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Abstract

In this paper, we present an effective two-stage numerical algorithm for the simultaneous
finding of all roots of meromorphic functions in a region within the complex plane. At the
first stage, we construct a polynomial with the same roots as the ones of the considered
function; at the next step, we apply some method for the simultaneous approximation
of its roots. To show the efficiency and applicability of our algorithm together with its
advantages over the classical Newton, Halley and Chebyshev’s iterative methods, we
conduct three numerical examples, where we apply it to two test functions and to an
important engineering problem.

Keywords: meromorphic functions; iterative methods; simultaneous methods; error esti-
mates; polynomial zeros; real-world applications

1. Introduction
Suppose that f : C → C is an arbitrary function. Solving the equation

f (x) = 0 (1)

is one of the main tasks that arises from the real world problems. It is well known that
iteration methods are among the most efficient tools for solving (1). Undoubtedly, the
most famous among them are Newton’s method, Halley’s method [1] and Chebyshev’s
method [2]. Convergence analysis and some historical notes about these methods applied
to simple and multiple zeros of analytic functions can be found in [3–5]. However, it could
be a very difficult task to find all the roots of (1), or even detect their number, within a given
finite region applying iterative methods that involve derivatives of f . A simple example is
the function f (x) =

√
x which root is zero but the mentioned methods might not find it

because its first derivative has singularity at x = 0.
The polynomials are quite a different case. The iteration methods for polynomial zeros

have drawn a great interest among the mathematicians in the last 70 years (see, e.g., [6–8]
and the references therein). In particular, detailed convergence analysis of Newton, Halley
and Chebyshev’s methods for simple and multiple polynomial zeros has been conducted in
the recent papers [9–12]. Let P(x) = a0 xn + a1 xn−1 + · · ·+ an be a complex polynomial of
degree n ≥ 1. In 1891, Weierstrass [13] offered a different approach for finding the zeros of
P, namely to compute all of them at once, i.e., simultaneously. He established and studied
the first simultaneous method which can be defined as follows:

x(k+1) = x(k) − W(x(k)), k = 0, 1, 2, . . . , (2)
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where the Weierstrass iteration function W : D ⊂ Cn → Cn is given by W(x) = (W1(x), . . . ,
Wn(x)) with

Wi(x) =
P(xi)

a0 ∏j ̸=i(xi − xj)
(i = 1, . . . , n), (3)

where D denotes the set of all vectors in Cn with pairwise distinct components. The second
simultaneous method in the literature is due to Bulgarian mathematicians Dochev and
Byrnev [14], and the third one is due to Ehrlich [15] in 1967 and was rediscovered by
Börsch-Supan [16] in 1970.

The approximation of analytic functions by polynomials has a very long history
associated with the works of Taylor, Euler, Lagrange and Newton since the early 18th
century. However, a great disadvantage of such an approach is that the zeros of f may bear
no relation with those of its approximation P. An obvious example is

f (x) = ex with P(x) =
n

∑
i=0

xi

i!
.

Therefore, to reduce the solving of (1) to the solving of some polynomial equation, many
authors have attempted to find a polynomial that has exactly the same zeros as f in some
domain within the complex plane (see, e.g., [17–19]). In 1995, Tovmasyan and Kosheleva
summarized the results in this direction in the following theorem:

Theorem 1 ([20] Theorem 1). Let D ⊂ C be an (n + 1)-connected domain with closure Γ,
the function f : C → C be analytic in D, and let P be a monic polynomial of degree n ≥ 1 with
coefficients

al = −1
l

l−1

∑
j=0

aj cl−j, l = 1, . . . , n, (4)

where

c0 = n and ck =
1

2π i

∫
Γ

zk f ′(z)
f (z)

dz, k = 1, 2, . . . .

Then, the zeros of f in D coincide with the zeros of P.

In order to avoid using the derivatives of f , we reformulate this theorem in the
following equivalent form (see also [21]):

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with

ck =
1

2πi

(
izk Arg f (z)

∣∣∣∣
Γ
− k

∫
Γ

zk−1 ln f (z) dz
)

, k = 1, 2, . . . .

Then, the zeros of f in D coincide with the ones of P.

Proof. The proof follows immediately from Theorem 1 because of the identity∫
Γ

zk f ′(z)
f (z)

dz = zk(ln | f (z)|+ iArg f (z))
∣∣∣∣
Γ
− k

∫
Γ

zk−1 ln f (z) dz= i zk Arg f (z)
∣∣∣∣
Γ
− k

∫
Γ

zk−1 ln f (z) dz.

Obviously, the main drawback of Theorem 2 is that it only pertains to analytic func-
tions but not to meromorphic functions, which, as a larger class of functions, have many
more applications in natural sciences, engineering and others. The problem of locating the
zeros and poles of meromorphic functions also has a long history. Since 1932, many authors
proposed different numerical techniques to solve this problem; however, most of them are
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either ill-conditioned or computationally high-cost because of generating orthogonal poly-
nomials for certain bilinear forms, deal with Vandermonde or Hankel matrices, embedding
additional refinement mechanisms, etc. (see, e.g., [22–24] and references therein).

In this paper, we propose a new two-stage numerical algorithm for the simultaneous
determination of all roots of Equation (1) in a region D∗ ⊂ C whenever f is meromorphic
in D∗. Our algorithm unites and refines several well-known techniques in an effective and
easy implementable procedure. More precisely, at the first stage, only by tracking the phase
of f (Arg f ), we find a domain D ⊂ D∗, where f is analytic. Then, using Theorem 2, we
compute the coefficients of a polynomial P, which has the same zeros as f in D. At the
second stage, we implement a method for the simultaneous approximation of all the zeros
of P. In summary, the main novelties and advantages of our study are as follows:

(i) We use a new effective empirical method for locating the poles of f only by tracking
its phase;

(ii) Our algorithm may not require the computation of any derivatives, depending on
the choice of the method at the second stage;

(iii) We compute all the zeros of f at once with high accuracy.

2. Description of the Algorithm
In this section, we first provide a general description of our algorithm. Then, we

implement it using some particular approaches at certain steps.

2.1. The General Algorithm

Let the function f : C → C be meromorphic in a closed region D∗ ⊂ C with closure Γ∗.

Stage 1. Take a rectangle containing the domain D∗ and compute ln | f (z)| in any node of a mesh of
p × q points. Identifying the points where ln | f (z)| > K, for a preselected real number K (a suitable
choice is K > 1), cover the rectangle with squares or circles with side (radius) r, which is preselected
depending on the function f , namely, the closer the poles or the poles and roots of f are to each other,
a smaller r should be chosen. To sift out the false poles, we track the changing of Arg f (z) on these
squares (circles). Note that, Arg f (z) decreases around a pole. If more than one pole or pole with
roots are detected in some of the squares, we chose a smaller r and track the changing of Arg f (z) on
the newly taken squares (circles). This procedure is repeated until we isolate all the poles of f . Then,
by setting D1, . . . , Ds to be the domains containing the poles of f , we obtain a domain

D = D∗\(D1 ∪ · · · ∪ Ds)

in which the function f is analytic. Finally, setting Γ to be the closure of D and applying Theorem 2,
we obtain the coefficients a1 . . . an of the corresponding polynomial P.

Stage 2. Choose an initial vector x(0) ∈ Cn and a simultaneous method to apply it for computing
all the zeros of P.

2.2. Our Implementation

Stage 1. In our implementation, we consider D∗ as a square with side R meshed by 8000 × 8000
points and cover it with circles with radius r which is different in the different examples. Identifying
the nodes with ln | f (z)| > 1.1, on any of the circles we apply Cauchy’s argument principle and
track the continuity of Arg f (z) by the function unwrap(angle(f)) of MATLAB in order to detect
the number of poles in it. Thus, we extract the domain D in which the function f is analytic. Then,
computing the integrals in Theorem 2 by the vectorized adaptive quadrature ([25]), we get the
coefficients of the polynomial P.
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Stage 2. Using the second coefficient a1 and the degree n of the polynomial P, we generate Aberth’s
initial approximation (see [26]) x(0) ∈ Cn, which is given as follows:

x(0)ν = − a1

n
+ r0 exp(i θν), θν =

π

n

(
2ν − 3

2

)
, ν = 1, . . . , n, (5)

where r0 = R/2. Then, in order to avoid any usage of derivatives, we use the following family of
cubically convergent simultaneous methods that has been constructed and studied in [27,28]:

x(k+1) = Tα(x(k)), k = 0, 1, 2, . . . (6)

with the iteration function Tα being defined by

Tα(x) = (T1(x), . . . , Tn(x)) with Ti(x) = xi − Wi(x)

1 + (α − 1)∑
j ̸=i

Wj(x)
xi − xj

1 + α ∑
j ̸=i

Wj(x)
xi − xj

, (7)

where α ∈ C, while W is the above-defined Weierstrass correction.

Remark 1. At the second step, different ways for choosing the initial guess can be used, e.g., to take
its coordinates randomly from D (see, for example, [29] and the references therein).

3. Numerical Examples
In this section, we apply our algorithm to some functions that cause problems for the

classical iteration methods, such as Newton, Halley and Chebyshev’s ones. In order to
obtain higher precision in extracting the poles and the roots of the considered functions,
we use a mesh of 8000 × 8000 points and origin-centered squares with sides 4 and 2.6 for
Example 1 and Example 2, respectively, while a square with side 0.6 centered in 0.9 is used
in Example 3. At the second stage, we apply the family (6) with α = 1, which, in fact, is
the famous Ehrlich’s method [15] that is also known as Börsch-Supan’s one [16], and we
implement the following a posteriori error estimate ([29], Corollary 4.2):

A posteriori error estimate. Let P be a complex polynomial of degree n ≥ 2 and let (x(k))∞
k=0

be a sequence of vectors in Cn with pairwise distinct coordinates. Then, for every k ≥ 0, there is a
vector ξ ∈ Cn of the roots of f such that

E(x(k)) =

∥∥∥∥∥W(x(k))
d(x(k))

∥∥∥∥∥
∞

< τ ⇒ ∥ x(k) − ξ ∥∞ ≤ εk = Φ(E(x(k))) ∥W(x(k))∥∞,

where the number τ and the function Φ : [0, τ] → R+ are defined by

τ =
1

(1 +
√

n − 1)2
and Φ(t) =

2
1 − (n − 2)t +

√
(1 − (n − 2)t)2 − 4t

.

Using this error estimate, we apply the following stopping criterion:

E(x(k)) < τ and εk < 10−10. (8)

Moreover, to show the convergence behavior of Newton, Halley and Chebyshev’s methods,
when applied to the chosen functions, we define the quantity ϵk = |zk − zk+1| for all k ≥ 0
and we use the stopping criterion ϵk < 10−10 (see Table 1).
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In the tables below, for any of the examples, we give the values of k, E(x(k)), τ, εk, ϵk

and εk+1. All numbers in the remainder are given with at least six decimal digits.
In our first example, we take a function from [30] that causes many problems for the

famous Newton, Halley and Chebyshev’s methods.

Example 1 ([30] Example 3). Consider the following function:

f1(z) =
1

z2(z − 1)(z2 + 9)
+ z sin z + e−3z + 4

with poles 0 and 1 and with roots −0.163231± 1.778842i, −0.349178± 1.194062i, 0.978436, 0.169748,
−0.133271 in the circle |z| ≤ 2.

At the first stage, we obtain the corresponding polynomial of f1 as follows:

P1(x) = x7 + 0.009906x6 + 3.939586x5 − 2.271493x4 + 2.251773x3 − 4.866621x2 + 0.125048x + 0.109315 (9)

and we use Aberth’s initial vector (5) with n = 7, a1 = 0.009906 and r0 = 2.
No matter the rough initial guess, one can see from Table 2 that the stopping criterion

(8) is satisfied at the sixth iteration with an error estimation that is less than 10−11. At the
next iteration, the roots are found with an accuracy of 10−34.

We have to note that trying to find the zeros of f1 Chebyshev’s method diverges
when starting from the initial point 0.999990 + 0.044504i (see Table 1) while starting from
1.948440 + 0.445041i it converges to the root outside the circle. What for Newton and
Halley’s methods, it is seen by Table 1 that Halley’s method ‘jumps out of the circle’ starting
from the initial guess 0.000669 − 0.445041i no matter its closeness to the roots inside and
Newton’s method finds the root −0.349178 + 1.194062i instead of someone closer to the
initial guess. In fact, all three methods encounter difficulties to find the root 0.978436 maybe
because of its closeness to a pole.

Table 1. Convergence of Newton, Halley and Chebyshev’s methods for Examples 1–3.

Function Method Initial Guess Root k ϵk

f1

Newton 0.999990 + 0.044504i −0.349178 + 1.194062i 14 3.852 × 10−13

Halley 0.000669 − 0.445041i −1.413711 − 3.573154i 6 1.872 × 10−20

Chebyshev 0.999990 + 0.044504i The method diverges

f2

Newton 0.000001 − 0.001136i −0.001 5 1.643 × 10−14

Halley 0.000001 − 0.001136i −0.001 4 1.135 × 10−12

Chebyshev 0.000001 − 0.001136i −0.001 4 4.644 × 10−14

f3

Newton 0.703493 + 0.042135i The method diverges
Halley 0.703493 + 0.042135i 0.757396 3 1.323 × 10−22

Chebyshev 0.703493 + 0.042135i The method diverges

Table 2. Numerical data for Examples 1–3.

Polynomial k E f (x(k)) τ εk εk+1

P1 6 8.77 × 10−12 0.084040 5.384 × 10−12 2.875 × 10−34

P2 10 1.037 × 10−11 0.171573 1.036 × 10−14 1.116 × 10−36

P3 4 1.481 × 10−25 0.25 5.060 × 10−26 1.110 × 10−75
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In Figure 1a,b, the values of ln | f1(z)| and the trajectories of approximations to the
roots are shown. On the left, the white stars depict the zeros, while the black ones are the
poles of f . On the right, blue points depict the initial guess, and the red ones are the roots.

(a) The values of ln | f (z)|, the roots and the poles of f . (b) The paths of approximations to the roots.

Figure 1. Graph of the two stages for Example 1.

To show the high precision of our algorithm, for the next example, we constructed a
function with very close poles and zeros.

Example 2. We consider the function

f2(z) =
(z + 0.001)(z − 1.001 − 0.2i) sin z

ez − e0.0005

in the circle |z| ≤ 1.3.

We obtain its corresponding polynomial as

P2(x) = x3 − (1 + 0.2i)x2 − (0.001 + 0.0002i)x + 5.991 × 10−11 − 3.765 × 10−10i (10)

and we use Aberth’s initial approximation (5) with r0 = 1.3.
One can see from Table 2 that the stopping criterion (8) is satisfied at the tenth iteration

with an error estimation less than 10−13, and at the eleventh step all the roots are found
with an accuracy of 10−36. On the other hand, both Halley and Chebyshev’s methods run
into great difficulties to find the root 0 of f2. One can see from Table 1, that regardless of
how close the initial guess is to 0 the three methods converge to another root.

As in the previous example, in Figure 2a,b, we plot the values of ln | f2(z)| and the
trajectories of approximations to the roots.

In the last example, we consider a function that models an important chemical engi-
neering problem which has been studied in ([31], Problem 7). It is worth noting that the
mentioned authors, being unable to solve the problem directly due to its singularities, have
transformed it into a much suitable transcendental function. In our example, a solution of
the basic problem is given.

Example 3 (Fractional conversion in a reactor [5,31]). The fractional chemical conversion in a
reactor is described by the following function:

f3(z) =
z

1 − z
− 5 ln

(
0.4(1 − z)
0.4 − 0.5z

)
+ 4.45977,
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where z is the fractional conversion of the limiting reactant. We consider f3 in the circle with center
0.9 and radius 0.3 which contains its zeros 0.757396 and 1.098983.

At the first step, we get the following corresponding polynomial:

P3(x) = x2 − 1.856380x − 0.832366 (11)

and then we use Aberth’s initial approximation (5) with r0 = 0.3.

(a) The values of ln | f (z)|, the roots and the poles of f . (b) The paths of approximations to the roots.

Figure 2. Graph of the two stages for Example 2.

One can see from Table 2 that the stopping criterion (8) is satisfied at the fourth
iteration with an error estimation less than 10−24 and at the next step all the roots are
found with an accuracy of 10−75. For Chebyshev’s method or even for Newton’s one there
are infinitely many divergent points in the considered region. An example is the point
0.703493 + 0.042135i no matter its closeness to one of the roots (see Table 1).

The values of ln | f3(z)| and the trajectories of approximations to the roots are plotted
in Figures 3a and 3b, respectively.

(a) The values of ln | f (z)|, the roots and the poles of f . (b) The paths of approximations to the roots.

Figure 3. Graph of the two stages for Example 3.
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4. Conclusions
We have united and refined several previous approaches into a new effective and easy

implementable two-step numerical algorithm for the simultaneous extraction of all the
zeros of a meromorphic function f in a certain domain within the complex plane. Our
method involves some simple techniques for excluding the poles and finding the roots
of f without a need of computing any of its derivatives. To show the advantages and
applicability of our method, we have conducted three examples, where we apply it to two
test functions and to a chemical engineering problem for which the famous Newton, Halley
and Chebyshev’s iterative methods fail or run into great difficulties in finding some of the
roots. Our method face no difficulties to extract all the roots of ill-conditioned functions
with high precision but the manual adjustment of the parameters at the first stage cause
a bit of inconvenience. Our approach could be further extended for finding the roots of
multivariate functions and system of linear equations.
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