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Abstract: With the development of predictive management strategies for power distribution grids,
reliable information on the expected photovoltaic power generation, which can be derived from
forecasts of global horizontal irradiance (GHI), is needed. In recent years, machine learning techniques
for GHI forecasting have proved to be superior to classical approaches. This work addresses the
topic of multi-horizon forecasting of GHI using Gaussian process regression (GPR) and proposes an
in-depth study on some open questions: should time or past GHI observations be chosen as input?
What are the appropriate kernels in each case? Should the model be multi-horizon or horizon-specific?
A comparison between time-based GPR models and observation-based GPR models is first made,
along with a discussion on the best kernel to be chosen; a comparison between horizon-specific
GPR models and multi-horizon GPR models is then conducted. The forecasting results obtained are
also compared to those of the scaled persistence model. Four performance criteria and five forecast
horizons (10 min, 1 h, 3 h, 5 h, and 24 h) are considered to thoroughly assess the forecasting results.
It is observed that, when seeking multi-horizon models, using a quasiperiodic kernel and time as
input is favored, while the best horizon-specific model uses an automatic relevance determination
rational quadratic kernel and past GHI observations as input. Ultimately, the choice depends on the
complexity and computational constraints of the application at hand.

Keywords: global horizontal irradiance; Gaussian process regression; quasiperiodic kernels; machine
learning; statistical models; time series forecasting

1. Introduction

Over the past few years, the ever-growing energy demand jointly with the depletion of
fossil fuels and environmental concerns have promoted the integration of renewable-energy-
based power generation into power distribution grids. However, due to the fluctuating
nature of renewable energy sources, particularly solar photovoltaics (PV), their higher pen-
etration into power distribution grids poses significant challenges for grid operators [1,2].
Indeed, the deployment of distributed generation complicates the achievement of grid
operators’ main goal of ensuring the power distribution grid balance at all times. The de-
velopment of grid-connected PV power systems uncovers constraints [3], especially voltage
fluctuations, mainly observed on low- and medium-voltage power distribution grids,
and therefore makes the elaboration of smart management tools necessary. As a result,
the development of predictive management strategies is required to ensure an efficient
real-time monitoring and optimization of grid operation [4]. These strategies need reliable
information on the expected PV power generation, which can be derived from forecasts
of global horizontal irradiance (the total amount of shortwave radiation received from
above by a horizontal surface on Earth, noted GHI hereafter). The work presented in this
paper focuses on GHI forecasting, with forecast horizons ranging from 10 min to 24 h, thus
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including the intrahour, intraday and day-ahead cases that are useful for grid regulation,
load-following production, power scheduling and unit commitment.

Solar irradiance forecasting is a milestone to relieve challenges aroused by the devel-
opment of grid-connected PV power systems. Solar irradiance and PV power generation
forecasting is an active field of research, and many approaches have been developed in
the scientific literature [5,6]. Depending on the available data and the forecast horizons,
different forecasting methods are adequate. Intrahour solar irradiance forecasts with a high
spatial and temporal resolution may be provided by models using ground-based sky im-
ages [7–9]. For forecast horizons ranging from a few minutes to 6 h, statistical models with
on-site solar irradiance observations as input are more suitable [10,11]. Additionally, cloud
motion, provided by satellite images analysis, can be extrapolated to the upcoming few
hours and allows to obtain good forecasts for forecast horizons up to 6 h [12,13]. However,
techniques based on sky imagers or satellite images are very complex and involve many
steps [14]. For forecast horizons from about 6 h onwards, accurate solar irradiance forecasts
may be delivered by numerical weather prediction (NWP) models [15].

Although dynamic phenomena such as cloud motion, leading to unexpected changes
in GHI, may not be anticipated by statistical models, they have been extensively used
and have proven good performances for intrahour, intraday and even day-ahead solar
irradiance and PV power generation forecasting [10,11,16,17]. Statistical models span from
classical time-series approaches such as persistence models or autoregressive models [18,19]
to machine learning techniques such as regression trees [19], k-nearest neighbors (kNN) [20],
artificial neural networks (ANN) [11,21], support vector regression (SVR) [22] and Gaussian
process regression (GPR) [11,23–25]. Combined or hybrid models involving different kinds
of input data and/or methods to develop more precise forecasting models can also be
found [26]. Since most classical time-series approaches are well-suited for stationary or
quasi-stationary signals, GHI data, which are non-stationary mainly due to the presence
of daily and seasonal periodic patterns, can be preprocessed using clearness or clear-sky
indexes [9,27]. Because of their ability to capture complex relationships between inputs
and outputs, artificial intelligence-based approaches, which can model the solar irradiance
data without any specific preprocessing step, appear to be the best alternative to classical
time-series approaches. As a result, artificial intelligence-based approaches have become
prevalent in GHI and PV power generation forecasting studies, and many authors have
shown that they outperform traditional time-series models [10,11,16,24].

In recent years, among machine learning techniques, the use of GPR for GHI forecast-
ing has gained in popularity. Due to their flexible non-parametric kernel-based nature,
GPR models are a powerful tool for time series modeling. Table 1 provides a list of re-
cent solar irradiance and PV power generation forecasting studies including GPR models.
As can be seen, past observations of the time series to be forecasted (whether clear-sky or
clearness indexes, PV power generation or GHI) is a popular input choice, as it highlights
correlations between data samples. However, as Gaussian processes can be defined over
time [28], it is also possible to consider time as an input, allowing the construction of
a kernel particularly adapted to GHI thanks to the a priori knowledge on its evolution
over time [24,29]. The model input influences the choice of a kernel and therefore the
GPR model’s performance (see Section 2.2). Note that some authors forecast clear-sky or
clearness indexes instead of GHI. In this article, GHI is forecast directly, as it avoids the use
of clear-sky models, thus making sure all errors come from the GPR model itself; moreover,
the inductive biases are much stronger when using GHI instead of clear-sky or clearness
indexes, allowing to incorporate much more a priori knowledge in the kernel. Finally, as can
be seen in Table 1, some authors also use additional exogenous input data, such as pressure,
relative humidity, etc. Since these data may not be always readily available, it has been
decided to compare performance when only the variable of interest is measured.
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Table 1. Main recent studies including Gaussian process regression models. For the meaning of
abbreviations, see the end of the paper.

Authors Input Variables When
Using GPR

Output
Variables

Data
Sampling
Time

Forecast
Horizons Database

Gbémou et al.
(2021) [11] GHI GHI 10 min 10 min to 4 h

Two-year dataset:
one year for training
and one year for testing

Lubbe et al.
(2020) [25]

GHI, DNI, DHI, UVA,
UVB, air temperature,
barometric pressure, relative
humidity, wind speed, wind
direction, standard deviation
in wind direction

GHI 1 h 1 h
Fourteen-day dataset:
nine days for training
and five days for testing

Tolba et al.
(2020) [24] Time GHI 30 min 30 min to 48 h

Two 45-day datasets:
30 days for training
and 15 days for testing

Gbémou et al.
(2019) [29] Time GHI 30 min 30 min to 24 h

Two-year dataset:
one year for training
and one year for testing

Sharifzadeh et al.
(2019) [16]

PV power generation,
temperature, DHI, DNI

PV power
generation 1 h 1 h to 6 h From 1985 to 2014

Guermoui et al.
(2018) [30]

Air temperature, relative
humidity, sunshine duration

Clearness
index 24 h 24 h From 2005 to 2008

Rohani et al.
(2018) [23]

Temperature, relative
humidity, sea level pressure,
sunshine duration,
extraterrestrial irradiation

GHI 24 h 24 h From 2009 to 2014

Huang et al.
(2016) [31] Clearness index Clearness

index 24 h 24 h
Three-year dataset:
two years for training
and one year for testing

Lauret et al.
(2015) [10] Clear-sky index Clear-sky

index 1 h 1 h to 6 h

Two-year dataset:
one year for training
and one year for testing,
in each of three sites

Salcedo-Sanz et al.
(2014) [32]

Aerosol optical depth,
ozone concentration,
total precipitable water,
NWP data, time

GHI 24 h 24 h
Two-year dataset:
one year for training
and one year for testing

As a result, an in-depth study on GHI forecasting using GPR models is carried out.
The pending questions that this paper attempts to answer are the following.

• What input should be chosen, time or past GHI observations?
• For each of those inputs, what is most appropriate kernel?
• What are the advantages and disadvantages of multi-horizon GPR models and horizon-

specific GPR models?

To do so, a comparison between time-based and observation-based GPR models is
made. Note that a byproduct of using time as input is that the obtained models are nat-
urally multi-horizon, since they can provide GHI forecasts at any forecast horizon [24].
For observation-based GPR models, however, either a specific model for each forecast
horizon (developing horizon-specific models is common in the literature [10,16]) or multi-
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horizon forecasting models can be developed [11]. Thus, first, a comparison between multi-
horizon models using time or past observations is made to determine the adequate input;
then, the best multi-horizon models are compared to horizon-specific models. The persis-
tence on the clear-sky index, also known as the scaled persistence model, is included in this
study as the reference model. The models are developed using a GHI database covering
two years, with a sampling time of 10 min and five forecast horizons considered (10 min,
1 h, 3 h, 5 h, and 24 h).

The rest of this paper is organized as follows: in Section 3, the data used to develop and
validate the models included in this study are described. Section 2 gives a description of the
scaled persistence model and the GPR models used to forecast GHI. The forecasting results,
as well as the criteria used to evaluate the models’ forecasting accuracy, are presented and
discussed in Section 4. The paper ends with a conclusion.

2. Description of the Forecasting Models Included in This Study

This section describes the GHI forecasting models included in this study. The models’
implementation has been realized on a machine having an Intel® Xeon® CPU E7-4890 v2 @
2.80 GHz. The Gaussian Processes for Machine Learning (GPML) Matlab toolbox [28] was
used for the GPR models’ implementation.

2.1. Scaled Persistence Model

The persistence model considers that the forecasted GHI at a desired forecast horizon
is equal to the observed GHI at the current time:

ĜHI(t + k∆t) = GHI(t) (1)

where GHI is the observed GHI, ĜHI is the forecast, ∆t is the time step (here 10 min) and
k∆t is the forecast horizon.

This simple model finds its limits when the solar irradiance is highly variable over the
considered forecast horizon. A part of this variability comes from the apparent movement
of the Sun. As this motion is precisely known, it is possible to correct its effect by using a
clear-sky model. This gives rise to an improved version of the persistence model named
persistence on the clear-sky index, also known as the scaled persistence model. The latter
has become the reference model in GHI forecasting studies [10,11,33]. The GHI forecasted
by the scaled persistence model at a forecast horizon k∆t is given by:

ĜHI(t + k∆t) =
GHI(t)

GHIcs(t)
· ĜHIcs(t + k∆t) (2)

where GHIcs is the GHI given by a clear-sky model.
A clear-sky model provides an estimation of the solar irradiance for a cloudless sky.

A wide range of clear-sky models can be found in the scientific literature, involving many
parameters such as site altitude, solar elevation angle, aerosol concentration, water vapor
and various atmospheric parameters (see [34] for a thorough review of most existing
clear-sky models). In the present paper, the approach used in [35] to develop a clear-
sky direct normal irradiance (DNI) model is adapted to GHI to obtain a clear-sky GHI
model. This approach combines the well-known Ineichen and Perez’s clear-sky model [36]
with a persistence on atmospheric turbidity and has led to a very accurate clear-sky DNI
model [35]. The adaptation of this model results in the following equation for the clear-sky
GHI appearing in Equation (2):

GHIcs(t) = c1 · I0 · cos
(
θz(t)

)
· exp

(
−c2 ·m(t) · ( fh1 + fh2 · (TL(t− ∆t)− 1)) + 0.01 · (m(t))1.8

)
(3)
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where:

• t is the time;
• θz is the solar zenith angle;
• I0 is the extraterrestrial solar irradiance: the solar irradiance incident on the outer limit

of the Earth’s atmosphere, considering the whole solar spectrum;
• m is the relative optical air mass, defined as the ratio of the optical path length of the

solar beam through the atmosphere to the optical path through a standard atmosphere
at sea level with the Sun at the zenith; it is calculated here by the Kasten and Young’s
formula [37], widely used by the scientific community:

m(t) =
(

cos(θz(t)) +
a1

(a2 − θz(t))
a3

)−1
(4)

where a1 = 0.505 72, a2 = 96.079 95 and a3 = 1.6364.
• TL is the Linke turbidity coefficient [38], defined as the number of atmospheres without

aerosols or water vapor necessary to produce the observed attenuation of the solar
extraterrestrial irradiance;

• fh1, fh2, c1, and c2 are parameters given by:

fh1 = exp
(
− h

8000

)
(5)

fh2 = exp
(
− h

1250

)
(6)

c1 = 5.09× 10−5h + 0.868 (7)

c2 = 3.92× 10−5h + 0.0387 (8)

where h is the altitude of the studied site.

For details on this approach, the reader is referred to [35].

2.2. Gaussian Processes

This section defines Gaussian processes (GP) and kernels used to model and forecast
GHI. The kernel is a key element of GPR models and deeply influences their perfor-
mance [24]. This section also exposes the underlying reasons behind the kernels chosen in
this paper.

2.2.1. Definition

A Gaussian process is defined as a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution [28]. It defines a prior distribution over
functions that, in light of some observed data, can be updated to a posterior distribu-
tion over functions. In the same way that a Gaussian distribution is fully determined by
its mean and covariance, a GP is completely defined by a mean function and a covari-
ance function. Firstly introduced in the field of machine learning as the limiting case
of Bayesian inference performed on artificial neural networks with an infinite number
of hidden neurons [39], Gaussian processes have become a powerful tool for model-
ing and forecasting [28]. A function f distributed as a Gaussian process is denoted as
f (x) ∼ GP(µ(x), k(x, x′)), where x and x′ are arbitrary input variables, µ(x) = E[ f (x)]
is the mean function, and k(x, x′) = E

[
( f (x) − µ(x))( f (x′) − µ(x′))

]
is the covariance

function, also called the kernel. For simplicity, and since the kernel is generally sufficient to
encode assumptions about the function to be learned, the prior mean function is usually
set to zero.

A kernel contains assumptions about the underlying function to be learned and as-
sesses the similarity between the function values at different input points x and x′ [28]. Its
choice has a significant impact on the performance of a GPR model [24]. Therefore, the se-
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lection of a suitable kernel requires great attention. Any function that leads to a positive
semidefinite covariance matrix can be used as a valid covariance function. The readers are
referred to [28] for more details and a complete list of basic covariance functions. Further-
more, kernels are closed under operations such as addition and multiplication, allowing to
combine basic kernels to create rich and interpretable covariance functions [40].

2.2.2. Gaussian Process Regression

Let us consider the standard linear regression model with additive noise:

y = f (x) + ε (9)

where x ∈ RD is the input vector, y is the output, ε ∼ N (0, σ2
ε ) is additive white Gaus-

sian noise with variance σ2
ε , and f is the regression function, supposed to be a Gaussian

process. To forecast GHI using GPR with only endogenous data, one can either use time
(one-dimensional, D = 1) or past observations (multidimensional, D > 1) as input.

GPR is a Bayesian non-parametric approach that aims to approximate the function
f using a training dataset of n samples D = (X, y), where X is the input matrix and y is
the vector of corresponding GHI values [28]. When the input is time, X is of dimension
Rn×1, and each sample {xi, 1 6 i 6 n} is a scalar value, while when past GHI observations
are used as input, the dimension of X is Rn×D, and each sample {xi, 1 6 i 6 n} is a
D-dimensional vector.

In addition to GHI forecasts, 95% confidence intervals can be derived from the predic-
tive distribution provided by GPR models. They are computed as follows:

CI = µ∗ ± 1.96
√

σ2∗ (10)

where CI are confidence interval bounds, µ∗ is the mean prediction, and σ2∗ is the predictive
variance given by the GPR model. For details on how the predictive distribution is obtained,
the reader is referred to [28] (p. 16).

2.2.3. Training a GPR Model

A GPR model has hyperparameters that group the kernel’s parameters and the noise
variance. These hyperparameters, denoted θ, have to be inferred from the training data.
In practice, their estimation is commonly done by maximizing the log marginal likelihood,
given by:

L(θ) = −1
2

(
yT(k(X, X) + σ2

ε I
)−1y + log

(
det

(
k(X, X) + σ2

ε I
))

+ n log(2π)
)

(11)

where k(X, X) is n× n the Gram matrix, whose entries are k(xi, xj), and I is the identity
matrix. Unfortunately, the function L(θ) is usually non-convex with respect to hyperparam-
eters. The problem space can have many local optima and the optimized hyperparameters
depend on their initialization [40]. A common approach to deal with this drawback is to
use various starting points randomly selected from an adequate prior distribution. In [41],
the impact of initial hyperparameter priors on GPR models was studied, and the authors
concluded that simple priors such as the uniform distribution in an appropriate range may
be sufficient.

2.2.4. Kernels Used with Time-Based GPR Models

In [24,29,42], it was shown that when time is used as input of GPR models, the quasiperi-
odic kernel kPer×RQ, obtained by multiplying the rational quadratic kernel kRQ and the
periodic kernel kPer, is the most suitable for multi-horizon GHI forecasting. These kernels
are given by:
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kRQ(x, x′) = σ2
(

1 +
(x− x′)2

2α`2

)−α

(12)

kPer(x, x′) = σ2 exp

−2 sin2
(

π(x−x′)
P

)
`2

 (13)

where σ is the amplitude, ` is the correlation length, α determines the relative weighting
of multi-scale variations and P is the period. The periodic kernel models functions with a
global repetitive structure, and the rational quadratic kernel models functions that vary
smoothly across many length-scales. The quasiperiodic kernel kPer×RQ is then given by:

kPer×RQ(x, x′) = σ2 exp

−2 sin2
(

π(x−x′)
P

)
`2

1

(1 +
(x− x′)2

2α`2
2

)−α

(14)

where `1 and `2 are correlation lengths.
The properties of GHI have led to this kernel composition. Indeed, as can be seen in

Figure 1, over time, GHI exhibits a daily periodic pattern (due to solar geometry) modeled
by the periodic kernel and a stochastic pattern (due to atmospheric conditions) modeled by
the rational quadratic kernel.

= × +

GHI during one day Periodic kernel kPer Rational quadratic kernel kRQ Noise

Figure 1. GHI decomposition during one day: the periodic pattern is modeled by the periodic kernel
and the stochastic pattern is modeled by the rational quadratic kernel.

Note that time-based GPR models are naturally multi-horizon forecasting models:
since their input is the time, it suffices to provide the model with a date to obtain the
desired forecast. The same model can thus provide GHI forecasts at any forecast horizon.
Figure 2 shows a graphical view of GHI forecasting by the time-based GPR model with
kernel kPer×RQ. For the initialization of this model’s hyperparameters, the following choices
were made:

• The hyperparameter σ2 was initialized to the variance of the training data;
• The period P was set to a day, indicating the daily periodicity of GHI;
• The remaining hyperparameters were randomly drawn from an uniform distribution

Uniform(0, 1).

t GPR model with kernel kPer×RQ GHI(t)

Figure 2. Time-based GPR model with kernel kPer×RQ.
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The inspection of GHI data covering several years reveals the existence of a seasonal
pattern (Figure 3) that can be incorporated in the time-based GPR model with kernel kPer×RQ
by adding a second periodic kernel to the quasiperiodic kernel kPer×RQ [29]. Therefore,
when data covering several years are considered, a suitable kernel for GHI forecasting by
GPR models using time as input is given by:

kPer×RQ+Per(x, x′) = σ2
1 exp

−2 sin2
(

π(x−x′)
P1

)
`2

1

×(1 +
(x− x′)2

2α`2
2

)−α

+ σ2
2 exp

−2 sin2
(

π(x−x′)
P2

)
`2

3

 (15)

where σ1 and σ2 are amplitudes, `1, `2 and `3 are correlation lengths, P1 and P2 are periods,
and α characterizes the relative weighting of multi-scale variations.

Apr Jul Oct Feb May Aug Dec
0

500

1,000

G
H

I[
W

m
−

2 ]

GHI data Periodic annual pattern

Figure 3. GHI data covering years 2016 and 2017. A seasonal pattern appears when considering data
over several years. Measurements taken at PROMES-CNRS laboratory in Perpignan.

A graphical view of GHI forecasting by the time-based GPR model with kernel
kPer×RQ+Per is presented in Figure 4. The following choices were made for the initial-
ization of this GPR model’s hyperparameters:

• The hyperparameters σ2
1 and σ2

2 were initialized to the variance of the training data;
• The periods P1 and P2 were, respectively, set to one day and 365 days, indicating the

daily and annual periodicity of GHI, respectively;
• The remaining hyperparameters were randomly drawn from a uniform distribution

Uniform(0, 1).

t GPR model with kernel kPer×RQ+Per GHI(t)

Figure 4. Time-based GPR model with kernel kPer×RQ+Per.

2.2.5. Kernels Used with Observation-Based GPR Models

In the case of GHI forecasting by GPR using past observations as input, authors have
generally chosen kernels with isotropic length-scale [10,43]. Since the underlying function
in this case has a multidimensional input variable and may not have the same variation
level along each input dimension, anisotropic kernels (that can define an appropriate length-
scale for each input dimension) are more suitable. Consequently, kernels with automatic
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relevance determination (ARD), which implicitly determine the relevancy of each input
dimension, are used to model functions that have multidimensional input [11,40].

Contrary to time-based GPR models, observation-based GPR models are not naturally
multi-horizon. One-step ahead forecasting models are very common in solar irradiance
forecasting studies [10,16]: when a single horizon is needed, usually the data sampling
time is changed to match the desired forecast horizon, but that downsampling can result
in a serious simplification of GHI dynamics [11]. Multi-horizon forecasting models can
then be obtained either by building a specific forecasting model for each horizon, which
is demanding if many horizons are needed, or by iteratively performing one-step ahead
forecasts until the desired horizons are obtained, which leads to the accumulation of
forecast errors.

In this paper, the following ARD kernels are compared: the squared exponential kernel
with ARD (kSE−ARD), commonly selected by default; the rational quadratic kernel with
ARD (kRQ−ARD); and the Matérn kernels with ARD (kMν−ARD). They are, respectively,
given by:

kSE−ARD(x, x′) = σ2 exp

(
−1

2

D

∑
d=1

(xd − x′d)
2

`2
d

)
(16)

kRQ−ARD(x, x′) = σ2

(
1 +

1
2α

D

∑
d=1

(xd − x′d)
2

`2
d

)−α

(17)

kM1/2−ARD(x, x′) = σ2 exp

(
−

D

∑
d=1

|xd − x′d|
`d

)
(18)

kM3/2−ARD(x, x′) = σ2

(
1 +
√

3
D

∑
d=1

|xd − x′d|
`d

)
· exp

(
−
√

3
D

∑
d=1

|xd − x′d|
`d

)
(19)

kM5/2−ARD(x, x′) = σ2

(
1 +
√

5
D

∑
d=1

|xd − x′d|
`d

+
√

5
D

∑
d=1

(xd − x′d)
2

3`2
d

)

· exp

(
−
√

5
D

∑
d=1

|xd − x′d|
`d

)
(20)

where σ is the amplitude, `1, `2, . . . , `D are correlation lengths along each input dimension
and α > 0 characterizes the relative weighting of large-scale and small-scale variations.

Figures 5 and 6, respectively, show graphical views of GHI forecasting by multi-
horizon and horizon-specific GPR models with kernel kSE−ARD. For the hyperparameters’
initialization, the following choice have been made: σ2 is initialized to the variance of the
training data, and the remaining hyperparameters are randomly drawn from a uniform
distribution Uniform(0, 1).

GHI(t − ∆t)
GHI(t − 2∆t)

...
GHI(t − D∆t)

GPR model with kernel kSE−ARD GHI(t)

Figure 5. Observation-based one-step-ahead GPR model with kernel kSE−ARD, from which a multi-
horizon model is obtained by iteration. GHI(t− ∆t), GHI(t− 2∆t), . . . , GHI(t− D∆t) is a vector of
observations, and ∆t = 10 min is the time step.
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GHI(t)
GHI(t − ∆t)

...
GHI(t − D∆t)

GPR model with kernel kSE−ARD GHI(t + k∆t)

Figure 6. Observation-based horizon-specific GPR model with kernel kSE−ARD. GHI(t − ∆t),
GHI(t− 2∆t), . . . , GHI(t− D∆t) is a vector of observations, and ∆t = 10 min is the time step.

3. Description of Training and Test Datasets

The dataset used in this study derives from measurements taken at the laboratory
PROMES-CNRS in Perpignan (southern France). The rotating shadowband irradiometer
used to collect the measurements is a meteorological instrument composed of two horizon-
tally leveled silicon photodiode radiation detectors placed in the center of a spherically
curved shadowband. Its typical uncertainties are about ±5%. Located in the Occitania
region near the Mediterranean Sea, Perpignan has a typical Mediterranean climate char-
acterized by very hot summers and fairly mild winters. The region often experiences a
north-west wind, the Tramontana, which keeps the sky clear much of the time.

Covering the years 2016 and 2017, the data are sampled at a ∆t = 10 min rate, resulting
in around 26,600 points per year, after nights have been removed. The training dataset
consists of the GHI measurements of the year 2016, and the test dataset consists of the GHI
measurements of the year 2017. Figure 7 shows a map of data covering the two years.
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Figure 7. GHI data covering years 2016 and 2017. Measurements are taken with a rotating shadow-
band irradiometer at PROMES-CNRS laboratory, located in Perpignan (southern France).

4. Results and Discussion

This section presents GHI forecasting results obtained using the scaled persistence
model and the GPR models included in the study. The performance metrics used are
also presented.

4.1. Performance Criteria

The models developed in this study are compared using the normalized root-mean-
square error (nRMSE), the dynamic mean absolute error (DMAE), the interval score (IS)
and the skill score (SS). These criteria are described below.

4.1.1. Normalized Root-Mean-Square Error

The nRMSE is a common evaluation metric adopted by the scientific community:

nRMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

1
n

n

∑
i=1

yi

(21)
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where y ∈ Rn×1 is the test data and ŷ ∈ Rn×1 is the forecast. The nRMSE penalizes large
deviations between forecasts and observations without quantifying errors due to temporal
mismatches that may lead to over- or underestimation of events such as peaks or ramps.

4.1.2. Dynamic Mean Absolute Error

The DMAE [44,45] is used to simultaneously evaluate temporal mismatches and mean
absolute error between forecasts and observations. The normalized mean absolute error
(nMAE) is given by:

nMAE =

n

∑
i=1
|ŷi − yi|

n

∑
i=1

yi

(22)

where y ∈ Rn×1 is the test data, and ŷ ∈ Rn×1 is the forecast. The DMAE is computed by:

DMAE =
∫ c

0
nMAE(tdi) f (tdi; λ, c)dtdi (23)

with f (tdi; λ, c) =


λ exp(−λtdi)

1− exp(−λtdi)
if tdi 6 c

0 if tdi > c
(24)

where nMAE(tdi) is the normalized mean absolute error between forecasts and test data
after shifting the time by a temporal distortion tdi ranging from 0 to c (the maximum allowed
temporal distortion), and λ determines the range of TDI values where their associated
errors will be more penalized (here, λ = 0.1 and c = 5%). For details about this criterion,
the reader is referred to [44,45].

4.1.3. Skill Score

As the nRMSE of a forecasting model depends on the atmospheric conditions of the
considered site, it should be compared to the nRMSE of a reference model to demonstrate
its accuracy. The skill score, denoted SS, is the criterion generally used to compare the
performance of a model against a reference model [46]:

SS =

(
1− nRMSEModel

nRMSEReference

)
· 100 (25)

A positive SS score indicates that the developed model outperforms the reference
model, which is chosen to be the scaled persistence model here.

4.1.4. Interval Score

The IS evaluates the forecast’s quality based on the associated confidence intervals [47]:

IS =
1
n

n

∑
i=1

(
(Ui − Li) +

2
α

max{Li − yi, yi −Ui, 0}
)

(26)

where y ∈ Rn×1 is test data, L ∈ Rn×1 is the lower bound of the confidence intervals,
U ∈ Rn×1 is the upper bound of the confidence intervals and α = 1− µ, with µ the nominal
value associated with the confidence intervals (here, µ = 0.95, so α = 0.05). This criterion
rewards narrow confidence intervals and penalizes forecasts for which the observations are
outside the confidence intervals.
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4.2. Forecasting Results

This section compares GHI forecasts given by all the models included in this study:

• The scaled persistence model;
• The time-based multi-horizon GPR models, with kernels kPer×RQ and kPer×RQ+Per;
• The observation-based multi-horizon GPR models (obtained by iterating one-step-

ahead forecasting models until the desired forecast horizon is reached), with kernels
kSE−ARD, kRQ−ARD, kM1/2−ARD, kM3/2−ARD, and kM5/2−ARD;

• The observation-based horizon-specific GPR models, with kernels kSE−ARD, kRQ−ARD,
kM1/2−ARD, kM3/2−ARD, and kM5/2−ARD.

The models’ performance is evaluated using the above-mentioned criteria, which are
computed for each model and each of the five considered forecast horizons (10 min, 1 h,
3 h, 5 h, and 24 h). It should be noted that at the lowest forecast horizon (10 min), there is
no difference between the multi-horizon GPR models and the horizon-specific GPR models,
since the multi-horizon forecasts are obtained by iterating one-step ahead forecasts.

In the sequel, a comparison between multi-horizon GPR models is made in Section 4.2.1,
a comparison between mono- and multi-horizon GPR models is conducted in Section 4.2.2,
and the contribution of the annual periodic kernel in time-based GPR models is studied
in Section 4.2.3. The values of the performance criteria for these three cases are given in
Figures 8–10, respectively. In addition, further insight on the behavior of models and the
influence of the kernels is given by Figures 11–15: each of these figures presents an example
of seven-day GHI forecasts (from 20 November 2017 to 26 November 2017) obtained with
the scaled persistence model and all GPR models considered in this study at one of the five
considered forecast horizons.

4.2.1. Multi-Horizon GPR Models: Time or Past Observations as Input?

In this section, multi-horizon GPR models using time as input are compared to those
using past GHI observations. The values of performance criteria for these forecasting
models are presented in Figure 8.

Let us first examine the 10 min forecast horizon. As can be noticed in Figure 8, all multi-
horizon GPR models and the scaled persistence model give similar results. The persistence
model, with nRMSE = 19.62%, is even slightly more efficient than some GPR models,
which confirms its efficiency for very short-term horizons. Nevertheless, the two GPR
models using time as input have a slight advantage over all the others. These two models
give similar results: nRMSE = 18.05% for the GPR model with kernel kPer×RQ+Per and
nRMSE = 18.11% for the GPR model with kernel kPer×RQ. We also observe similar results
for all GPR models, depending on the interval score values, which evaluate the GHI forecast
quality based on the associated confidence intervals. A large part of the test data falls
within the confidence intervals associated with the forecasts given by the multi-horizon GPR
models. Looking at the 10 min GHI forecast examples presented in Figure 11, the temporal
evolutions of all forecasts are similar. It should be noted that the GPR model with kernel
kSE−ARD provides the worst results. This observation is confirmed by the performance
criteria values. It can be deduced that this kernel, generally chosen by default, does not
necessarily guarantee good results.

As the forecast horizon increases, the performance of all models degrades. There is
a strong degradation in the scaled persistence model’s performance, which produces the
worst results for all intraday forecast horizons (Figure 8). Although the basic persistence
on GHI has been improved using a clear-sky model, as the forecast horizon increases
its persistent nature becomes detrimental to the model. Furthermore, when the forecast
horizon becomes longer, the accumulation of errors by iterating one-step-ahead forecasts
affects the performance of observation-based multi-horizon GPR models. Among these
models, the GPR model with kernel kRQ−ARD produces the best results. Concerning
the time-based GPR models, their superiority over the other multi-horizon GPR models
and the scaled persistence model becomes clear as the forecast horizon increases. When
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looking at the intraday forecasts given by observation-based multi-horizon GPR models
(orange curves in Figures 11–15), a strong degradation in performance is observed. This
degradation is lessened for the two time-based GPR models (red curves in Figures 11–15),
as they produce periodic signals fitting to the GHI data. Indeed, as the forecast horizon
increases, these models converge to the a priori knowledge on GHI, encoded in the chosen
kernels. In Figures 11–15, temporal shifts between the test data and the forecasts provided
by the scaled persistence model are also observed, as well as between the test data and
the forecast given by observation-based multi-horizon GPR model with kernel kSE−ARD.
These mismatches are reflected in the values of DMAE (Figure 8). Based on this criterion,
the scaled persistence model and the observation-based multi-horizon GPR model with
kernel kSE−ARD produce the worst results for all the considered forecast horizons.
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Figure 8. Comparison between multi-horizon GPR models: performance criteria values for time-
based (with triangular marks) and observation-based (with square marks) models. Note that the
latter are obtained by iterating one-step-ahead models until the desired forecast horizon is reached.
Values are calculated using test data (year 2017).

In our case, the forecasting models are developed for the implementation of a real-time
model predictive control strategy, with a 10 min time step. At each time step, the controller
needs forecasts ranging from 10 min to 24 h, which amounts to 144 forecast horizons.
Now, if no approximation method is used, GHI forecasting by a GPR model requires the
inversion of a matrix whose dimension is equal to the size of the training data. Thus,
to obtain the forecasts, 144 matrices should be inverted at each time step when considering
observation-based multi-horizon GPR models, while only one matrix should be inverted
when considering time-based multi-horizon GPR models. The average execution time
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required to obtain a GHI forecast (that is, the forecast at the desired forecast horizon by
time-based GPR models, or one iteration of the one-step-ahead forecast by observation-
based GPR models) with the considered training data is about 12 s using a computational
server equipped with an Intel® Xeon® E7-4890 v2 @ 2.80 GHz processor. As a result,
time-based multi-horizon GPR models outperform observation-based multi-horizon GPR
models while also having a lower computational cost.

However, instead of iteratively performing one-step-ahead forecasts, it is also possible
to develop observation-based horizon-specific GPR models. In the following section, they
are compared to time-based GPR models.

4.2.2. Multi-Horizon or Horizon-Specific GPR Models?

In this section, time-based GPR models are compared to observation-based horizon-
specific GPR models. The performance criteria values for these models are presented
in Figure 9.
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Figure 9. Comparison between multi-horizon and horizon-specific models: performance criteria
values for time-based GPR models (with triangular marks) and for observation-based horizon-specific
GPR models (with square marks). Values are calculated using test data (year 2017).

As can be seen in Figures 9 and 11–15, observation-based horizon-specific GPR models
are the best-performing, except at the 10 min forecast horizon, where the time-based GPR
models outperform them slightly. Among observation-based horizon-specific GPR models,
the GPR model with kernel kRQ−ARD produces marginally better results.

However, for our application (implementation of a real-time model predictive control
strategy), to obtain GHI forecasts ranging from 10 min to 24 h, 144 horizon-specific GPR
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models should be developed, and it is still necessary to invert 144 matrices. These horizon-
specific models thus generate quite a large computational cost that would hamper the
real-time implementation of the strategy. Therefore, in this case, time-based multi-horizon
GPR models are recommended. However, when few forecast horizons are considered or
when there is no real-time implementation constraint, observation-based horizon-specific
GPR models are recommended, since they give the best forecasting performance.

Through these comparative studies of time- and observation-based GPR models, it is
noticed that time-based GPR models outperform observation-based multi-horizon GPR
models and have a low computational cost compared to observation-based horizon-specific
GPR models. Two time-based GPR models, with kernel kPer×RQ+Per and kPer×RQ, have
been developed. In the following section, the performance of these two models is compared
to evaluate the contribution of the annual periodic kernel added to the quasiperiodic
kernel kPer×RQ.

4.2.3. Contribution of the Annual Periodic Kernel

The performance criteria values for these models are presented in Figure 10.
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Figure 10. Performance criteria values for time-based GPR models. Values are calculated considering
test data (year 2017).
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Figure 11. Examples of 10 min GHI forecasts over one week, given by the scaled persistence model
and the GPR models included in this study.
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Figure 12. Examples of 1 h GHI forecasts over one week, given by the scaled persistence model and
the GPR models included in this study.
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Figure 13. Examples of 3 h GHI forecasts over one week, given by the scaled persistence model and
the GPR models included in this study.
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Figure 14. Examples of 5 h GHI forecasts over one week, given by the scaled persistence model and
the GPR models included in this study.
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Figure 15. Examples of 24 h GHI forecasts over one week, given by the scaled persistence model and
the GPR models included in this study.
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For a forecast horizon of 10 min, these two models give similar results and slightly
outperform the scaled persistence model. These GPR models’ performance remains similar
up to a forecast horizon of 3 h, but from 5 h onwards, we observe that the time-based
GPR model with kernel kPer×RQ+Per provides better results. The inclusion of the seasonal
component of the GHI becomes significant when the forecast horizon becomes longer.
The slight superiority of the time-based GPR model with kernel kPer×RQ+Per for the consid-
ered forecast horizons indicates that the gain could be more important for forecast horizons
of a few days or more. As the forecast horizon increases, the augmentation of IS values
(Figure 10) of the time-based multi-horizon GPR models indicates the degradation of their
performance. Nevertheless, among the time-based multi-horizon models, the GPR model
with kernel kPer×RQ+Per produces the best results for all the considered forecast horizons.
In Figure 15, for a 24 h horizon, the time-based GPR model with kernel kPer×RQ+Per fits the
data better. The periodic kernel modeling the annual component of the GHI allows this
model to produce a periodic signal with good long-term magnitude.

Note that without data to update the forecasts, a GPR model simply converges to its
mean value learned during training. For a model based on a quasi-periodic kernel, this
mean value is a periodic signal that could be interpreted as a sort of clear-sky model. Thus,
for a forecast at a very long forecast horizon (a few months, for example), the time-based
GPR model with kernel kPer×RQ+Per would have a great advantage, since its mean value
also includes the annual periodic component of GHI.

5. Conclusions

In this paper, a comparative study of GPR models for GHI forecasting at intrahour,
intraday and day-ahead forecast horizons is conducted. First, a study on which input
between time and past GHI observations is conducted, along with a kernel study for
each case. For observation-based GPR models, two categories of models are considered:
multi-horizon forecasting models and horizon-specific forecasting models. The results of
these models are compared to the results of time-based GPR models, which are naturally
multi-horizon. The scaled persistence model is also included in this paper as the reference
model. The models have been trained with one year of data and tested with another year
of data, with a sampling time of 10 min.

According to the four performance criteria used, all the GPR models outperform the
scaled persistence model, except at the lowest forecast horizon considered (10 min), where
the scaled persistence model has an edge over a few of them. Regarding multi-horizon
models, it is shown that, compared to observation-based GPR models, time-based GPR
models have better forecasting performance, while also having a lower computational cost.
Horizon-specific models using past GHI observations outperform all multi-horizon models.
However, it should be noted that, depending on the application at hand, developing a
model for each considered forecast horizon can be time and computationally demanding.

In the end, if multi-horizon models are needed, time-based GPR models and a
quasiperiodic kernel should be chosen. When few forecast horizons are needed (or if
time and computational constraints are low), observation-based horizon-specific GPR
models and an automatic relevance determination rational quadratic kernel are advocated.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
ARD Automatic relevance determination
CPU Central processing unit
DMAE Dynamic mean absolute error
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
GHI Global horizontal irradiance
GHIcs Clear-sky global horizontal irradiance
GP Gaussian process
GPML Gaussian Processes for Machine Learning (Matlab toolbox)
GPR Gaussian process regression
IS Interval score
kNN k-nearest neighbours
(n)MAE (Normalised) mean absolute error
Mν Matérn (kernel) of degree ν

NWP Numerical weather prediction
PV Photovoltaic
Per Periodic (kernel)
(n)RMSE (Normalised) root mean square error
RQ Rational quadratic (kernel)
SE Squared exponential (kernel)
SS Skill score
SVR Support vector regression
UVA Ultraviolet A
UVB Ultraviolet B
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