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Abstract: Max-C and min-D projection auto-associative fuzzy morphological memories (max-C
and min-D PAFMMs) are two-layer feedforward fuzzy morphological neural networks designed to
store and retrieve finite fuzzy sets. This paper addresses the main features of these auto-associative
memories: unlimited absolute storage capacity, fast retrieval of stored items, few spurious memories,
and excellent tolerance to either dilative or erosive noise. Particular attention is given to the so-called
Zadeh’ PAFMM, which exhibits the most significant noise tolerance among the max-C and min-D
PAFMMs besides performing no floating-point arithmetic operations. Computational experiments
reveal that Zadeh’s max-C PFAMM, combined with a noise masking strategy, yields a fast and robust
classifier with a strong potential for face recognition tasks.

Keywords: fuzzy associative memory; morphological neural network; lattice computing

1. Introduction

Associative memory (AM) is a knowledge-based system inspired by the human brain’s
ability to store and recall information by association [1,2]. Apart from a large storage
capacity, an ideal AM model should exhibit a certain tolerance to noise. In other words, we
expect to retrieve a stored item not only from presenting the original stimulus but also from
a similar input stimulus [1]. We speak of auto-associative memory if stimulus and response
coincide. For instance, our memory acts as an auto-associative model when we recognize
a friend wearing sunglasses or a scarf. In other words, we obtain the desired output
(recognize a friend) from a partial or noise input (their occluded face). We speak of a hetero-
associative memory model if at least one stimulus differs from its corresponding response.

Several associative memory models have been introduced in the literature, and their
applications range from optimization [3,4] and prediction [5–7] to image processing and
analysis [8–10]. Associative memory models have also been applied for pattern classifica-
tion [11–14], including face recognition [15]. Moreover, the interest in associative memory
models increased significantly in the last few years due to their relationship with the
attention mechanism used in transformer models [16–18].

An AM model designed for storing and recalling fuzzy sets on a finite universe of
discourse is called fuzzy associative memory (FAM) [19]. On the one hand, fuzzy sets can
be interpreted as elements from a complete lattice [20]. On the other hand, mathemati-
cal morphology can be viewed as a theory on mappings between complete lattices [21].
Thus, many important FAM models from the literature belong to the broad class of fuzzy
morphological associative memories (FMAMs) [5,22]. Briefly, FMAMs are implemented by
fuzzy morphological neural networks. A morphological neural network is equipped with
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neurons that perform an elementary operation from mathematical morphology, possibly
followed by a non-linear activation function [23]. The class of FMAMs includes, for exam-
ple, the max-minimum and max-product FAMs of Kosko [19], the max-min FAM of Junbo
et al. [24], the max-min FAM with a threshold of Liu [25], the fuzzy logical bidirectional
associative memories of Belohlavek [26], and the implicative fuzzy associative memories
(IFAMs) of Sussner and Valle [9].

The max-C and min-D auto-associative fuzzy morphological memories (AFMMs),
synthesized using fuzzy learning by adjunction (FLA), are fuzzy versions of the matrix-
based auto-associative morphological memories (AMMs) proposed by Ritter et al. [5,22,27].
The main features of max-C and min-D AFMMs are

• unlimited absolute storage capacity,
• one-step convergence when employed with feedback,
• excellent tolerance to either erosive or dilative noise.

On the downside, matrix-based AFMMs with FLA have many spurious memories [5].
A spurious memory is an item that is unintentionally stored in the memory [1]. Furthermore,
the information stored on an AFMM with FLA is distributed on a synaptic weight ma-
trix. Consequently, these auto-associative fuzzy memories consume lots of computational
resources when designed for storing and recalling large items [5,28].

Many auto-associative fuzzy memory models have been proposed in the literature to
improve the noise tolerance or reduce the computational cost of AFMMs with FLA. For
example, to increase the noise tolerance of the IFAMs, Bui et al. introduced so-called content-
association associative memory (ACAM) [29]. Using a fuzzy preorder relation, Perfilieva
and Vajgl proposed a novel theoretical justification for IFAMs [30]. They also introduced a
fast algorithm for data retrieval based on an IFAM model with a binary fuzzy preorder [31].
Moreover, Vajgl reduced the computational cost of an IFAM by replacing its synaptic weight
matrix with a sparse matrix [32]. Quantale-based associative memories (QAMs) generalize
several lattice-based auto-associative memories. They have been effectively applied for
storing and recalling large color images [33]. Li et al. increased the storage capacity of fuzzy
associative memories using piecewise linear transformations [34]. Sussner and Schuster
proposed interval-valued fuzzy morphological associative memories (IV-FMAMs) designed
for storing and retrieving interval-valued fuzzy sets [6]. The novel IV-FMAMs have been
effectively applied for time-series prediction.

Apart from the distributed models like the FMAMs with FLA and their variations,
non-distributed associative memory models have received considerable attention partly
due to their low computational effort and extraordinary successes in pattern recognition
and image restoration tasks. Examples of non-distributed associative memories include
models based on Hamming distance [35] and kernels [15] as well as subsethood and
similarity measures [11,12,14]. In the context of non-distributed models, we introduced
max-plus and min-plus projection auto-associative morphological memories (max-plus
and min-plus PAMMs), which can be viewed as non-distributed versions of the auto-
associative morphological memories of Ritter et al. [36]. Max-plus and min-plus PAMMs
have fewer spurious memories than their corresponding distributed models. Thus, they are
more robust to dilative or erosive noise than the original auto-associative morphological
memories. Computational experiments revealed that PAMMs and their compositions are
competitive with other methods from the literature on classification tasks [36].

In our conference paper [37], we introduced max-C projection auto-associative fuzzy
morphological memories (max-C PAFMMs) as an alternative to AFMMs, building on the
success of max-plus and min-plus PAMMs. Max-C PAFMMs were further discussed in [38],
where some results concerning their implementation and storage capacity were given
without proof. In a few words, a max-C PAFMM projects the input into the family of all
max-C combinations of the stored items. Furthermore, we developed the dual version
of max-C PAFMMs, the class of min-D PAFMMs which projects the input into the set
of all min-D combinations of the stored items, in conference paper [39]. Although we
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addressed some theoretical results concerning both max-C and min-D PAFMM models
in [39], the theoretical part of this paper can be viewed as an extended version of our
previous papers [37–39]. In particular, this paper provides the mathematical background
for developing the new PAFMM models, which are obtained by enriching a complete
lattice with a residuated binary operation with a left identity. Also, we show in this paper
that the most robust max-C PAFMM for inputs corrupted by dilative noise is based on
Zadeh’s inclusion measure. The resulting model is referred to as Zadeh’s max-C PAFMM.
Accordingly, the dual of Zadeh’s max-C PAFMM is the min-D PAFMM most robust to
erosive noise. Finally, inspired by the work of Urcid and Ritter [40], the frail tolerance of the
max-C and min-D PAFMMs for mixed noise can be improved significantly by masking the
noise contained in the input [41]. Although some preliminary experiments can be found
in conference paper [41], in this paper, we provide conclusive computational experiments
concerning the application of Zadeh’s max-C PAFMM for face recognition.

The paper is organized as follows. The mathematical background, including some
basic concepts on lattice theory and fuzzy logic, is presented in the next section. Section 2
also introduces an algebraic structure called residuated complete lattice-ordered groupoid
with left identity (R-clogli), which provides the mathematical background for developing
PAFMM models. Section 3 briefly reviews max-C and min-D AFMMs with FLA. Max-C
and min-D PAFMMs are addressed subsequently in Section 4. Zadeh’s PAFMMs and the
noise masking strategy are discussed in Sections 5 and 6, respectively. The performance
of Zadeh’s max-C PAFMM for face recognition tasks is addressed in Section 7. The paper
finishes with some concluding remarks in Section 8 and Appendix A containing proofs of
the main theorems.

2. Some Basic Concepts on Fuzzy Systems

This section reviews the mathematical background necessary for developing the new
max-C and min-D projection associative memories, including lattice theory, residuated
lattices, and related concepts. Readers familiar with complete lattice and mathematical
morphology may skip Section 2.1 or read it later. Similarly, readers familiar with fuzzy
logic operations may skip Section 2.3.

2.1. Complete Lattice and Mathematical Morphology

A non-empty partially ordered set (L,≤) is called a complete lattice, denoted by
〈L,∨,∧〉, if every subset X ⊆ L has an infimum and a supremum L [42]. The infimum
and the supremum of X ⊆ L are denoted by

∧
X and

∨
X, respectively. The least and

the greatest elements of complete lattice L are denoted, respectively, by 0L =
∧
L and

1L =
∨
L. When X = {x1, . . . , xn} is a finite subset of L, we write the infimum and the

supremum of X as
∧n

i=1 xi and
∨n

i=1 xi, respectively.
The unit interval [0, 1] is an example of a complete lattice with the usual order.

Cartesian product Ln = L × L × . . . × L of complete lattice L is also a complete lat-
tice with the component-wise ordering defined as follows for x = [x1, . . . , xn]T ∈ Ln and
y = [y1, . . . , yn]T ∈ Ln:

x ≤ y ⇐⇒ xi ≤ yi, ∀i = 1, . . . , n. (1)

Mathematical morphology is a non-linear theory widely used for image processing
and analysis [21,43–45]. The elementary operations from mathematical morphology are
dilations and erosions. Dilations and erosions are operators that commute with the supre-
mum and infimum operations, respectively [21,44]. Formally, given complete lattices L and
M, operators δ : M→ L and ε : L→M represent, respectively, a dilation and an erosion if

δ
(∨

Y
)
=
∨

y∈Y
δ(y) and ε

(∧
X
)
=
∧

x∈X
ε(x), (2)
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for all X ⊆ L and Y ⊆ M. We recall that dilation δ and erosion ε satisfy δ(0M) = 0L and
ε(1L) = 1M [43].

One key concept of mathematical morphology on complete lattices is the notion of
adjunction [43]. Adjunctions arise naturally on complete lattices and are closely related to
Galois connection and residuation theory [42,46–48]. We consider operators δ : M→ L and
ε : L→M between complete lattices L and M. We say that (ε, δ) is an adjunction between
L and M if

δ(y) ≤ x ⇐⇒ y ≤ ε(x), x ∈ L, y ∈M. (3)

Adjunctions can be used to define the elementary operations from mathematical
morphology. In fact, if (ε, δ) forms an adjunction, then ε is an erosion, and δ is a dilation.
Conversely, given dilation δ : M→ L, residual operator

ε(x) =
∨
{y ∈M : δ(y) ≤ x}, ∀x ∈ L (4)

is unique erosion ε : L→M such that (ε, δ) is an adjunction [43,47]. Dually, given erosion
ε : L→M, residual operator

δ(y) =
∧
{x ∈ L : ε(x) ≥ y}, ∀y ∈M (5)

is unique dilation δ : M→ L such that (ε, δ) is an adjunction.

2.2. Residuated Complete Lattice-Ordered Groupoids with Left Identity

This section reviews mathematical structures obtained by enriching a complete lattice
with binary operations. Let us begin by introducing the following definition:

Definition 1 (Residuated complete lattice-ordered groupoid with left identity). A residuated
complete lattice-ordered groupoid with left identity (R-clogli), denoted by 〈L,∨,∧, ?, \〉, is an
algebra such that

1. 〈L,∨,∧〉 is a complete lattice.
2. 〈L, ?〉 is a groupoid (or magma) where the binary operation ? has a left identity, that is, there

exists e ∈ L such that e ? x = x for all x ∈ L.
3. Operations ? and \ satisfy the following adjunction relationship:

x ? y ≤ z ⇐⇒ x ≤ y\z, ∀x, y, z ∈ L. (6)

Similarly, a dual R-clogli denoted by 〈L,∨,∧, ?′, \′〉 is an algebra such that L is a complete lattice
equipped with a binary operation ? that has a left identity, and ? and \′ satisfy

x ?′ y ≥ z ⇐⇒ x ≥ y\′z, ∀x, y, z ∈ L. (7)

We speak of an associative R-clogli and an associative dual R-clogli if binary operations ? and ?′

are associative.

From the adjunction relationship, we conclude that ? is a dilation while ?′ is an erosion
in the first argument. Specifically, given fixed element a in L, operators δa, εa : L → L
defined by δa(x) = x ? a and εa(x) = x ?′ a for all x ∈ L are a dilation and an erosion,
respectively. As a consequence, we have

0L ? a = 0L and 1L ?′ a = 1L, ∀a ∈ L. (8)

Moreover, the following identities hold for all y, z ∈ L:

y\z =
∨
{x ∈ L : x ? y ≤ z} and y\′z =

∧
{x ∈ L : x ?′ y ≥ z}. (9)

In a word, \ and \′ are the residuals of ? and ?′, respectively.
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The following briefly addresses the relationship between R-clogli and other mathe-
matical structures from the literature.

First, an R-clogli is a residuated complete lattice-ordered dilative monoid, R-clodim
for short, if the binary operation is associative and has a two-sided identity. Sussner
introduced the notion of R-clodim as an appropriate mathematical background for L-fuzzy
mathematical morphology [49], and it is closely related to Maragos’ complete lattice-
ordered double monoid [50].

Residuated lattices, introduced by Ward and Dilworth [51] and widely taken as an
appropriate mathematical background for fuzzy logic [52,53], are also R-cloglis. In fact, a
complete residuated lattice, denoted by 〈L,∨,∧, ?,→, 0L, 1L〉, is an algebra such that

1. L is a complete lattice with least element 0L and greatest element 1L.
2. Operation ? is commutative, associative, and 1L ? x = x for all x ∈ L.
3. Operations ? and→ are adjoint, that is, x ? y ≤ z if and only if x ≤ (y→ z).

Therefore, a complete residuated lattice is equivalent to an R-clogli in which ? is
associative and commutative, and the greatest element of L is its identity element.

Finally, an R-clogli in which ? is associative and performs a dilation in both argu-
ments (not only in the first) is a quantale. Quantales, introduced by Mulvey to provide
a constructive formulation for the logic of quantum mechanics [54], have been used to
develop quantale-based auto-associative memories (QAMs). QAMs include the original
auto-associative morphological memories and auto-associative fuzzy implicative memories
as particular instances [33].

2.3. Fuzzy Sets and Fuzzy Logic Operations

The associative memories considered in this paper are based on fuzzy set theory and
operations from fuzzy logic. This section briefly reviews the most essential concepts of
fuzzy systems. The reader is invited to consult [55–59] for a detailed review of fuzzy logic
and fuzzy set theory.

Fuzzy set A on a universe of discourse X is defined by

A =
{(

x, µA(x)
)

: x ∈ X and µA : X → [0, 1]
}

, (10)

where µA is the membership function of fuzzy set A. The family of all fuzzy sets on X
is denoted by F (X). When the universe of discourse X = {x1, . . . , xn} is finite, fuzzy set
A can be identified with vector a = [a1, a2, . . . , an]T ∈ [0, 1]n, where ai = µA(xi) for all
i = 1, . . . , n [19]. In this paper, we focus only on fuzzy sets defined in finite universes of
discourse. Moreover, we identify them with vectors on hypercube [0, 1]n.

Definition 2 (Fuzzy conjunction and disjunction). Increasing mapping C : [0, 1]× [0, 1]→[0,1]
is a fuzzy conjunction if it satisfies C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1. A fuzzy disjunction is
increasing operator D : [0, 1]× [0, 1]→ [0, 1] such that D(0, 1) = D(1, 0) = 1 and D(0, 0) = 0.

Definition 3 (Fuzzy implication and co-implication). A fuzzy implication is mapping
I : [0, 1] × [0, 1] → [0, 1] decreasing in the first argument and increasing in the second argu-
ment that satisfies identities I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0. A fuzzy co-implication is
operator J : [0, 1]× [0, 1] → [0, 1] decreasing in the first argument and increasing in the second
argument such that J(0, 0) = J(1, 1) = 0 and J(0, 1) = 1.

We note that fuzzy logic connectives are generalizations of classical connectives.
For the development of fuzzy morphological associative memories, we focus our
attention on fuzzy conjunctions, which have a left identity and satisfy the following
adjunction relationship:

C(x, y) ≤ z ⇐⇒ x ≤ R(y, z), ∀x, y, z ∈ [0, 1] (11)
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with respect to binary operation R : [0, 1]× [0, 1]→ [0, 1] called the residual of C. From the
mathematical point of view, we assume that 〈[0, 1],∨,∧, C, R〉 is an R-clogli. We remark
that R, the residual of a fuzzy conjunction C, is a fuzzy implication if and only if C(x, 1) = 0
implies x = 0. Indeed, we suppose there exists a > 0 such that C(a, 1) = 0. From the
adjunction relationship, we have R(1, 0) =

∨{x ∈ [0, 1] : C(x, 1) ≤ 0} ≥ a > 0, and thus R
is not a fuzzy implication.

In a similar fashion, we focus on fuzzy disjunctions which have a left identity and satisfy

D(x, y) ≥ z ⇐⇒ x ≥ S(y, z), ∀x, y, z ∈ [0, 1] (12)

for binary operation S : [0, 1]× [0, 1]→ [0, 1] called the residual of D. Throughout the paper,
we assume that 〈[0, 1],∨,∧, D, S〉 is a dual R-clogli. We remark that residual S, derived
from D using (12), is a fuzzy co-implication if and only if D(x, 0) = 1 implies x = 1.

Examples of R-clogli and dual R-clogli include unit interval [0, 1] equipped with
the following:

• Minimum fuzzy conjunction CM(x, y) = x ∧ y and Gödel’s implication IM.
• Lukasiewicz’s fuzzy conjunction CL(x, y) = 0 ∨ (x + y− 1) and fuzzy implication

IL(x, y) = 1∧ (1− x + y).
• Gaines’ fuzzy conjunction and fuzzy implication defined, respectively, by

CG(x, y) =

{
0, x = 0,
y, otherwise,

and IG(x, y) =

{
1, x ≤ y,
0, x > y.

(13)

• Maximum fuzzy disjunction DM(x, y) = x ∨ y and Gödel’s fuzzy co-implication

JM(x, y) =

{
0, x ≥ y,
y, x < y.

(14)

• Lukasiewicz’s disjunction DL(x, y) = 1 ∧ (x + y) and co-implication JL(x, y) = 0
∨(y− x).

• Gaines’ fuzzy disjunction and fuzzy co-implication defined as follows:

DG(x, y) =

{
1, x = 1,
y, otherwise,

and JG(x, y) =

{
0, x ≥ y,
1, x < y.

(15)

We note that CG and DG are neither commutative nor have a two-sided identity. Thus, these
fuzzy logical operators do not yield a complete residuated lattice nor a residuated complete
lattice-ordered dilative monoid (R-clodim). Notwithstanding, algebra 〈[0, 1],∨,∧, CG, IG〉
is an R-clogli while 〈[0, 1],∨,∧, DG, JG〉 is a dual R-clogli.

Apart from the adjunction relationship, fuzzy logical operators can be connected
through a strong fuzzy negation. A strong fuzzy negation is a nonincreasing mapping
η : [0, 1]→ [0, 1] such that η(0) = 1, η(1) = 0, and η

(
η(x)

)
= x for all x ∈ [0, 1]. Standard

fuzzy negation ηS(x) = 1− x is a strong fuzzy negation.
A fuzzy logic operator A : [0, 1]× [0, 1] → [0, 1] can be connected to a fuzzy logic

operator B : [0, 1]× [0, 1]→ [0, 1] by means of a strong fuzzy negation η as follows:

η
(

B(x, y)
)
= A

(
η(x), η(y)

)
. (16)

In this case, we say that pair (A, B) is dual with respect to η. For example, the pairs of
fuzzy conjunction and fuzzy disjunction, (DG, CG), (DM, CM), and (DL, CL), are duals with
respect to standard fuzzy negation ηS. Pairs (IG, JG), (IM, JM), and (IL, JL) of fuzzy impli-
cation and fuzzy co-implication are also dual with respect to standard fuzzy negation. The
commutative diagram shown in Figure 1 establishes the relationship between adjunction
and negation [21,60].
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Fuzzy Conjunction C

Fuzzy Disjunction D

Negation

Residual R
Adjunction

Residual S
Adjunction

Negation

Figure 1. Relationship between fuzzy operations using adjunction and negation.

Fuzzy logic operators can be combined with either maximum or minimum operations
to yield matrix products. For instance, the max-C and the min-D matrix products of
A ∈ [0, 1]m×k by B ∈ [0, 1]k×n, denoted, respectively, by G = A ◦ B and H = A • B, are
defined by the following equations for all i = 1, . . . , m and j = 1, . . . , n:

gij =
k∨

ξ=1

C(aiξ , bξ j) and hij =
k∧

ξ=1

D(aiξ , bξ j). (17)

In analogy to the concept of linear combination, we say that z ∈ [0, 1]n is a max-C
combination of the vectors belonging to finite set A = {a1, . . . , ak} ⊂ [0, 1]n if

z =
k∨

ξ=1

C(λξ , aξ) ⇐⇒ zi =
k∨

ξ=1

C(λξ , aξ
i ), ∀i = 1, . . . , n, (18)

where λξ ∈ [0, 1] for all ξ = 1, . . . , k. Similarly, a min-D combination of the vectors of A is
given by

y =
k∧

ξ=1

D(θξ , aξ) ⇐⇒ yi =
k∧

ξ=1

D(θξ , aξ
i ), ∀i = 1, . . . , n, (19)

where θξ ∈ [0, 1], for all ξ = 1, . . . , k. The sets of all max-C combinations and min-D
combinations of A = {a1, . . . , ak} ⊂ [0, 1]n are denoted, respectively, by

C(A) =

z =
k∨

ξ=1

C(λξ , aξ) : λξ ∈ [0, 1]

 (20)

and

D(A) =

z =
k∧

ξ=1

D(θξ , aξ) : θξ ∈ [0, 1]

. (21)

The sets of max-C and min-D combinations play a major role in the projection auto-
associative fuzzy morphological memories (PAFMMs) presented in Section 4. However,
before introducing PAFMMs, let us briefly review the fuzzy auto-associative morphological
memories, defined using fuzzy logical connectives and adjunctions.

3. Auto-Associative Fuzzy Morphological Memories

Let us briefly review the auto-associative fuzzy morphological memories (AFMM).
The reader interested in a detailed account of this subject is invited to consult [5,22]. To
simplify the exposition, we assume that 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉, where C
is a fuzzy conjunction and D is a fuzzy disjunction, are, respectively, an R-clogli and a
dual R-clogli.
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As far as we know, most AFMMs are implemented by a single-layer network defined
in terms of either the max-C or the min-D matrix products established by (17) [5]. Formally,
max-C and min-D auto-associative fuzzy morphological memories (AFMMs) are mappings
W ,M : [0, 1]n → [0, 1]n defined, respectively, by the following equations:

W(x) = W ◦ x and M(x) = M • x, ∀x ∈ [0, 1]n, (22)

where W, M ∈ [0, 1]n×n are called the synaptic weight matrices. Examples of AFMMs in-
clude the auto-associative version of the max-minimum and max-product fuzzy associative
memories of Kosko [19], the max-min fuzzy associative memories with a threshold [25],
and the implicative fuzzy associative memories [9].

We point out that using a strong fuzzy negation η, we can derive from a max-C AFMM
W another AFMM called the negation ofW and denoted byW∗. Formally, the negation of
W is defined by equation

W∗(x) = η
(
W
(
η(x)

))
, ∀x ∈ [0, 1]n, (23)

where the strong fuzzy negation η is applied in a component-wise manner. It is not hard to
show that the negation of a max-C AFMMW is a min-D AFMMM, and vice-versa, where
fuzzy conjunction C and fuzzy disjunction D are dual with respect to strong fuzzy negation
η, i.e., they satisfy (16) [22].

Let us now turn our attention to a recording recipe called fuzzy learning by adjunction
(FLA), which can be effectively used for the storage of vectors on AFMMW andM defined
by (22) [22]. Given A = {a1, . . . , ak} ⊂ [0, 1]n, called the fundamental memory set, FLA
determines matrix W ∈ [0, 1]n×n of a max-C AFMM and matrix M ∈ [0, 1]n×n of the min-D
AFMM by means of the following equations for all i, j = 1, . . . , n:

wij =
k∧

ξ=1

R(aξ
j , aξ

i ) and mij =
k∧

ξ=1

S(aξ
j , aξ

i ), (24)

where R and S are the residuals of C and D, respectively.
The following proposition reveals that a min-D AFMMM and a max-C AFMMW ,

both synthesized using FLA, project input x into the set of their fixed points if C and D
are both associative [5]. Furthermore, Proposition 1 shows that outputM(x) of a min-D
AFMM with FLA is the greatest fixed-point less than or equal to input x. Analogously, a
max-C AFMM with FLA yields the least fixed-point greater than or equal to the input [5].

Proposition 1 (Valle and Sussner [5]). We let 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉 be an
associative R-clogli and an associative dual R-clogli, respectively. The output of the min-D AFMM
M defined by (22) with FLA given by (24) satisfies

M(x) =
∨
{z ∈ I(A) : z ≤ x}, ∀x ∈ [0, 1]n, (25)

where I(A) denotes the set of all fixed points ofM which depends on and includes the fundamental
memory set A = {a1, . . . , ak}. Dually, the output of the max-C AFMMW with FLA satisfies

W(x) =
∧
{y ∈ J (A) : y ≥ x}, ∀x ∈ [0, 1]n, (26)

whereJ (A) denotes the set of all fixed points ofW , which also depends on and contains fundamental
memory set A.

As a consequence of Proposition 1, AFMMs with FLA present the following properties:
they can store as many vectors as desired; they have a large number of spurious memories;
an AFMM exhibits tolerance to either dilative noise or erosive noise, but it is susceptible to
mixed (dilative+erosive) noise. We recall that distorted version x of fundamental memory
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aξ underwent a dilative change if x ≥ aξ . Dually, we say that x underwent an erosive
change if x ≤ aξ [27].

Example 1. We consider fundamental memory set

A =

a1 =


0.4
0.3
0.7
0.2

, a2 =


0.1
0.7
0.5
0.8

, a3 =


0.8
0.5
0.4
0.2


. (27)

Using Gödel’s co-implication JM in (24), synaptic weight matrix MM of the min-DM AFMMMM
with FLA is

MM =


0.00 0.80 0.80 0.80
0.70 0.00 0.70 0.50
0.70 0.70 0.00 0.70
0.80 0.80 0.80 0.00

. (28)

Now, we consider input fuzzy set

x =
[
0.4 0.3 0.8 0.7

]T . (29)

We note that x is a dilated version of fundamental memory a1 because x = a1 + [0.0 0.0 0.1 0.5]T ≥ a1.
The output of the min-DM AFMM with FLA is

MM(x) = MM •M x =
[
0.40 0.30 0.70 0.70

]T 6= a1, (30)

where “•M” denotes the min-DM product defined in terms of fuzzy disjunction DM. According
to Proposition 1, output

[
0.40 0.30 0.70 0.70

]T is a fixed point ofMM that does not belong
to fundamental memory set A. Thus, it is a spurious memory of MM. Similarly, we can use
FLA to store fundamental set A into the min-D AFMMsML andMG obtained by considering,
respectively, Lukasiewicz and Gaines fuzzy disjunctions. Upon presentation of input vector x given
by (29), the min-D AFMMsML andMG yield, respectively,

ML(x) = ML •L x =
[
0.40 0.30 0.70 0.40

]T 6= a1, (31)

and
MG(x) = ML •L x =

[
0.40 0.30 0.80 0.70

]T 6= a1, (32)

such that the min-DM AFMMMM, the auto-associative memoriesML andMG failed to produce
the desired output, a1.

4. Max-C and Min-D Projection Auto-Associative Fuzzy Morphological Memories

As distributed n× n matrix-based auto-associative memories, a great deal of computer
memory is consumed by min-D and max-C AFMMs if length n of the stored vectors is
considerable. Furthermore, from Proposition 1, their tolerance to either dilative or erosive
noise is degraded as the number of fixed points increases.

Inspired by the feature that min-D and max-C AFMMs with FLA project the input
vector into the set of their fixed point, we can improve the noise tolerance of these memory
models by reducing their set of fixed points. Accordingly, we recently introduced the
max-C projection auto-associative fuzzy memories (max-C PAFMMs) by replacing in (25)
set I(A) by set C(A) of all max-C combinations of vectors of A [37,38]. Formally, we
let 〈[0, 1],∨,∧, C, R〉 be an R-clogli. Given set A = {a1, . . . , ak} ⊂ [0, 1]n of fundamental
memories, a max-C PAFMM V : [0, 1]n → [0, 1]n is defined by

V(x) =
∨
{z ∈ C(A) : z ≤ x}, ∀x ∈ [0, 1]n, (33)
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where set C(A) is defined in (20). A dual model, referred to as min-D PAFMM, is obtained
by replacing J (A) by set D(A) of all min-D combinations of the fundamental memo-
ries in (26). Specifically, we let 〈[0, 1],∨,∧, D, S〉 be a dual R-clogli. A min-D PAFMM
S : [0, 1]n → [0, 1]n satisfies

S(x) =
∧
{y ∈ D(A) : y ≥ x}, ∀x ∈ [0, 1]n, (34)

where set D(A) is given in (21). The following theorem is a straightforward consequence
of these definitions.

Theorem 1. We let 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉 be an R-clogli and a dual R-clogli,
respectively. The max-C and min-D PAFMMs given, respectively, by (33) and (34) satisfy inequal-
ities V(x) ≤ x ≤ S(x) for any input vector x ∈ [0, 1]n. Furthermore, V(V(x)) = V(x) and
S(S(x)) = S(x) for all x ∈ [0, 1]n.

As a consequence of Theorem 1, a max-C PAFMM and a min-D PAFMM are, re-
spectively, opening and closing form fuzzy mathematical morphologies [61]. Like min-D
AFMM, max-C PAFMM exhibits only tolerance to dilative noise. Also, it is susceptible
to either erosive or mixed noise. In fact, fundamental memory aξ cannot be retrieved by
a max-C PAFMM from an input such that x ≤ aξ . Similarly, like max-C AFMM, min-D
PAFMM S exhibits tolerance to erosive noise, but it is not robust to dilative or mixed noise.

Let us now address the absolute storage capacity of max-C and min-D PAFMMs. The
following theorem shows that all fundamental memories are fixed points of V and S . Thus,
max-C and min-D PAFMMs exhibit unlimited absolute storage capacity.

Theorem 2. We let 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉 be, respectively, an R-clogli and
a dual R-clogli and consider a fundamental memory set A = {a1, . . . , ak} ⊂ [0, 1]n. Max-C
PAFMM given by (33) satisfies V(aξ) = aξ for all ξ ∈ K. Dually, S(aξ) = aξ for all ξ ∈ K,
where S denotes min-D PAFMM given by (34).

The following theorem, which is a straightforward consequence of the adjunction
relationships given by (11) and (12), provides effective formulas for the implementation of
max-C and min-D PAFMMs.

Theorem 3. We let 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉 be an R-clogli and a dual R-clogli,
respectively. Also, we consider a fundamental memory set A =

{
a1, . . . , ak

}
⊂ [0, 1]n and let

x ∈ [0, 1]n be an arbitrary input. Max-C PAFMM V given by (33) satisfies

V(x) =
k∨

ξ=1

C(λξ , aξ), where λξ =
n∧

j=1

R(aξ
j , xj). (35)

Similarly, the output of min-D PAFMM S can be computed by

S(x) =
k∧

ξ=1

D(θξ , aξ), where θξ =
n∨

j=1

S(aξ
j , xj). (36)

Remark 1. Theorem 3 above gives a formula for coefficient λξ that is used to define the output of
max-C PAFMM. In some sense, coefficient λξ corresponds to the degree of inclusion of fundamental
memory aξ in input fuzzy set x. Specifically, if residual R of fuzzy conjunction C is a fuzzy
implication, then we have

λξ = IncF (aξ , x), ∀ξ ∈ K, (37)

where IncF denotes the Bandler–Kohout fuzzy inclusion measure [62].
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Regarding computational effort, PAFMMs are generally less expensive than their
corresponding AFMMs because they are non-distributive memory models, which means
that they do not require the storage of a synaptic weight matrix of size n× n. Additionally,
they involve fewer floating-point operations than their corresponding min-D and max-
C AFMMs if k < n. To illustrate this remark, we consider a fundamental memory set
A = {a1, . . . , ak}, where aξ ∈ [0, 1]n for all ξ ∈ {1, . . . , k} with k < n. On the one hand, to
synthesize the synaptic weight matrix of a min-D AFMMM, we perform kn2 evaluation
of residual S and (2k− 1)n2 comparisons. In addition, the resulting synaptic weight matrix
consumes O(n2) of the memory space. In the recall phase, the min-D AFMMM requires
n2 evaluations of a fuzzy disjunction and (2n− 1)n comparisons. On the other hand, to
compute parameters λ’s of a max-C PAFMM V , we perform 2nk evaluations of a residual
operator and (2n− 1)k comparisons. The subsequent step of the max-C PAFMM V requires
2nk evaluations of a fuzzy conjunction and (k − 1)n comparisons. Lastly, it consumes
O(nk) of memory space to store the fundamental memories. Similar remarks hold for a
max-C AFMM and a min-D PAFMM. Table 1 summarizes the computational effort in the
recall phase of AFMMs and PAFMMs. Here, fuzzy operations refer to evaluations of fuzzy
conjunctions or disjunctions and their residual operators.

Table 1. Computational complexity in the recall phase of auto-associative memories.

Fuzzy Operations Comparisons Memory Space

AFMMsM andW O(n2) O(n2) O(n2)

PAFMMs V and S O(nk) O(nk) O(nk)

Finally, different from min-D and max-C AFMMs, max-C and min-D PAFMMs are
not dual models with respect to a strong fuzzy negation. The following theorem shows
that the negation of a min-D PAFMM is a max-C PAFMM designed to store the negation of
fundamental memories, and vice-versa.

Theorem 4. We let 〈[0, 1],∨,∧, C, R〉 and 〈[0, 1],∨,∧, D, S〉 be, respectively, an R-clogli and a
dual R-clogli where pairs (C, D) and (R, S) are dual operators with respect to strong fuzzy negation
η. Given fundamental memory set A = {a1, . . . , ak} ⊂ [0, 1]n, we define B = {b1, . . . , bk} by
setting bξ

i = η(aξ
i ), for all i = 1, . . . , n and ξ ∈ K. Also, we let V and S be, respectively, max-C

and the min-D PAFMMs designed for the storage of a1, . . . , ak and define their negation as follows
for every x ∈ [0, 1]n:

V∗(x) = η(V [η(x)]) and S∗(x) = η(S [η(x)]). (38)

The negation S∗ of S is the max-C PAFMM designed for the storage of b1, . . . , bk, that is,

S∗(x) =
k∨

ξ=1

C(λ∗ξ , bξ), where λ∗ξ =
n∧

j=1

R(bξ
j , xj). (39)

Analogously, negation V∗ of V is the min-D PAFMM given by

V∗(x) =
k∧

ξ=1

D(θ∗ξ , bξ), where θ∗ξ =
n∨

j=1

S(bξ
j , xj). (40)

It follows from Theorem 4 that negations S∗ and V∗ fail to store fundamental memory
set A = {a1, . . . , ak}.

Example 2. We consider fundamental memory set A given by (27). We let CM and IM be the
minimum fuzzy conjunction and the fuzzy implication of Gödel, respectively. We synthesize the max-
C PAFMM VM designed for the storage of A using adjunction pair (IM, CM). From Theorem 2,
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equation VM(aξ) = aξ holds for ξ = 1, 2, 3. Given input vector x defined by (29), we obtain
from (35) coefficients

λ1 = 1.0, λ2 = 0.3, and λ3 = 0.3. (41)

Thus, the output of the max-C PAFMM VM is

VM(x) = CM(λ1, a1) ∨ CM(λ2, a2) ∨ CM(λ3, a3)

=
[
0.40 0.30 0.70 0.30

]T 6= a1. (42)

We note that VM failed to retrieve fundamental memory a1.
Analogously, we can store fundamental memory set A into the max-C PAFMM VL using

Lukasiewicz fuzzy conjunction and implication. Upon presentation of vector x, the max-C PAFMM
VL produces

VL(x) =
[
0.40 0.30 0.70 0.40

]T 6= a1. (43)

Like the min-D AFMMML, memory VL failed to recall fundamental memory a1. Nevertheless, the
outputs of the max-C PAFMMs VM and VL are more similar to the desired vector a1 than the min-D
AFMMsMM,ML, andMG (see Example 1). Quantitatively, Table 2 shows the normalized mean
squared error (NMSE) between the recalled vector and the desired output a1. We recall that the
NMSE between x and a is given by

NMSE(x, a) =
‖x− a‖2

2
‖a‖2

2
=

∑n
j=1(xj − aj)

2

∑n
j=1 a2

j
. (44)

This simple example confirms that a max-C PAFMM can exhibit a better tolerance with respect to
dilative noise than its corresponding min-D AFMM.

Table 2. Normalized mean squared error.

• x MM(x) ML(x) MG(x) VM(x) VL(x) VZ (x)

NMSE(•, a1) 0.33 0.32 0.05 0.33 0.01 0.05 0.00

Let us conclude the section by emphasizing that we can only ensure optimal absolute
storage capacity if C has a left identity.

Example 3. We consider the “compensatory and” fuzzy conjunction defined by

CA(x, y) =
√
(xy)(x + y− xy). (45)

Fuzzy conjunction CA does not have a left identity. Moreover, the fuzzy implication that forms an
adjunction with CA is

IA(x, y) =


1, x = 0,

1∧
[
−x2 +

√
x2 + 4x(1− x)y2

2x(1− x)

]
, 0 < x < 1,

y2, x = 1.

(46)

Now, we let VA : [0, 1]4 → [0, 1]4 be the max-CA PAFMM designed for the storage of fundamental
memory set A given by (27). Upon presentation of fundamental memory a1 as input, we obtain
from (35) coefficients

λ1 = 0.39, λ2 = 0.06 and λ3 = 0.23. (47)
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Thus, the output vector of the max-C PAFMM VA is

VA(a1) = CA(λ1, a1) ∨ CA(λ2, a2) ∨ CA(λ3, a3) =


0.40
0.27
0.47
0.20

 6= a1. (48)

In a similar fashion, using fundamental memories a2 and a3 as input, we obtain from VA outputs

VA(a2) =


0.10
0.39
0.30
0.44

 6= a2 and VA(a3) =


0.52
0.37
0.40
0.20

 6= a3. (49)

We note that inequality VA(aξ) ≤ aξ holds for ξ = 1, 2, 3. However, fundamental memories a1, a2,
and a3 are not fixed points of the max-C PAFMM VA.

5. Zadeh Max-C PAFMM and Its Dual Model

The noise tolerance of an auto-associative memory is usually closely related to its
spurious memories. In general, the more spurious memories an auto-associative memory
has, the less tolerant to noise it is. We recall that a spurious memory is a fixed point of
an auto-associative memory that does not belong to the fundamental memory set [1]. For
example, in Example 2, fixed point y = [0.4, 0.3, 0.7, 0.3]T is a spurious memory of the
max-C PAFMM VM. Indeed, the set of fixed points, max-C PAFMM, corresponds to the set
of all max-C combinations of the fundamental memories. Therefore, the noise tolerance of
a max-C PAFMM increases as family C(A) becomes smaller.

Interestingly, by considering the fuzzy conjunction of Gaines CG in (20), we can
significantly reduce C(A), where A is a fundamental memory set {a1, . . . , ak}. Indeed,
from Theorem 3, the output of the max-C PAFMM based on Gaines’ fuzzy conjunction is
given by

VZ (x) =
k∨

ξ=1

CG(λξ , aξ), (50)

where

λξ =
n∧

i=1

IG(aξ
j , xj) = IncZ (aξ , x), ∀ξ ∈ K. (51)

Here, IncZ : [0, 1]n × [0, 1]n → [0, 1] denotes the fuzzy inclusion measure of Zadeh defined
as follows for all a, b ∈ [0, 1]n:

IncZ (a, b) =

{
1, aj ≤ bj, ∀j = 1, . . . , n,
0, otherwise.

(52)

In other words, coefficients λξ are determined using Zadeh’s fuzzy inclusion measure IncZ .
Hence, this max-C PAFMM is called Zadeh’s max-C PAFMM and is denoted by VZ .

From (52), coefficient λξ = IncZ (aξ , x) is either zero or one. Moreover, λξ = 1 if and
only if aξ

j ≤ xj for all j = 1, . . . , n. Also, we have CG(0, x) = 0 and CG(1, x) = x for all
x ∈ [0, 1]. Therefore, for any input x ∈ [0, 1]n, the output of Zadeh’s max-C PAFMM is
alternatively given by equation

VZ (x) =
∨

ξ∈I
aξ , (53)

where
I = {ξ : aξ

j ≤ xj, ∀j = 1, . . . , n} (54)
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is the set of indexes ξ such that aξ is less than or equal to input x, i.e., aξ ≤ x. Here, we
have VZ (x) = 0 if I = ∅, where 0 is a vector of zeros.

In a similar manner, from (36), the dual of Zadeh’s max-C PAFMM is the min-D
PAFMM defined by

SZ (x) =
k∧

ξ=1

DG(θξ , aξ), where θξ =
n∨

j=1

JG(aξ
j , xj). (55)

Here, DG and IG denote the fuzzy disjunction and the fuzzy co-implication of Gaines,
respectively. Alternatively, the output of Zadeh’s min-D PAFMM is given by

SZ (x) =
∧

ξ∈J
aξ , (56)

where
J = {ξ : aξ

j ≥ xj, ∀j = 1, . . . , n} (57)

is the set of indexes ξ such that aξ ≥ x. Here, we have SZ (x) = 1 if J = ∅, where 1 is a
vector of ones.

We note from (53) and (56) that no arithmetic operation is performed during the recall
phase of Zadeh’s max-C PAFMM and its dual model; they only perform comparisons!
Thus, both VZ and SZ are computationally cheap and fast associative memory models. In
addition, Zadeh’s max-C PAFMM is exceptionally robust to dilative noise, while its dual
model SZ exhibits excellent tolerance to erosive noise. The following theorem addresses
the noise tolerance of these memory models.

Theorem 5. We consider fundamental memory set A = {a1, . . . , ak} ⊂ [0, 1]n. Identity
VZ (x) = aγ holds true if there exists a unique γ ∈ K such that aγ ≤ x. Furthermore, if
there exists a unique µ ∈ K such that aµ ≥ x then SZ (x) = aµ.

Example 4. We consider fundamental memory set A given by (27) and input fuzzy set x defined
by (29). Clearly, a1 ≤ x, a2 6≤ x, and a3 6≤ x. Thus, the set of indexes defined by (54) is I = {1}.
From (53), the output of Zadeh’s max-C PAFMM is

VZ (x) =
∨

ξ∈I
aξ = a1. (58)

We note that the max-C PAFMM VZ perfectly recalled the original fundamental memory. As a
consequence, the NMSE is zero. From Table 2, the max-C PAFMM of Zadeh yielded the best NMSE,
followed by the max-C PAFMMs VM, VP and VL.

Let us conclude this section by remarking that Zadeh’s max-C PAFMM also belongs
to the class of Θ-fuzzy associative memories (Θ-FAMs) proposed by Esmi et al. [11].

Remark 2. An auto-associative Θ-FAM is defined as follows: We consider fundamental memory
set A = {a1, . . . , ak} ⊂ [0, 1]n and let Θξ : [0, 1]n → [0, 1] be operators such that Θξ(aξ) = 1 for
all ξ = 1, . . . , k. Given input x and weight vector w = [w1, . . . , wk] ∈ Rk, Θ-FAM O yields

O(x) =
∨

ξ∈Iw(x)

aξ ,

where Iw(x) is the following set of indexes:

Iw(x) = {γ : wγΘγ(x) = max
ξ=1:k

wξ Θξ(x)}.
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Now, the max-C PAFMM of Zadeh is obtained by considering w = [1, 1, . . . , 1] ∈ Rk and
Θξ(·) = IncZ (aξ , ·), for all ξ = 1, . . . , k. Specifically, in this case, Iw(x) coincides with the set of
index I defined by (53).

6. Noise-Masking Strategy for PAFMMs

Unfortunately, a max-C PAFMM cannot retrieve fundamental memory aξ from input
x ≤ aξ . Hence, one of the major weaknesses of max-C PAFMMs is their limited tolerance to
erosive or mixed noise, which restricts their application to real-world problems. Similar
remarks hold for min-D PAFMMs, according to the duality principle. However, the noise
tolerance of a PAFMM can be significantly enhanced by masking the noise contained
in a corrupted input [40]. Specifically, the noise-masking strategy aims to transform an
input degraded by mixed noise into a vector corrupted by either dilative or erosive noise.
Inspired by the works of Urcid and Ritter [40], we present a noise-masking strategy for
PAFMMs (which has been previously discussed in conference paper [41]). To simplify the
presentation, we focus only on max-C PAFMMs.

Suppose we have a max-C PAFMM, denoted by V , which was synthesized using
fundamental memory set A = {a1, . . . , ak}. Let x be a version of fundamental memory aγ

corrupted by mixed noise. In this case, aγ
d = x ∨ aγ represents the masked input vector.

This masked vector contains only dilative noise, meaning inequality aγ
d ≥ aγ holds. Since

the max-C PAFMM is robust to dilative noise, we can expect it to be able to retrieve the
original fuzzy set aγ when presented with masked vector aγ

d .
Nevertheless, to mask the noise, we need to know beforehand which fundamental

memory is corrupted. To overcome this practical shortcoming, Urcid and Ritter proposed
comparing masked vector aξ

d = x ∨ aξ to original input x and each fundamental memory
aξ , ξ ∈ K. The comparison is based on a meaningful measure, such as normalized mean
squared error (NMSE).

According to our previous study [41], we suggest using a fuzzy similarity measure
to determine the masked vector. Specifically, a fuzzy similarity measure is mapping
σ : [0, 1]n × [0, 1]n → [0, 1], which yields the degree of similarity between a ∈ [0, 1]n and
b ∈ [0, 1]n [63–67]. By using a fuzzy similarity measure, we can obtain masked vector aγ

d
by computing the maximum similarity between input x and fundamental memory aγ. In
mathematical terms, we have aγ

d = x ∨ aγ where γ is an index such that

σ(x, aγ) =
k∨

ξ=1

{
σ(x, aξ)

}
. (59)

In summary, using noise masking to retrieve vectors through a max-C PAFMM V re-
sults in an auto-associative fuzzy morphological memory VM : [0, 1]n → [0, 1]n defined by

VM(x) = V(x ∨ aγ), ∀x ∈ [0, 1]n, (60)

where γ is an index that satisfies (59). Similarly, we can use the technique of noise masking
for the recall of vectors using a min-D PAFMM S . Formally, we denote by SM the auto-
associative fuzzy morphological memory given by

SM(x) = S(x ∧ aγ), (61)

where γ is an index that satisfies (59) and S : [0, 1]n → [0, 1]n is a min-D PAFMM.
Finally, we mentioned in the previous section that the Zadeh max-C PAFMM VZ

and its dual model do not perform floating point arithmetic operations. However, some
arithmetic operations may be required for computing the masked input fuzzy set. For
example, if we use the Hamming similarity measure σH defined by

σH(a, b) = 1− 1
n

N

∑
i=1
|ai − bi|, ∀a, b ∈ [0, 1]n, (62)
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then VM
Z performs (2n + 1)k floating point operations during the retrieval phase.

Example 5. We consider fundamental memory set A given by (27) but let the input fuzzy set be

x =
[
0.3 0.4 0.8 0.7

]T . (63)

We point out that x is obtained by introducing mixed noise into fundamental memory a1. Specifically,
we have x = a1 +

[
−0.1 0.1 0.1 0.5

]T . Because a max-C PAFMM exhibits only tolerance
to dilative noise, it is not able to retrieve fundamental memory a1. For example, Zadeh’s max-C
PAFMM yields VZ (x) =

[
0.0 0.0 0.0 0.0

]T , which is none of the fundamental memories. In
other words, Zadeh’s max-C PAFMM fails to retrieve the desired fundamental memory a1. However,
the Hamming similarity measure σH given by (62) results in

σH(x, a1) = 0.8, σH(x, a2) = 0.775, and σH(x, a3) = 0.625. (64)

Hence, γ = 1 satisfies (59). Furthermore, using the noise masking strategy, the max-C PAFMM
VM
Z yields

VM
Z (x) = VZ (x ∨ a1) = VZ




0.4
0.4
0.8
0.7


 =


0.4
0.3
0.7
0.2

 = a1. (65)

In conclusion, the max-C PAFMM VZ with the noise masking strategy perfectly recalls original
fundamental memory a1. In light of this example, we only consider fuzzy morphological associative
memories with the noise masking strategy in the following section.

7. Computational Experiments

Inspired by the auto-associative memory-based classifiers described in [13,15], we
propose the following auto-associative memory-based classifier for face images. Suppose
we have a training dataset with ki different face images from an individual i, for i = 1, . . . , c.
Each face image is encoded into a column-vector aξ,i ∈ [0, 1]n, where i ∈ {1, . . . , c} and
ξ ∈ {1, . . . , ki}. We address below two approaches to encode face images into [0, 1]n.
For now, we letMi denote an auto-associative memory designed for the storage of the
fundamental memory set Ai = {a1,i, . . . , aki ,i} ⊂ [0, 1]n composed of all training images
from individual i ∈ {1, . . . , c}. Given an unknown face image, we also encode it into a
column-vector x ∈ [0, 1]n using the same procedure as the training images. Then, we
present x as input to the auto-associative memoriesMi’s. Finally, we assign the unknown
face image to the first individual γ such that

σ
(
x,Mγ(x)

)
≥ σ

(
x,Mi(x)

)
, ∀i = 1, . . . , c, (66)

where σ denotes a fuzzy similarity measure. In other words, x belongs to an individual
such that the recalled vector is the most similar to the input.

In our experiments, we used in (66) the Hamming similarity measure defined by (62).
Furthermore, a face image was encoded into a column-vector x ∈ [0, 1]n using either one of
the following two approaches:

1. A pre-processing approach given by the sequence of MATLAB -style commands: rgb2gray
(This command is applied only if the input is a color face image in the RGB color
space), im2double, imresize, and reshape. We point out that we resized the images
according to the dimensions used by Feng et al. [68].

2. A convolutional neural network as feature extractor followed by data transforma-
tion. Specifically, we used the python package face_recognition (Available at
https://github.com/ageitgey/face_recognition, accessed on 11 October 2023), which
is based on Dlib library [69]. Package face_recognition includes a pre-trained

https://github.com/ageitgey/face_recognition
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ResNet network designed to extract features for face recognition. The ResNet feature
extractor maps a face image into vector v ∈ R128. We obtained x ∈ [0, 1]n by applying
the following transformation where µi and σi denote the mean and standard deviation
of the ith component of all 128-dimensional training vectors:

xi =
1

1 + e−(vi−µi)/σi
, ∀i = 1, . . . , 128. (67)

Apart from literature models, we only consider the min-DL AFMM and Zadeh’s max-
C PAFMM. We recall that the AFMMs based on Lukasiewicz connectives outperformed
many other AFMMs in experiments concerning the retrieval of gray-scale images [9].
Furthermore, the min-DL AFMM can be obtained from the morphological auto-associative
memory of Ritter et al. using thresholds [9,27]. As pointed out in Section 5, Zadeh’s PAFMM
is expected to exhibit tolerance to dilative noise larger than the other max-C PAFMMs.
Thus, we synthesized the classifiers based on the min-D AFMMMM

L and Zadeh’s max-C
PAFMM VM

Z , both equipped with the noise masking strategy described by (60) and (62).
These classifiers, combined with the first encoding strategy listed above, are denoted,
respectively, by Resized+MM

L and Resized+VM
Z . Similarly, we refer to ResNet+MM

L and
ResNet+VM

Z , the fuzzy associative memory-based classifiers combined with the second
approach listed above.

Performances of theMM
L - and VM

Z -based classifiers have been compared with the
following approaches from the literature: sparse representation classifier (SRC) [70], lin-
ear regression-based classifier (LRC) [71], collaborative representation-based classifier
(CRC) [72], fast superimposed sparse parameter (FSSP(1)) classifier [68], and the deep
ResNet network available at the python face_recognition package. We point out that
face recognition methods SRC, LRC, CRC, and FSSP(1) are included for comparison pur-
poses because they use subspace projection methods, which somewhat resemble the pro-
posed PAFMM classifier. In contrast, the ResNet is among the state-of-the-art deep neural
networks for image classification tasks. According to Dlib package developers, ResNet
achieved a 99.38% accuracy on the standard “Labeled Faces in the Wild” benchmark, a
performance comparable to that of other state-of-the-art approaches. Despite the many
other face recognition methods in the literature, these are representative approaches for
highlighting the potential application of the proposed projection auto-associative fuzzy
morphological memories.

7.1. Face Recognition with Expressions and Pose

Face recognition has been an active research topic in pattern recognition and computer
vision due to its applications in human–computer interaction, security, access control, and
others [15,68,72]. To evaluate the performance of the VM

Z -based classifier, we conducted
experiments using three standard face databases, namely the Georgia Tech Face Database
(GT) [73], the AT&T Face Database [74], and the AR Face Image Database [75]. These face
databases incorporate pose, illumination, and gesture alterations.

• The Georgia Tech (GT) Face Database contains face images of 50 individuals taken
in two or three sessions at the Center for Signal and Image Processing at the Georgia
Institute of Technology [73]. These images, up to 15 per individual, show frontal and
tilted faces with different facial expressions, lighting conditions, and scales. In this pa-
per, we used the cropped images in the GT dataset. Figure 2 presents 15 facial images
of one individual from the GT database. As pointed out previously, the color images
from the cropped GT database were converted into gray-scale face images and resized
to 30× 40 pixels before being presented to the classifiers SRC, LRC, CRC, FSSP(1),
Resized+MM

L , and Resized+VM
Z .
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Figure 2. Images of one individual from the GT face database.

• The AT&T database, formerly known as the ORL database of faces, has 10 different
images for each of 40 distinct individuals [74]. All face images are in up-right and
frontal positions. The ten images of an individual are shown in Figure 3 for illustrative
purposes. For classifiers SRC, LRC, CRC, FSSP(1), Resized+MM

L , and Resized+VM
Z ,

the face images of the AT&T database were resized to 28× 23 pixels.

Figure 3. Images of one individual from the AT&T face database.

• The AR face image database contains over 4000 facial images from 126 individuals [75].
For each individual, 26 images were taken in two sessions, separated by two weeks.
The face images feature different facial expressions, illumination changes, and occlu-
sions. Our experiments used a subset of the cropped AR face image database with
face images of 100 individuals. Furthermore, we only considered each individual’s
eight facial images with different expressions (normal, smile, anger, and scream). The
eight face images of one individual of the AR database are shown in Figure 4. Finally,
we point out that the images in the AR database were converted to gray-scale images
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and resized to 50× 40 pixels for classifiers SRC, LRC, CRC, FSSP(1), Resized+MM
L ,

and Resized+VM
Z .

Figure 4. Some images of one individual from the AR face database.

For GT and the AT&T face databases, we followed the “first N” scheme adopted by
Feng et al. [68]. Each person’s first N face images were used as the training set. The re-
maining face images of each individual were used for testing. Number N varied according
to the computational experiments described in [68]. As for the AR face image database,
we also followed the same evaluation protocol described in [68]: three facial expressions
were used for training (e.g., normal, smile, and anger), while the remainder were used for
testing (e.g., scream). Tables 3–5 list the recognition rates (RRs) yielded by the classifiers.
These tables also provide the average recognition rate (ARR) of a given scenario. For a
visual interpretation of the overall performance of the classifiers, Figure 5a shows the box
plot comprising the normalized recognition rates listed in Tables 3–5. The normalized
recognition rates were obtained by subtracting and dividing the values in Tables 3, 4 and 5,
respectively, by column-wise mean and standard deviation. Furthermore, Figure 5b shows
the Hasse diagram obtained from the outcome of the Wilcoxson signed-ranks test com-
paring any two classifiers with a confidence level at 95% using all the recognition rates
listed in Tables 3–5 [76–78]. Specifically, two classifiers were connected by an edge if the
test rejected the null hypothesis that the two classifiers perform equally well against the
alternative hypothesis that the recognition rates of the classifier at the top are significantly
larger than the recognition rates of the classifier on the bottom of the edge. In other words,
the method at the top outperformed the method at the bottom of an edge. Also, we re-
frained from including the edges that can be derived from transitivity. For example, from
Figure 5b, we derived data signifying that ResNet+VM

Z is above ResNet, and ResNet is
above FSSP(1). Thus, we deduced that the ResNet+VM

Z -based classifier outperformed
FSSP(1) in these experiments.

In conclusion, Figure 5 shows that the ResNet+VM
Z and ResNet+MM

L -based classifiers
outperformed all other classifiers, including the ResNet and FSSP(1) models, for recognition
of uncorrupted face images. We recall, however, that Zadeh’s PAFMM VM

Z is computation-
ally cheaper than AFMMMM

L . Let us now evaluate the performance of the classifiers in
the presence of noise.
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Table 3. RRs and ARRs of the classifiers on GT face database with the “FIRST N” scheme.

Classifier N = 3 N = 4 N = 5 N = 6 N = 9 ARR

SRC 0.5367 0.5836 0.6240 0.7133 0.7867 0.6489

LRC 0.5183 0.5636 0.5980 0.6822 0.7833 0.6291

CRC 0.4683 0.5018 0.5420 0.6200 0.7200 0.5704

FSSP(1) 0.5600 0.6000 0.6300 0.7044 0.7800 0.6549

Resized+MM
L 0.5567 0.5709 0.6000 0.7089 0.7900 0.6453

Resized+VM
Z 0.5600 0.5782 0.5900 0.7222 0.8033 0.6507

ResNet 0.9533 0.9564 0.9560 0.9511 0.9600 0.9554

ResNet+MM
L 0.9533 0.9564 0.9580 0.9600 0.9633 0.9582

ResNet+VM
Z 0.9533 0.9600 0.9600 0.9578 0.9600 0.9582

Table 4. RRs and ARRs of the classifiers on AT&T face database with the “FIRST N” scheme.

Classifier N = 3 N = 4 N = 5 N = 6 N = 7 ARR

SRC 0.8714 0.9167 0.9300 0.9500 0.9583 0.9253

LRC 0.8250 0.8583 0.9100 0.9625 0.9583 0.9028

CRC 0.8643 0.9000 0.9100 0.9187 0.9250 0.9036

FSSP(1) 0.9107 0.9417 0.9500 0.9437 0.9500 0.9392

Resized+MM
L 0.8929 0.9042 0.9300 0.9688 0.9667 0.9325

Resized+VM
Z 0.8929 0.9167 0.9500 0.9812 0.9750 0.9432

ResNet 0.9500 0.9625 0.9550 0.9625 0.9667 0.9593

ResNet+MM
L 0.9500 0.9708 0.9600 0.9625 0.9750 0.9637

ResNet+VM
Z 0.9500 0.9708 0.9650 0.9750 0.9750 0.9672

Table 5. RRs and ARRs of the classifiers on AR face database with expressions.

Classifier Smile Anger Scream ARR

SRC 1.000 0.9800 0.7900 0.9233

LRC 0.9950 0.9700 0.7650 0.9100

CRC 1.0000 0.9950 0.7550 0.9167

FSSP(1) 1.0000 0.9900 0.8600 0.9500

Resized+MM
L 0.9950 0.9850 0.9200 0.9667

Resized+VM
Z 0.9950 0.9800 0.9250 0.9667

ResNet 0.9950 1.0000 0.9350 0.9767

ResNet+MM
L 1.0000 1.0000 0.9200 0.9733

ResNet+VM
Z 0.9950 1.0000 0.9450 0.9800
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(a) Box-plot of normalized recognition rates.
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Figure 5. Box-plot and Hasse diagram of Wilcoxson signed-ranks test for the face recognition task.
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7.2. Face Recognition in the Presence of Noise

In many practical situations, captured images are susceptible to different levels of noise
and blurring effects. According to Gonzalez and Woods [79], the principal noise sources in
digital images arise during image acquisition or transmission. The performance of imaging
sensors is affected by various factors, such as environmental conditions and the quality
of the sensing elements. For instance, Gaussian noise arises in an image due to electronic
circuit noise and sensor noise factors, while transmission errors cause salt and pepper
noise. A blurred image may arise when the camera is out of focus, or relative motion exists
between the camera and objects in the scene. Figure 6 displays undistorted and corrupted
versions of an image from the AT&T face database. The noise images were obtained by
introducing salt and pepper noise with probability ρ = 0.05, Gaussian noise with a mean
zero, variance σ2 = 0.01, and a horizontal motion of nine pixels (blurred images).

Figure 6. Original images from the AT&T face database and versions corrupted, respectively, by salt
and pepper noise, Gaussian noise, and horizontal motion (blurred image).

In order to simulate real-world conditions, we evaluated the performance of the
classifiers when the training images were not distorted, but some noise corrupted test
images. Specifically, test images were corrupted by the following kinds of noise:

1. Salt and pepper noise with probability ρ ∈ [0, 0.5];
2. Gaussian noise with mean 0 and variance σ2 ∈ [0, 0.5];
3. Horizontal motion whose number of pixels varied from 1 to 20.

In each scenario, the first five images of each individual of the AT&T face database
were used for training. The remaining images corrupted by some noise were used for
testing. Figure 7 shows the average recognition rates (ARRs) produced by the eight
classifiers in 30 experiments for each noise intensity. Furthermore, Figure 8 shows the
Hasse diagram of the outcome of the Wilcoxson signed-ranks test comparing any two
classifiers with a confidence level of 95%. In contrast to the previous experiment with
undistorted face images, classifiers ResNet, ResNet+VM

Z , and ResNet+MM
L exhibited the

worst recognition rates for corrupted input images. Moreover, we concluded the following
from Figures 7 and 8:

• FSSP(1) and Resized+VM
Z were, in general, the best classifiers for the recognition of

images corrupted by salt and pepper noise.
• FSSP(1) and SRC yielded the largest recognition rates in the presence of Gaussian noise.
• Resized+VM

Z outperformed all the other classifiers for recognizing blurred input images.

In general, Resized+VM
Z and FSSP(1) were the most robust classifiers for corrupted

input images.
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Figure 8. Hasse diagram of Wilcoxson signed-ranks test for the recognition task from corrupted
input images.

7.3. Computational Complexity

Let us conclude this section by analyzing the computational complexity of the classi-
fiers considered. To this end, we let c denote the number of individuals, k be the number
of training images per individual, and n be either the number of pixels of the resized face
image or n = 128 for vectors encoded by ResNet.

First of all, the following inequalities rank the computational complexity of classifiers
SRC, LRC, CRC, and FSSP(1) [68]:

OLRC < OCRC < OFSSP < OSRC. (68)

Let us now compare the computational complexity of LRC and Resized+VM
Z classifiers.

On the one hand, LRC is dominated by the solution of c least square problems with k
unknowns and n equations. Therefore, the computational complexity of the LRC method is

OLRC = O(cnk2). (69)

On the other hand, due to the noise-masking strategy, the computational complexity of the
Resized+VM

Z classifier is
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OResized+VM
Z

= O(cnk). (70)

Thus, the Resized+VM
Z classifier is computationally cheaper than LRC. According to Table 1,

the Resized+VM
Z classifier is also computationally cheaper than the Resized+MM

L classifier.
Therefore, the Resized-VM

Z classifier is the cheapest among the classifiers based on resized
versions of the face images.

The computational effort to encode a face image into a vector of length n = 128 by
a pre-trained neural network is fixed. Discarding the encoding phase, the computational
complexity of the ResNet+VM

Z classifier depends only on comparisons between the encoded
input and the encoded trained vectors, which results in OResized+VM

Z
= O(cnk). In contrast,

the computational effort of ResNet+MM
L is O(ckn2), which is certainly more expensive

than that of both ResNet and ResNet+VM
Z .

In conclusion, VM
Z -based classifiers are competitive with state-of-the-art approaches

because they exhibit a graceful balance between accuracy and computational cost.

8. Concluding Remarks

In this paper, we investigated max-C and min-D projection auto-associative fuzzy
memories (max-C and min-D PAFMMs), which are defined on an algebraic structure
called residuated complete lattice-ordered groupoid with left identity (R-clogli) and its
dual version. Briefly, PAFMMs are non-distributed versions of the well-known max-C and
min-D auto-associative fuzzy morphological memories (max-C and min-D AFMMs) [5,22].
Specifically, a PAFMM projects the input vector into the family of all max-C (or min-D)
combinations of the stored items. Moreover, max-C and min-D PAFMMs are more robust
to dilative or erosive noise than the AFMMs. In addition, PAFMMs are computationally
cheaper than AFMMs if the number of stored items k is less than their length n.

Apart from a detailed discussion on PAFMM models, we focused on the particular
model referred to as Zadeh’s max-C PAFMM because it is obtained by considering Zadeh’s
fuzzy inclusion measure. Zadeh’s max-C and min-D PAFMMs are the most robust PAFMMs
to either dilative or erosive noise. On the downside, they are susceptible to mixed noise.
In order to improve the noise tolerance of Zadeh’s PAFMMs to mixed noise, we proposed
a variation of the noise masking strategy of Urcid and Ritter using a fuzzy similarity
measure [40].

Finally, experimental results using three famous face databases confirmed the potential
application of Zadeh’s max-C PAFMM for face recognition. Specifically, using Wilcoxson’s
signed-rank test, we concluded that ResNet+VM

Z , which is based on ResNet encoding and
Zadeh’s max-C PAFMM classifier, outperformed important classifiers from the literature
including ResNet [80], LRC [71], CRC [72], and FSSP(1) [68] classifiers for the recognition
of undistorted face images. Furthermore, the experiments revealed that the Resized+VM

Z
classifier performs as well as the FSSP(1) [68] method but requires much less computational
resources.

In the future, we intend to investigate further applications of max-C and min-D
PAFMMs. In particular, we plan to study further the combinations of deep neural networks
and these fuzzy associative memories. We also plan to generalize Zadeh’s PAFMMs to
more general complete lattices.
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Appendix A. Proof of the Theorems

To simplify the exposition, let us first prove Theorem 3.

Proof of Theorem 3. We prove only the first part of Theorem 3. The second part can be
derived in a similar manner. We let z ∈ C(A) be a max-C combination of a1, . . . , ak and
consider set of indexes N = {1, . . . , n} and K = {1, . . . , k}. Since 〈[0, 1],∨,∧, C, R〉 is an
R-clogli, we have

z ≤ x ⇐⇒
k∨

ξ=1

C(λξ , aξ
j ) ≤ xj, ∀j ∈ N (A1)

⇐⇒ C(λξ , aξ
j ) ≤ xj, ∀ξ ∈ K, ∀j ∈ N (A2)

⇐⇒ λξ ≤ R(aξ
j , xj), ∀j ∈ N , ∀ξ ∈ K (A3)

⇐⇒ λξ ≤
n∧

j=1

R(aξ
j , xj), ∀ξ ∈ K. (A4)

Thus, the largest max-C combination z =
∨k

ξ=1 C(λξ , aξ) such that z ≤ x is obtained by

considering λξ =
∧n

j=1 R(aξ
j , xj) for all ξ ∈ K.

Proof of Theorem 1. Given fundamental memory set A = {a1, . . . , ak}, we define δ :
[0, 1]k → [0, 1]n and ε : [0, 1]n → [0, 1]k by means of equations

δ(λ) =
k∨

ξ=1

C(λξ , aξ) and ε(x) = λ, (A5)

where the components of λ = [λ1, . . . , λk]
T are given by (35). From the proof of Theorem 3,

we conclude that (ε, δ) is an adjunction. Furthermore, we have V(x) = δ(ε(x)) for all
x ∈ [0, 1]n. Therefore, V is an opening from mathematical morphology [21,43]. In particular,
V is anti-extensive and idempotent, that is, V(x) ≤ x and V(V(x)) = V(x) for all x ∈ [0, 1]n.
In a similar fashion, we can show that S is a closing from mathematical morphology.
Therefore, we have x ≤ S(x) and S(S(x)) = S(x) for all x ∈ [0, 1]n.

Proof of Theorem 2. First of all, we recall that in an R-clogli, fuzzy conjunction C has a left
identity, i.e., there exists e ∈ [0, 1] such that C(e, x) = x for all x ∈ [0, 1]. Moreover, identity
C(0, x) = 0 holds for all x ∈ [0, 1]. Therefore, we can express a fundamental memory aξ by
the following max-C combination:

aξ = C(0, a1) ∨ . . . ∨ C(e, aξ) ∨ . . . ∨ C(0, ak). (A6)

Alternatively, we have aξ ∈ C(A). From (33), we conclude that V(aξ) =
∨{z ∈ C(A) :

z ≤ aξ} = aξ for all ξ = 1, . . . , k. Similarly, a min-D PAFMM satisfies S(aξ) = aξ for all
ξ = 1, . . . , k if 〈[0, 1],∨,∧, D, S〉 is a dual R-clogli.
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Proof of Theorem 4. Let us only show (39). The second part of the theorem is derived
in a similar manner. First, we recall that a strong negation is a decreasing operator.
Thus, since the negation of the minimum is the maximum of the negations, we conclude
from (36) and (16) that

S∗(x) = η
(
S
(
η(x)

))
= η

 n∧
j=1

D(θξ , aξ)

 (A7)

=
k∨

ξ=1

η
(

D(θξ , aξ)
)
=

k∨
ξ=1

C(λ∗ξ , bξ), (A8)

where λ∗ξ = η(θξ) satisfies the following identities:

λ∗ξ = η

 n∨
j=1

S
(
aξ

j , η(xj)
) (A9)

=
n∧

j=1

η
(

S
(
aξ

j , η(xj)
))

(A10)

=
n∧

j=1

R
(

η
(
aξ

j
)
, xj

)
=

n∧
j=1

R
(

bξ
j , xj

)
. (A11)

From the diagram depicted on Figure 1 and (35), we conclude that S∗ is the max-C PAFMM
designed for the storage of b1, . . . , bk.

Proof of Theorem 5. We consider fundamental memory set A = {a1, . . . , ak} ⊂ [0, 1]n and
K = {1, . . . , k}. If there exists a unique γ ∈ K such that aγ ≤ x, then the index set, given
by (57), is equal to

I = {ξ : aξ
j ≤ xj, ∀j = 1, . . . , n} = {γ}. (A12)

Therefore,
VZ (x) =

∨
ξ∈IL

aξ = aγ. (A13)

Analogously, we can prove the second part of this theorem.
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