT can easily promote the hole when
the doping is subsequently high, and the thickness of the HTL is less than 250 nm. Viewing
the low variation of the parameters, as shown in Figure 5, we notice that P3HT does not
really affect the performance of the solar cell. Thus, during the manufacturing of this new
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prototype, the thickness of P3HT should be very low as possible, around 50 nm, because of
its high cost as it has almost no effect on the dynamics of the solar cell.

3.3. Impact of the Back Contact Metal

This subsection focuses on the impact of the back contact metal on the performance of
the new prototype PSC. The back contact metal also contributes to the enhancement of the
efficiency of a solar cell. Figure 6 shows the impact of the work function of the back contact
metal on the electrical parameters. In our simulation, we varied the work function from
4.8 eV to 6 eV, as shown in Figure 6.
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We notice that the efficiency increases with the increase in work function and remained
almost constant after 5 eV. In addition, we revealed a very low variation of the electrical
parameters. Thus, in order to realize better performance of this prototype of PSC, it is
essential to choose an appropriate metal electrode having a work function of at least equal
to 5 eV.

3.4. Impact of the Shunt and Series Resistances

Figure 7 depicts the contribution of series and shunt resistance on the performance of
solar cell parameters. Series resistance modeling shows the electrical defect of the device
due to the front and back contact of the device with the external load, while shunt resistance
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modeling shows the leakage current at the edge of the solar cell. The series (Rs) and shunt
resistance (Rsh) were varied in the ranges 5–25 Ωcm2 and 200–1400 Ωcm2, respectively.
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We reveal that the series and shunt resistance significantly affect the PCE, as shown
in Figure 7d. The open circuit voltage, as shown in Figure 7a, is more related to the lower
values of shunt resistance than series resistance. However, the short circuit current is more
sensitive to the high values of series resistance than shunt resistance. The fill factor is also
strongly dependent on the change in series resistance, as shown in Figure 7c. From these
observations, we note that the device offers a high PCE when the leakage current is low
(high shunt resistance) and the series resistance is low so that the carrier can be collected by
the metal electrode.

3.5. Impact of the Temperature

Temperature is the main parameter that causes damage to the PSC. The rise in the solar
temperature is due to the amount of irradiation transformed into heat. Figure 8 presents
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the impact of temperature on PSC and the electrical parameters. The range of temperature
varied from 300–350 Kelvin.
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From the results shown in Figure 8, we note that when the temperature increases,Jsc
increases while the FF, Voc and PCE decrease. Indeed, the temperature favours the thermal
agitation of carriers in the solar cell. Thus, this thermal agitation induced very little
additional extraction of the carriers out of the solar cell traduce by a mild increase in
current, as shown in Figure 8b. Thus, this extraction reduced the population of carriers in
the solar cell and reduced the voltage, as shown in Figure 8a. The variations in the current
and voltage reduced the FF and, therefore, the PCE of the solar cell. Tables 2 and 3 show
the best solar cell structure and performance.

In addition, the temperature rise of the device can also be due to one of the absorber
layers of the device operating beyond its limits. Indeed, this layer also operates as an ohmic
conductor and significantly reduces the flow of carriers in the solar cell. The concerned
layer will transform the electrical energy into heat through the Joule effect, and increase the
temperature of the device. In addition, given the confinement of the different parts of a PSC,
the temperature of the device can quickly rise and can cause damage. So, to fabricate this
specific heterojunction solar cell, the boundaries of each absorber layer must be considered.
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Table 2. Best properties of each layer.

Parameters FTO ETL CsGeI3 CsGeI2Br P3HT

H (nm) 400 25 900 100 50
Eg (eV) 3.5 3.25 1.363 1.579 1.7
χ (eV) 4.1 4.08 3.76 3.76 3.5
εr 9 9 18 18 3

Nc (1/cm3) 2 × 1018 2 × 1021 1.56 × 1017 9.65 × 1017 2.2 × 1018

Nv (1/cm3) 1.8 × 1018 1.8 × 1020 2.86 × 1018 1.04 × 1018 2.2 × 1018

µn (cm2/Vs) 20 20 20 20 1.8 × 10−3

µp (cm2/Vs) 10 10 20 20 1.8 × 10−2

ND (1/cm3) 1020 1018 0 0 0
NA (1/cm3) 0 0 1018 1016 1018

Vt (cm/s) 107 107 107 107 107

Nt (1/cm3) 1014 1014 1014 1014 1014

Table 3. Performance of the new device.

Device Structure FF (%) PCE (%) Voc (V) Jsc (mA/cm2)

FTO/TiO2/CsGeI2Br/CsGeI3/P3HT/Au 79.19 31.86 1.2268 32.79

The performance of the heterojunction PSC as shown in Table 3 will be very difficult
to achieve during experimentation due to the maximum current (32.79 mA/cm2) that is
slightly greater than 28 mA/cm2 (CsGeI2Br layer) [40,41]. Thus, under these operating
conditions, this prototype will become lightly hot and its performance in real-life conditions
will decrease because of this rise in temperature.

4. Conclusions

The aim of this paper was to simulate a lead-free heterojunction perovskite solar cell
(PSC) made of CsGeI2Br/CsGeI3 using SCAPS-1D software. The simulation of this new
prototype of PSC starts with the design of the absorber layer made of two perovskite
materials CsGeI2Br/CsGeI3, the TiO2 as electron transport layer (ETL) and P3HT (poly(3-
hexylthiophene) as hole transport layer (HTL) withSCAPS-1D software. The impact of the
thicknesses, doping and defect density of the absorber layer is checked, followed by the
contribution of thickness and the doping of the HTL. The simulations were also conducted
on the effect of the back contact metal, temperature, shunt and series resistance on the
electrical parameters of this new prototype. The simulations were conducted in standard
test conditions (STC) using the SCAPS-1D platform. We found that the new prototype
offers a maximum simulated efficiency of 31.86% when the CsGeI3 thickness should be
around 900 nm while the CsGeI2Br thickness should be around 100 nm. CsGeI3 doping
should be around 1018 cm−3and CsGeI2Br doping around 1016 cm−3. Defect density in
both layers of the absorber should be around 1014 cm−3. We also notice that the P3HT and
the back contact metal do not significantly affect the performance of this novel type of
heterojunction PSC. Thus, within the manufacturing of this specific PSC, only the absorber
layer, FTO and ETL can be considered in order to check the stability and efficiency of this
prototype. Furthermore, the temperature of the new PSC should be maintained around
25 ◦C. In terms of future research, an experimental investigation must be done to check the
stability and lifetime of this new device under weather conditions in real time. Additionally,
the contributions of different HTL, ETL and FTO on the dynamics of this prototype should
be investigated.
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