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Abstract: The innate immune system is the first line of defense against pathogens. Its composition
includes barriers, mucus, and other substances as well as phagocytic and other cells. The purpose
of the present paper is to compare tissues with regard to their immune response to infections and
to cancer. Simple ideas and the qualitative theory of differential equations are used along with
general principles such as the minimization of the pathogen load and economy of resources. In the
simplest linear model, the annihilation rate of pathogens in any tissue should be greater than the
pathogen’s average replication rate. When nonlinearities are added, a stability condition emerges,
which relates the strength of regular threats, barrier height, and annihilation rate. The stability
condition allows for a comparison of immunity in different tissues. On the other hand, in cancer
immunity, the linear model leads to an expression for the lifetime risk, which accounts for both
the effects of carcinogens (endogenous or external) and the immune response. The way the tissue
responds to an infection shows a correlation with the way it responds to cancer. The results of this
paper are formulated in the form of precise statements in such a way that they could be checked by
present-day quantitative immunology.
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1. Introduction

Human immunity is, as are practically all physical aspects of life, a control process.
Our body senses the number of pathogens in a tissue and a response is generated, which
reduces the pathogen load.

The vertebrate’s immune system has evolved over millions of years to protect the host
from infection through a multilayered defense strategy, compressing a variety of sensors,
signals, and effectors at the cellular level [1]. This includes the innate and adaptive arms of
immunity, which work cooperatively to recognize, respond to, and remember pathogens.

The innate immune system provides rapid first-line protection against infection in a
nonspecific manner. Its components include physical and chemical barriers, phagocytic
cells (neutrophils and monocytes/macrophages), natural killer (NK) cells, the comple-
ment system, and inflammatory signaling molecules called cytokines. Innate immune
defenses identify pathogens through pattern-recognition receptors (PRRs) [2] that bind con-
served molecular patterns on microbes, known as pathogen-associated molecular patterns
(PAMPs). Innate immunity is also known to play an important role in antitumor responses
by detecting tumors, activating adaptive immunity, and exerting direct effector functions
on emerging cancer cells [3].

The mathematical modeling of such a complex system is, of course, a very difficult
task. Excellent reviews can be found on both modeling infections [4–7] and cancer [8–11],
in which a historical perspective is offered and details of the models are discussed. With
regard to our paper, we find similarities with the works by Prof. Marchuk’s group [12,13].
A very nice resume of that work is presented in Ref. [14]. We, as in [14], use differential
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equations to model the system and emphasize the qualitative aspects. However, there are
also essential differences.

First, in our paper, we use simple models and very general principles, such as mini-
mization of the pathogen load and economy of resources, in order to put bounds on the
constants entering the model or to obtain inequalities for the stability of a tissue. These in-
equalities allow a direct comparison of the immune response in different tissues. To the best
of our knowledge, there are no similar results in the literature. Even in a reference like [15],
where different tissues are studied, there is no aim at performing such a comparison.

Second, we use a simple linear model for the very early stages of carcinogenesis in
order to obtain an expression for the risk of cancer in a tissue. This expression is consistent
with the data on cancer risk in different tissues [16] and with a model of random jumps in
the gene-expression space [17]. On the other hand, an interesting correlation is suggested
between the way a tissue responds to an infection and its response to cancer. To the best of
our knowledge, these are also new results.

The results of our paper are presented in the form of precise statements. The idea is to
motivate experimental immunologists, who could attempt a direct check.

The plan of this paper is as follows. The linear model is presented in Section 2.1.
Even from this simplest model, a statement is derived. Nonlinearities are introduced in
Section 2.2. Consequences of the nonlinear model are discussed in the subsequent sections.
In particular, Section 2.4 formulates a stability condition relating the regular pathogen threat
with the immune barrier and the pathogen annihilation rate with the tissue. The stability
condition allows for a direct comparison of different tissues with regard to their immune
responses. Immunity to cancer and its correlation with the immune response against an
infection is discussed in Section 2.8. Finally, in Section 3, we present the discussion and
some possible future directions of work.

2. Results
2.1. Linear Model

Let us consider, for example, a very small intensity threat to a given tissue in an adult
individual. The resident cells of the immune system will trigger a response to clear the
infection. These are, basically, resident cells of the innate system [18]. The simplest available
model for the response is a linear one:

dP
dτ

= αt ft + aP − btP, (1)

in which the response is proportional to the threat. τ is time; P is the number of pathogens
(in some units); and a is its rate of growth, typically ∼ 1/hour for bacteria [19]. A freely
evolving group of a few streptococci, for example, would lead, in around 40 h, to a colony
greater than the number of cells in the lungs.

The coefficient bt, on the other hand, is the tissue-annihilation rate of pathogens
which, for consistency, should be greater than a so that small threats do not transform
into acute health problems in the short term. This condition requires enough number
of resident immune cells in the tissue. This statement may be explicitly formulated and
experimentally checked:

Statement 1. In any tissue, the annihilation rate of pathogens, due to the resident immune cells, is
greater than the average multiplication rate of pathogens.

Finally, αt ft is the rate of entrance of pathogens into the tissue. The constant αt < 1
will model barrier or mucosal immunity; that is, the flow of pathogens, ft, is partially
trapped and cleared by the barrier or mucosa (or both).

According to Equation (1) and under the assumption that Statement 1 holds, a finite
load of pathogens is always annihilated, irrespective of the total number. This unrealistic
situation is corrected in nonlinear models, characteristic of self-regulated systems.
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2.2. Nonlinear Model

In a real situation, neither the pathogen load nor the immune response can grow
without limits. A nonlinear model prevents this unrealistic situation from taking place.
For low pathogen loads (low P), we should recover the linear regime, as before. We use a
modification of Model 5 of Ref. [20] in order to take into account nonlinearities:

dP
dτ

= αt ft + aP
(

1 − P
Ps

)
− btP

1 + c∞P
. (2)

The a parameter, which has roughly the same meaning as in Equation (1), equals
0.6 h−1. The added nonlinearity limits the increase in P to values below Ps = 20, a
conventional parameter indicating sepsis. The authors of paper [20] use an average value
of the annihilation rate, bt, for the body of 1.5 h−1, a value satisfying the requirement
b > a, mentioned in the previous paragraph. The parameter c∞ = 5 also limits the immune
response for high values of P.

The main deficiency of Equation (2) is the lack of a term modeling the recruitment
of other immune cells. However, even from this simple model, we can obtain important
properties with the help of the qualitative theory of differential equations [21].

2.3. Reference Value for the Number of Pathogens

As will become clear below, Equation (2) has three fixed points: P = 0 (healthy tissue);
Ps = 20 (sepsis); and P = Pc, which is an unstable fixed point dividing healthy from septic
conditions. We draw in Figure 1 the r.h.s. of Equation (2) for ft = 0, which shows two
of the fixed points: P = 0 and P = Pc. If, in the time evolution according to Equation (2),
P reaches values greater than Pc, then the outcome will be a state with P close to the third
fixed point, Ps, not seen in the figure.

0.0 0.2 0.4 0.6 0.8 1.0
P

-0.1

-Vm

0.1

0.2

0.3

0.4

r.h
.s

Pc

Figure 1. The r.h.s. of Equation (2) for ft = 0. A stable fixed point at P = 0 and an unstable one at
P = Pc ≈ 0.3 are signaled. Arrows indicate restoring forces. A third stable critical point at P ≈ Ps

corresponds to a septic state, which is not seen in the figure. The value of the function at the minimum,
−Vm, is indicated.

We can roughly estimate Pc by expanding the r.h.s. of Equation (2) in series of P,
retaining linear and quadratic terms, and equating the result to zero, whereby we obtain

Pc =
bt − a

btc∞ − a/Ps
≈ 1

c∞
. (3)
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The last expression comes from neglecting a against bt. We will assume that there
is a unique c∞ for all of the tissues. This sets a reference value for Pc in the whole body.
Pc could, probably, be associated with the threshold value for initiating the recruitment of
additional immune cells.

2.4. Stability Condition in Tissues

At this point, one may ask the following question: what is the stability condition of the
P = 0 healthy state? In other words, how do barriers and the annihilation rate in a given
tissue combine in order to guarantee that common pathogen threats are annihilated? The
response coefficient bt, apart from being greater than a, shall depend on the pathogen load
that the tissue is regularly exposed to. If the flow of pathogens, f , is practically constant
in certain time intervals, one can obtain a stability condition by requiring the r.h.s. of
Equation (2) to be lower than zero. This leads to

αt ft < Vm ≈ bt

4c∞
≈ btPc

4
. (4)

Vm is the value at the minimum defined in Figure 1. The estimation for Vm comes
from expanding the r.h.s. in series, in the same way as we did for Pc. Notice that if
the inequality (4) is violated, the r.h.s. of Equation (2) is always greater than zero and
P increases towards Ps.

Coefficients αt and bt shall combine in each tissue in order to guarantee that Equation (4)
will hold, i.e., guarantee immunity against regular threats. Higher threats (a higher ft) would
require higher barriers (a smaller αt) and/or higher annihilation rates (bt). This is typical of
epithelial tissues. In other cases, for example, germinal cells in the testis, in order to prevent
autoimmunity, the coefficient bt is reduced, which is compensated by high barriers. In summary,
we may formulate a second explicit statement, suitable also for experimental verification:

Statement 2. The minimization of P leads to the condition (4) for the coefficients αt and bt in terms
of the regular pathogen flow in the tissue ft. An economy of resources implies that the inequality
should be near optimal. There is roughly a similar Pc value in all tissues.

2.5. A Second Consequence of the Unstable Fixed Point

The unstable fixed point not only sets a unique reference value, Pc, but is also the
reason for an interesting property of the small-P response. When the pathogen load
overcomes the stability threshold given by Equation (4), the fixed point slows down the
increase in P. The reason is very simple: P should traverse the region near Pc, where the
r.h.s. of Equation (2) is near zero; that is, where the net annihilation rate of pathogens
surpassing the barrier is close to its effective rate of growth. This is illustrated in Figure 2
for the following particular parameter values: Vm ≈ 0.04 h−1 and α f = 0.05 h−1. The figure
shows that the increase in P is delayed for more than 20 h, even though the characteristic
time scale of the problem is around 1/bt, which is one hour. This delay allows for the
recruitment of immune cells from blood circulation. We may formulate the following:

Statement 3. As a violation of the stability condition, Equation (4) leads to an impasse phase
allowing for the recruitment of other immune cells.

This statement can also be experimentally checked.
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Figure 2. Numerical solution of Equation (2) showing the time evolution of P in the unstable regime
characterized by the parameters α f = 0.05 h−1 > Vm = 0.04 h−1. Notice the 20 h long delay before
the increase in P.

2.6. A Qualitative Comparison

The following example is a qualitative comparison between two nearby tissues: the
small and large intestines. An understanding of the reinforced immunity of the small
intestine comes from this analysis.

We show in Figure 3 the schematics of the density of microbes in the contact region.
These microbes are mainly commensal bacteria, but it is reasonable to assume that the
pathogen loads are proportional to these numbers.
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Figure 3. Schematic representation of the density of microbes in the gut.

The variable l is a coordinate along the gut. The small bowel is located at l < 0, and
the large intestine is located at l > 0. The mean value of the microbes/gm experiences a
jump from 104 to 1011 as we cross from the ileum to the cecum [22]. Of course, we expect
the dependence to be continuous, as schematically represented in Figure 3.

The parameter values for the large intestine, αl and bl , are roughly constant. In the
small intestine, however, the parameters shall exhibit a spatial variation. αs shall decrease
and bs increase as l moves towards the distal end of the ileum. Significant variations in
the parameters are expected due to the augmented flow of pathogens in many orders of
magnitude. This is consistent with the distribution of Paneth cells [23], Peyer’s patches [24],
and other structures along the small bowel. Above, we speak about “reinforced” immune
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protection in the small intestine, whereby in this sense, the coefficients αs and bs shall vary
in order to increase protection as ft increases.

Statement 4. The distribution of immune structures in the small bowel is related to the increasing
density of pathogens observed as we cross from the ileum to the cecum.

2.7. Other Tissues

The stability condition, Equation (4), also allows for the analysis of the tissues in which
the flow of pathogens is normal, but bt is decreased at the expense of lowering αt. These are,
for example, the brain [25] and testis [26], where a limit to the cellular immune response is
needed for the proper functioning of the tissue. Recall that the values for bt can never be
lower than a, as mentioned.

In addition, there are also tissues, like the gallbladder, where the microbicide character
of bile [27] could be translated into a lower-than-average αt and, possibly, a low bt. Notice
that we have generalized the meaning of the “barrier” coefficient, αt, not limited now to
anatomical or mucosal barriers.

In conclusion, we assume that the coefficients αt and bt take different values for
different tissues. The regular flow that the tissue is exposed to, ft, basically determines
the ratio bt/αt, according to Equation (4). The tissue’s functioning conditions could dictate
additional restrictions. For example, in the brain, bt should be relatively low to avoid
frequent inflammation processes; thus, αt should be decreased. This is the origin of the
blood–brain barrier.

2.8. Immunity to Cancer

Although the detailed dynamics of cancer onset and development are very com-
plex [28] and partially unknown, one may guess that there should be an inverse correlation
between the annihilation rate of pathogens in a tissue, bt, and the risk of cancer. Indeed, the
cellular immune response is not only responsible for eliminating virus-infected cells, for
example, but also dysfunctional and precancerous cells in the tissue. Thus, a low bt could
be related to a higher-than-normal cancer risk in that tissue. Conversely, one may obtain
information for bt from the frequency distribution of cancer in the body tissues [17].

It is reasonable to assume that, for the initial stages of tumors in a tissue, an equation
similar to Equation (1) holds:

dN
dτ

= gc + acN − bcN, (5)

where N is the (small) number of precancerous cells, gc is the rate of creation of such cells
in the tissue, ac is their division rate, and bc is the tissue’s annihilation rate of dysfunctional
cells. ac can be estimated from the division rate of stem cells in that tissue, ut, assuming
that cancer cells originate from stem cells [29]. Typically, ac ∼ 1/week or even smaller [16].
On the other hand, bc ∼ bt, as noticed. Thus, bc >> ac.

Statement 5. The tissue-annihilation rate of dysfunctional and precancerous cells is similar to the
annihilation rate of pathogens because they are both determined by the resident immune cells.

For gc, we may use an equation like gc ∼ pNscut, where Nsc is the number of stem
cells and p is a probability parameter modeling the carcinogenic effect of both internal
processes (free radicals, for example) or external factors (double strand breaks by ionizing
radiation, for example).

Equating to zero the r.h.s. of Equation (5) and neglecting ac against bc, we obtain the
average number of precancerous cells in the tissue:

Nc ≈ gc/bc = (put/bc)Nsc. (6)
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In order to become a true tumor, these cells should pass through a few stages [28] and avoid
the adaptive immune system. Nevertheless, it is reasonable to assume that the lifetime risk
for cancer in the tissue is proportional to Nc, that is:

risk ∼ (putt/bc)Nsc, (7)

where we took t ≈ 80 years. It is interesting to notice that an expression similar to
Equation (7) comes also from a model of oncogenesis in the gene-expression space [17].
We refer to that paper for a more-detailed analysis. For consistency, we reproduce the
qualitative inference of bc (bt) from the cancer-risk data.

Figure 4 is a replot of the results by Tomasetti and Vogelstein [16] (see also [30])
showing the dependence of the lifetime risk for cancer in a tissue on the number of stem
cells and the rate of mitotic divisions. The y-axis in the figure is the normalized risk, i.e., the
risk per stem cell. This normalization allows for a comparison between tissues with high
differences in the number of stem cells. The x-axis, on the other hand, counts the number of
stem cell generations along a lifetime, Ngen, a number roughly proportional to the division
rate, Ngen ≈ ut 80 years + log2 Nsc. The last term accounts for divisions along the clonal
expansion phase during tissue formation. The figure shows that, for a single-cell lineage,
the larger Ngen, the higher the normalized risk also.
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Figure 4. Lifetime cancer risk per stem cell vs. the number of stem cell generations in tissues. The
figure is a replot of the data contained in Tomasetti and Vogelstein paper [16].

In Figure 4, a set of 11 cancers shows a near-perfect linear correlation: risk/Nsc ∼ Ngen,
where the proportionality coefficient may be roughly written as qp/bt/80 years, and q
measures the success rate of precancerous cells: one in ten thousand cells becomes a tumor,
for example.

We shall qualify these tissues as “normal”. For all of them, we expect a very similar p
and bt, although they may exhibit very different barriers (αt). Indeed, we expect a very low
αt in the colon and skin but αt ≈ 1 in blood, for example. The only “special” case in this
group is the cerebellum, with a high barrier and a normal (instead of a low) bt. This means
a possibility higher than that in the cerebrum to clear any infection [31].
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External and genetic factors raise the risk (through p) many times, as compared to
normal tissues. For example, smoking multiplies the risk for lung cancer by roughly 20
and, in familial adenomatous polyposis patients, the risk for colon cancer is increased by a
factor around 100.

There are also tissues like the brain, germ cells, gallbladder, bones, and thyroid where,
in addition to genetic or external factors, the relatively high normalized values for the risk
lead one to suspect unusually low values of bt. The brain, germ cells, and the gallbladder
were briefly discussed above. About bones, it is known that immunity relies strongly
on defensins [32], possibly with a relatively low number of resident cells. On the other
hand, the thyroid is known to have a close cross-talk with the immune system [33]. Its
dysregulation is the cause of immune disorders. One may speculate that a low number of
resident cells is needed to prevent autoimmunity in the thyroid.

Finally, we have the small intestine with a normalized risk lower than normal, possibly
related to a high average bt, a fact consistent with what was discussed above. The results for
the estimated coefficients are summarized in Table 1. Although these are only qualitative
results, they allow for a comparison between tissues and are a first step towards the
understanding of Figure 4 for the lifetime risks of cancer in different tissues. We may
formulate the following:

Statement 6. The characteristics of the immune system for a set of tissues are qualitatively de-
scribed in Table 1. The cancer risk shows an inverse correlation with the cellular immune response
against infections.

Table 1. Qualitative comparison of immunity in tissues. The cancer risk per stem cell assumes no
external carcinogens or genetic predisposition.

Tissue Pathogen Flow
( ft)

Barrier Height
(1/αt)

Annihilation
Rate (bt) Cancer Risk

Small bowel Very High High High Low

Colon Very High Very High Normal Normal
Lung Very High Very High Normal Normal
Skin Very High Very High Normal Normal

Duodenum High High Normal Normal
Blood Normal Normal Normal Normal

Pancreas Normal Normal Normal Normal
Liver High High Normal Normal

Cerebellum Normal High Normal Normal
Esophagus High High Normal Normal

Head and Neck Normal Normal Normal Normal

Germ cells Normal High Low High
Brain Normal High Low High

Gallbladder Normal High Low High
Bone Normal High Low High

Thyroid Normal High Low High

3. Discussion

In this paper, we show that simple mathematical ideas lead to interesting results when
applied to the innate immune system.

In the simplest linear approximation, Equation (1), the stability of a tissue against
small threats requires the annihilation rate to be greater than the average replication rate
of pathogens.

The linear model is modified, Equation (2), in order to take into account that neither
the number of pathogens nor the response can grow without limits. Healthy (P = 0) and
septic (P = Ps) states appear as fixed points of the nonlinear (self-regulated) equation. In
the middle of the way, an additional unstable fixed point, P = Pc, signals the transition
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from healthy to septic regimes. We postulate that the value of Pc is common to all tissues.
The tissue is in a stable healthy condition if the inequality given in Equation (4) is fulfilled.
In other words, the barrier and the cellular component of the immunity are adjusted to the
regular flow of pathogens in the tissue. In the colon, for example, characterized by a very
high density of pathogens, we expect high barriers and a normal annihilation rate.

We noticed that the distribution frequency of cancer in tissues provides indications
about the strength of the annihilation rate of pathogens, under the assumption that it is
correlated with the rate of annihilation of precancerous cells. This later assumption follows
from the fact that both bc and bt are determined by the resident immune cells in the tissue.
Thus, the observation of a high cancer risk per stem cell in the gallbladder, for example,
indicates a low annihilation rate of pathogens by the immune cells, and this is consistent
with the fact that bile provides an effective barrier against bacteria.

The main results of this paper allow for a comparison of the immune response in
different tissues and establish a relation between immunity to infections and to cancer. Table
1 offers a kind of summary. To the best of our knowledge, there are no similar results in the
literature. In this paper, we formulate them in the form of precise statements, with the hope
that they could be quantitatively checked by using present-day immunology techniques.

There are many possible future directions of work. For example, to uncover the
dependence of bt on the total number of cells in a tissue, Ncell can be used. As bt is mainly
the result of the resident immune cells, it is natural to expect that a larger tissue would
require more resident cells in order to guarantee immunity. Almost naive arguments lead
to the estimation Nβ

cell for the number of resident cells [34], where the power beta is around
2/3. The power dependence is consistent with the scaling hypothesis in biology [35,36].
We performed a rough checking of this law for tissue resident macrophages in mice, which
leads to a β of nearly one. The number of macrophages in different tissues is indirectly
obtained by measuring the level of a macrophage-specific antibody, F4/80 [37]. This
direction of work deserves further attention.

However, what we like most is the perspective of looking at the immune ecosystem
formed by tissues and the body microbiota [38]. Equilibrium in this ecosystem is syn-
onymous of a healthy state. Dysregulations or disequilibrium, on the other hand, are
indications of diseases. Work along some of these directions is in progress.
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