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Abstract: Computing Shapley values for large cooperative games is an NP-hard problem. For
practical applications, stochastic approximation via permutation sampling is widely used. In the
context of machine learning applications of the Shapley value, the concept of antithetic sampling
has become popular. The idea is to employ the reverse permutation of a sample in order to reduce
variance and accelerate convergence of the algorithm. We study this approach for the Shapley and
Banzhaf values, as well as for the Owen value which is a solution concept for games with precoalitions.
We combine antithetic samples with established stratified sampling algorithms. Finally, we evaluate
the performance of these algorithms on four different types of cooperative games.
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1. Introduction

Cooperative game theory [1,2] provides a framework for analyzing situations where
groups of individuals or entities collaborate to achieve common goals or outcomes. Unlike
non-cooperative game theory, which focuses on strategic interactions without binding
agreements, cooperative game theory explores scenarios in which players can form coali-
tions and distribute the benefits of their cooperation.

Modern applications of cooperative game theory reach far beyond the fair allocation
of benefits. For example, models and solution concepts from cooperative game theory are
employed for understanding voting power in committees [3–5], as well as for analyzing
genetic networks [6,7], terrorist networks [8–10], or complex shareholding networks [11,12].
However, for n players the number of coalitions grows exponentially and this makes effi-
cient computations on cooperative games challenging. The latter is particularly true for the
Shapley value [13], the most widely used solution concept from cooperative game theory.
In the general case, calculating the Shapley value is NP-hard [14–16]. Very recently, there
has been plenty of research in the field of interpretable machine learning using the Shapley
value as a tool to determine the importance of features with respect to the outcome of
neural networks [17–20]. In these applications, Shapley values are very frequently approxi-
mated via a technique called permutation sampling which was introduced in the seminal
paper by Castro et al. (2009) [21]. Permutation sampling for Shapley value computation
was improved in various ways in order to draw samples more efficiently [22–24]. In the
machine learning community, antithetic sampling, i.e., employing a permutation together
with its reverse, has gained traction due to its simplicity since it was recommended in an
article by Mitchell et al. (2022) [23]. The recent survey by Chen et al. (2023) [18] presents an-
tithetic sampling in a favorable light, and a recent book by Molnar (2023) [20] recommends
antithetic sampling as well.

This paper studies antithetic permutation sampling for approximating Shapley values
from a cooperative game theory perspective. Deliberately, we also include two other

AppliedMath 2023, 3, 957–988. https://doi.org/10.3390/appliedmath3040049 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3040049
https://doi.org/10.3390/appliedmath3040049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0002-0619-4606
https://orcid.org/0009-0008-4627-7925
https://doi.org/10.3390/appliedmath3040049
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3040049?type=check_update&version=1


AppliedMath 2023, 3 958

point-valued solution concepts in our investigations. The Banzhaf value [25,26] enjoys a
wide range of applications, including contemporary studies on data valuation in machine
learning [27]. The Owen value [28] generalizes the Shapley value for situations with
precoalitions, i.e., the player set is partitioned into disjoint a priori unions of players. Algaba
et al. (2023) [8] approximates Owen values to identify the most important people in the
terrorist network responsible for the attack on the World Trade Center in September of 2001.

We incorporate antithetic sampling into existing algorithms for approximating the
Shapley, Banzhaf, and Owen values. In particular, we also combine existing stratified
sampling algorithms for the Shapley value [22] and for the Owen value [29] with the
concept of antithetic sampling via the reverse permutation and develop new algorithms.
We point out the unbiasedness and consistency of our estimators.

Our article is limited to point-valued solution concepts based on marginal contri-
butions. For a study presenting Shapley value approximation in the broader context of
computing solutions of cooperative games, we refer the reader to Liben-Nowell et al.
(2012) [30]. Specifically, the goal of this research is to evaluate the potential of antithetic
sampling in the context of sampling permutations or subsets with replacement. There are
various other concepts for approximating Shapley values which this paper does not discuss,
as it is too numerous to list them all. In particular, we do not perform any sampling without
replacement [31,32] and we completely omit the multilinear extension method by Owen
(1972) [33] and its recent variants [34], any approaches to combine sampling with exact
solutions of subproblems [35,36], and any modern machine learning-related models [19,37].

This article is organized as follows: In Section 2, we introduce the basic concepts from
cooperative game theory, provide a brief introduction to Monte Carlo methods and some
variance reduction techniques, and give a very brief overview of existing permutation
sampling algorithms. In Section 3, we discuss antithetic sampling for the Shapley and
Banzhaf values, introduce a novel stratified antithetic sampling algorithm for Shapley
value approximation, and point out how antithetic samples can be incorporated into the
two-stage stratified sampling algorithm with optimum allocation introduced in [22]. In
Section 4, we integrate antithetic sampling into the approximation algorithm for the Owen
value introduced by Saavedra-Nieves, García-Jurado, and Fiestras-Janeiro (2018) in [38]
and then develop a sophisticated stratified antithetic sampling method for the Owen value
based on the ideas by Saavedra-Nieves from [29]. In Section 5, we analyze the performance
of the discussed algorithms for four different types of cooperative games and assess the
results critically. We end with our conclusions and recommendations in Section 6.

2. Preliminaries

In this section, we first introduce a few basic concepts from cooperative game the-
ory, including the Shapley [13], Banzhaf [25,26], and Owen [28] values. Afterwards, we
introduce some terminology on Monte Carlo methods, including variance reduction via
antithetic sampling and stratified sampling.

2.1. Cooperative Game with Transferable Utility

The focus of our study is cooperative games with transferable utility (TU games) [1,2].
The term cooperative describes the fact that players can form coalitions and make binding
agreements on how to distribute the proceeds of these coalitions between themselves. The
term transferable utility means that the amount of utility earned by a coalition can be both
expressed by a number and transferred between the players. The most common type of
utility is money.

A TU game is a pair (N, v) where N = {1, . . . , n} is the set of players and v : 2N 7→ R
is a real valued function, called the characteristic function, defined on the subsets of N. The
subsets S ⊆ N are also called coalitions. v maps a real number v(S) to each coalition S
representing the amount of utility earned by this coalition. For the empty coalition there
holds the normalization v(∅) = 0. Throughout this work, we will denote by a lower-case
letter the cardinality of a set, e.g., |S| = s.
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Let GN be the set of TU games with player set N. A point-valued solution concept is a
map ϕ : GN 7→ Rn that assigns a vector ϕ(N, v) ∈ Rn to each game (N, v) ∈ GN , where the
i-th element of this vector, ϕi(N, v), represents the worth or influence of player i ∈ N in the
game (N, v) according to the underlying solution concept. The most popular point-valued
solution concept in cooperative game theory is the Shapley value [13]. Given the player set
N and the characteristic function v : 2N 7→ R, the Shapley value of player i is defined as

Shi(N, v) = ∑
S⊆N\{i}

s!(n− s− 1)!
n!

[v(S ∪ {i})− v(S)]. (1)

Definition 1 ([21,22]). Let π(N) denote the set of all possible permutations of the player set
N = {1, . . . , n}. Further, let O : N 7→ N be a permutation that assigns the player O(k) to each
position k. Given a permutation O ∈ π(N), we define prei(O) as the set of predecessors of player i
in the order O, i.e., prei(O) = {O(1), . . . , O(k− 1)}, if i = O(k). In this setting, the marginal
contribution of player i for a given order O ∈ π(N) is defined as v(prei(O) ∪ {i})− v(prei(O)).

Using the previous definition, the Shapley value (1) of player i can be rewritten in
the form

Shi(N, v) = ∑
O∈π(N)

1
n!
[v(prei(O) ∪ {i})− v(prei(O))]. (2)

Another important point-valued solution concept in cooperative game theory is the
Banzhaf Value [25,26]. Given the player set N and the characteristic function v : 2N 7→ R,
the Banzhaf value of player i is defined as

Bzi(N, v) = ∑
S⊆N\{i}

1
2n−1 [v(S ∪ {i})− v(S)]. (3)

From (2) and (3), we understand that both Shapley and Banzhaf values are based on
the concept of marginal contributions. Note that the Shapley value is an efficient solution
concept as ∑n

i=1 Shi(N, v) = v(N) whereas in general the Banzhaf value is not, i.e., the
sum of the Banzhaf values of all players does not necessarily equal the value v(N) of the
grand coalition.

A TU game with precoalitions (also known as a priori unions) is a triple (N, v, P) where
(N, v) is a TU game and P = {P1, . . . , Pp} is a partition of the player set N with p being
the number of precoalitions. Each player has to be part of a precoalition, i.e., ∪p

b=1Pb = N.
Furthermore, all precoalitions are disjoint, i.e., Pb ∩ Pc = ∅ for all b, c ∈ {1, . . . , p} and
b 6= c. We denote by P(i) the precoalition to which player i belongs. Throughout this work,
we will use the terms precoalition, a priori union, and union as synonyms as long as there is no
ambiguity. Likewise, we will use the terms partition and coalition structure synonymously.

We denote by ψ : UN 7→ Rn a point-valued solution concept for games with precoali-
tions, where UN is the set of TU games with precoalitions with player set N. The most
frequently used solution concept for cooperative games with precoalitions is the Owen
Value [28]. It can be viewed as an extension of the Shapley value to games with precoalitions.
Given the player set N, the characteristic function v : 2N 7→ R, and the partition P, the
Owen value of player i is defined as

Owi(N, v, P) = ∑
R⊆P\P(i)

∑
Q⊆P(i)\{i}

q!(p(i) − q− 1)!r!(p− r− 1)!
p(i)!p![

v

( ⋃
A∈R

A ∪Q ∪ {i}
)
− v

( ⋃
A∈R

A ∪Q

)]
.

(4)

Just like for the Shapley value, it is also possible to write the Owen value in terms of
permutations. We call a permutation O ∈ π(N) compatible with a partition of the player
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set P if the elements of each class of P are never torn apart in the order O. Let π̃(N) denote
the set of all permutations of N which are compatible with the coalition structure P. Then,
the Owen value (4) of player i can be rewritten in the form

Owi(N, v) = ∑
Õ∈π̃(N)

1
|π̃(N)|

[
v
(

prei(Õ) ∪ {i}
)
− v
(

prei(Õ)
)]

. (5)

2.2. Monte Carlo Methods

Our introduction to Monte Carlo methods and permutation sampling follows Botev
and Ridder (2017) [39] and Mitchell et al. (2022) [23]. Let µ = E[H(X)], where X : Ω 7→ DH
is a discrete random variable following an equal distribution with Ω being the sample
space, and H : DH 7→ R an arbitrary function that returns a real value for any value of its
domain DH . The exact value of µ can be retrieved by evaluating

µ = E[H(X)] = ∑
x∈Ω

H(x).

Using the crude Monte Carlo method [39], we can approximate µ as

µ =
1
m

m

∑
j=1

H(Xj)

with X1, . . . , Xm being drawn as i.i.d. replications of X and m being the number of samples.
The resulting estimator µ is unbiased, i.e., E[µ] = µ, and its variance is given by

Var[µ] =
1
m

Var[H(X)]

so that the variance shrinks with an increasing number of samples m, i.e., the estimator µ is
consistent, as long as Var[H(X)] is finite.

Using Equation (2) and employing a uniform sample of permutations Πm ⊂ Ω = π(N)
of size m delivers a simple Monte Carlo estimator for the Shapley value

Shi(N, v) =
1
m ∑

O∈Πm

[v(prei(O) ∪ {i})− v(prei(O))]. (6)

This approach is called permutation sampling and was formally established by Castro
et al. (2009) [21]. The estimator for the Shapley value of player i in (6) is unbiased and
consistent. The Central Limit theorem guarantees convergence at a rate of O(1/

√
m). In

terms of a practical implementation, a single sample of m permutations Πm can be used to
evaluate the Shapley values Shi for all players i. We can walk through each permutation
O ∈ Πm of length n and when incrementing i and evaluating v(prei(O) ∪ {i}) we simply
reuse v(prei(O)) from the previous computation [23].

Antithetic sampling is a variance reduction technique for Monte Carlo methods. Instead
of taking i.i.d. samples, samples are taken as correlated pairs. The overview article [40]
defines the antithetic estimate as

µas =
1
m

m/2

∑
j=1

[
H(Xj) + H(Xas

j )
]

where X1, . . . , Xm/2 is an i.i.d. sample and Xas
1 , . . . , Xas

m/2 its corresponding antithetic sample.
The variance of the estimator µas is given by

Var[µas] = Var[µ] +
1
m

Cov[H(X), H(Xas)]
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so that if H(X) and H(Xas) have a negative covariance, i.e., they are negatively correlated,
the variance of the estimator µas is reduced compared to the crude Monte Carlo approach.
Antithetic sampling for functions of permutations was first investigated in [41]. The idea
is simply to combine permutations and their reverse permutations. The purpose of this
article is to study antithetic sampling more deeply and to integrate this idea into established
approaches for stratification.

Stratified sampling is a more general variance reduction technique. It divides the
population into strata which form a partition of the sample space Ω [39]. Let {z1, . . . , zl}
be the set of those strata with zb ∩ zc = ∅ for all b, c ∈ {1, . . . , l} and b 6= c as well as
∪l

b=1zb = Ω. Let Z be a discrete random variable taking values from {z1, . . . , zl}, and then
µ can be rewritten as

µ = E[E[H(X)]|Z] =
l

∑
b=1

pZ(zb)E[H(X)|Z = zb]

where pZ(zb) = P(Z = zb) is the probability mass function. E[H(X)|Z = zb] hereby is the
expected value of H(X) under the condition that Z = zb, which can be approximated by

µst
b =

1
mb

mb

∑
j=1

H(Xb,j)

where Xb,1, . . . , Xb,l is an i.i.d. sample simulated from the conditional distribution of X
given that Z = zb and mb is the sample size of stratum zb. The resulting estimator of µ is
given by

µst =
l

∑
b=1

pZ(zb)µ
st
b

with E[µst] = µ, i.e., the estimator µst is unbiased, and the upper bound of its variance
estimated by [39] as

Var[µst] ≤ Var[µ]

which means this technique should always perform better or at least equally well compared
to the crude Monte Carlo method. Note that the latter equation only holds for a proportional
allocation of the total sample size m with respect to pZ(·), i.e., mb = pZ(zb)m for all
b ∈ {1, . . . , l}.

Stratified sampling was first used for Shapley value estimation in [42] and later
improved in [22]. We will combine stratified sampling algorithms from [22] with the
concept of antithetic sampling in the following section.

3. Antithetic Sampling for the Shapley and Banzhaf Values

The concept of antithetic sampling was defined in Section 2 in a general way. In this
section, we explain how to generate antithetic subsets. We integrate the idea of antithetic
subsets into established algorithms for computing Shapley and Banzhaf values.

3.1. Antithetic Subset Generation

When applying Monte Carlo methods in the context of cooperative games, samples
are mostly permutations or subsets (coalitions) of the player set N. Lomeli et al. (2019) [41]
define the antithetic sample of a given permutation as its reverse. In this subsection, we
generalize this idea to generating antithetic subsets. Let O be a random permutation of the
player set N. The antithetic sample Sas to S = prei(O) can be defined as

Sas = prei(rev(O)) = N \ (S ∪ {i}) (7)

where rev(O) is a function that returns the reversed permutation of the given order O. We
will use the rule (7) to generate antithetic sample elements throughout this work to skip the
steps in between of reversing the order and running prei(·) again. Furthermore, (7) makes
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it more straightforward to adapt the usage of antithetic sampling to algorithms that are
based on sampling coalitions instead of permutations. Let us formally define a function for
generating antithetic subsets.

Definition 2. Let N = {1, . . . , n} be the set of players. Then asi : 2N\{i} 7→ 2N\{i} with

asi(S) = N \ (S ∪ {i}) (8)

returns an antithetic subset for a given subset S ⊆ N \ {i} and fixed player i ∈ N.

It is trivial to see

Remark 1. The map asi : 2N\{i} 7→ 2N\{i} from Definition 2 is a bijection.

Let us reformulate asi as a piecewise function.

Remark 2. The map asi : 2N\{i} 7→ 2N\{i} from Definition 2 can be rewritten as a piecewise function

asi(S) =


as0

i (S) if s = 0
...

...
asn−1

i (S) if s = n− 1

where every ash
i is a subfunction ash

i : {S ∈ 2N\{i}|s = h} 7→ {S ∈ 2N\{i}|s = n − h − 1}
and ash

i (S) = N \ (S ∪ {i}). It is easy to see that the domains of all subfunctions are a partition
of the domain of the piecewise function asi, i.e., ∪n−1

h=0{S ∈ 2N\{i}|s = h} = 2N\{i} and {S ∈
2N\{i}|s = h} ∩ {S ∈ 2N\{i}|s = h∗} = ∅ for h, h∗ ∈ {0, . . . , n− 1} with h 6= h∗. It is trivial
to see that this is also true for the codomain of asi, i.e., the codomains of all ash

i are a partition of the
codomain of asi. Hence, every subfunction ash

i is a bijection.

In the following, we will indicate by bold letters, i.e., asi(M), the elementwise applica-
tion of asi to all subsets S ∈ M in a sample M.

3.2. Computing Shapley Values Using Antithetic Sampling

The algorithm ApproShapley is a simple algorithm for Shapley value approximation
based on random sampling proposed in [21]. We already introduced this idea through
Equation (6) at the beginning of Section 2.2. Although the algorithm was already extended
to make use of antithetic sampling in [23], we dedicate this subsection to this algorithm
and provide a concise description of it.

The algorithm ApproShapley from [21] is a random sampling algorithm to estimate
the Shapley value of all players at once. For a given number of players n and a specified
sample size m for each player, the algorithm takes m random orders O of the player set
N. The algorithm estimates the Shapley value Shi for all players i as the average marginal
contribution of player i to all those m orders (6).

When applying antithetic sampling to this algorithm, the algorithm only takes dm
2 e

random orders of the player set N (with d·e denoting the ceiling function). Instead, the
antithetic sample generated via asi is used to update the estimated Shapley value as well.
We describe this approach in Algorithm 1.

Theorem 1. The estimator Sh
as
i for the Shapley value of player i from Algorithm 1 is both unbiased,

i.e., E[Sh
as
i ] = Shi, and consistent, i.e., limm→∞ P(|Sh

as
i − Shi| > ε) = 0 for all ε > 0.

Proof. The paper [21] points out that the estimator Shi from (6) is unbiased and consistent
since Shi is a sample mean and Shi is a population mean. This is also true for our proposed
estimator Sh

as
i . To prove that, we need to show that the samples obtained by calling asi
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follow the same probability distribution as if they were directly randomly sampled. This
means showing that asi maps every given subset to a unique antithetic subset that has
an equal probability during the random sampling process. The probability of randomly
sampling a subset S in the context of the Shapley value is given by

1
n

1

(n−1
s )

whereby it is easy to see that a subset with size s = h and h ∈ {0, . . . , n − 1} has an
equal probability of being randomly sampled as a subset of size s = n− h− 1 due to the
symmetry of the binomial coefficient, i.e., (n−1

h ) = ( n−1
n−h−1).

This matches our definitions of all ash
i , where each ash

i maps a subset from {S ∈
2N\{i}|s = h} to an antithetic subset from {S ∈ 2N\{i}|s = n− h− 1}. Thus, the elements
from the domain and codomain of all ash

i have an equal probability of being taken when
conducting random sampling.

Furthermore, it is clear that each element from {S ∈ 2N\{i}|s = h}maps to a unique
element from {S ∈ 2N\{i}|s = n− h− 1}. Therefore, as long as the randomly sampled
subsets are i.i.d. within the domains of all ash

i , the generated samples are also i.i.d. within the
codomains of all ash

i . This is always the case since the proposed algorithm takes all subsets
with the same size with equal probability, which leads to the conclusion that the estimator
Sh

as
i is both unbiased, i.e., E[Sh

as
i ] = Shi, and consistent, i.e., limm→∞ P(|Sh

as
i − Shi| > ε) =

0 for all ε > 0.

Algorithm 1 Antithetic sampling for Shapley value approximation

Sh
as
i ← 0, ∀i ∈ N

for j ∈ {1, . . . , dm
2 e} do

Take a random order O ∈ π(N)
for i ∈ N do

S← prei(O)
Sas ← asi(S)
Sh

as
i ← Sh

as
i + v(S∪{i})−v(S)+v(Sas∪{i})−v(Sas)

m+m mod 2
end for

end for

Remark 3. Another property of the original algorithm from [21] is its efficiency in allocation, i.e.,

n

∑
i=1

Shi = v(N)

which also holds for the antithetic version of this algorithm taking into account that the sum of
the marginal contributions in any order equals v(N). This is trivial for the randomly sampled
orders, but it also holds for the antithetic samples. Since we are generating the antithetic samples
by using asi(S) with S = prei(O) independently for every player i in the proposed algorithm,
these antithetic samples are equal to prei(rev(O)) which means all antithetic samples are based
on the same antithetic permutation rev(O) in a fixed iteration j. Thus, the sum over the marginal
contributions of all players to their respective antithetic samples Sas in a fixed iteration j also
equals v(N).

3.3. Computing Shapley Values Using a Combination of Stratified and Antithetic Sampling

The algorithm St-ApproShapley proposed by Castro et al. (2017) [22] uses stratification
to reduce the variance of the estimated Shapley values. The algorithm approximates the
Shapley value of every player independently. Hence we only describe the algorithm for
estimating the Shapley value for a fixed player i in the following.
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The algorithm St-ApproShapley by Castro et al. (2017) [22] defines n strata Th with
h ∈ {0, . . . , n − 1}, where stratum Th includes all subsets of N \ {i} with size h, i.e.,
Th = {S ⊆ N \ {i}|s = h}. From each of these strata Th, a sample Mh of size mh is taken.
For every sample Mh, the mean of marginal contributions of player i to all S ∈ Mh is
calculated, resulting in Sh

st
i,h for all h. The estimated Shapley value Sh

st
i is the mean over all

those Sh
st
i,h.

In the following, we would like to extend the algorithm St-ApproShapley [22] to make
use of antithetic sampling. A simple solution would be halving the sample size mh of every
stratum and creating the antithetic sample element Sas = asi(S) for every S ∈ Mh, which
would result in

Sh
st,as∗
i,h =

1
2mh

∑
S∈Mh

[v(S ∪ {i})− v(S) + v(Sas ∪ {i})− v(Sas)] (9)

where Sh
st,as∗
i,h should be the average marginal contribution of player i in position h + 1 over

the sample Mh, but taking a closer look shows this is not the case. Instead, Sh
st,as∗
i,h from (9)

does not only consist of marginal contributions of player i in position h + 1, but also in
position n− h. In the following, we propose a more sophisticated algorithm.

Our new algorithm combining stratified and antithetic sampling only runs for h̃ ∈
{0, . . . , d n

2 e − 1}. For every h̃, an i.i.d. sample Mh̃ of size mh̃ from stratum Th̃ is taken and
the corresponding antithetic sample Mn−h̃−1 from stratum Tn−h̃−1 is generated by applying

asi(Mh̃). The former sample is used to update the estimator Sh
st,as
i,h̃ of stratum Th̃, while the

latter sample is used to update the estimator Sh
st,as
i,n−h̃−1 of the stratum Tn−h̃−1. The estimator

of each stratum is the average over the marginal contributions of player i to all subsets S in
the sample of the underlying stratum. The estimator of the Shapley value Sh

st,as
i of player i

is the average over all those stratum estimators.
When executing the novel algorithm as described above, there is an edge case if n

is odd. In that case, if h̃ = (n − 1)/2, there holds h̃ = n − h̃ − 1. Thus, the estimators
Sh

st,as
i,h̃ and Sh

st,as
i,n−h̃−1 are the same estimator. In that case, the estimator is updated twice

per iteration and therefore has used 2mh̃ samples. To account for that, the estimator will

be divided by 2 before being added to the overall estimator Sh
st,as
i , which is shown in the

conditional statement at the end of the outer loop of our proposed Algorithm 2.
In our edge case when n is odd, an additional aspect needs to be taken into account

whenever an equal sample size for all strata is desired. For n odd, the domain {S ∈
2N\{i}|s = h} and the codomain {S ∈ 2N\{i}|s = n− h− 1} of the function as(n−1)/2

i are
equal sets. This means that generating asi(M(n−1)/2) does not result in an antithetic sample
from another stratum as it does for all other Mh̃, but once again in a sample from T(n−1)/2.
This would result in taking twice the amount of samples from T(n−1)/2 as from any other
Th. Thus, if an equal sample size for all strata Th is desired, m(n−1)/2 is only allowed to be
half the size of every other mh̃. We formalize this idea in Algorithm 3.

Theorem 2. The estimator Sh
st,as
i for the Shapley value of player i from Algorithm 2 with sam-

ple allocation according to Algorithm 3 is both unbiased, i.e., E[Sh
st,as
i ] = Shi, and consistent,

i.e., limm→∞ P(|Sh
st,as
i − Shi| > ε) = 0 for all ε > 0.

Proof. Let us start by revisiting the results for the estimator of the original algorithm St-
ApproShapley from [22]. The estimators Sh

st
i,h are unbiased for all h. The estimated Shapley

value Sh
st
i is the mean over all those Sh

st
i,h and hence unbiased as well. Equal sample sizes

for all strata entail that m→ ∞ implies mh → ∞ for all strata Th and hence Sh
st
i is consistent.
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The original estimator Sh
st
i,h can be interpreted as a mean of means, which is still

possible for our our estimator Sh
st,as
i,h . We pointed out that asi is a bijective function which

can be rewritten as a piecewise function consisting of ash
i , for all h ∈ {0, . . . , n− 1}, where

every ash
i maps from {S ∈ 2N\{i}|s = h} to {S ∈ 2N\{i}|s = n− h− 1}. We also pointed

out that each of these ash
i is bijective, which means there is a one-to-one-mapping between

the elements of the domain and the elements of the codomain.
Since our proposed algorithm takes i.i.d. samples Mh̃ from the domains of each ash̃

i
with h̃ ∈ {0, . . . , dn/2e − 1}, the elements from the codomains Mh generated by running
ash̃

i (Mh̃) are also i.i.d. among themselves because of the one-to-one-mapping. These ele-
ments from the codomains are used as the samples Mn−h̃−1 for all strata Tn−h̃−1. Since
the estimators of the strata are the mean of those i.i.d. samples, they are unbiased, which
results in the estimator Sh

st,as
i being unbiased, i.e., E[Sh

st,as
i ] = Shi. Algorithm 3 ensures

equal sample sizes for all strata. Hence m → ∞ guarantees mh → ∞ for all strata Th and
hence Sh

st,as
i is consistent, i.e., limm→∞ P(|Sh

st,as
i − Shi| > ε) = 0 for all ε > 0.

Algorithm 2 Stratified antithetic sampling for Shapley value approximation

Sh
st,as
i ← 0

for h̃ ∈ {0, . . . , d n
2 e − 1} do

Sh
st,as
i,h̃ ← 0

Sh
st,as
i,n−h̃−1 ← 0

for j ∈ {1, . . . , mh̃} do
Take a random subset S ⊆ N \ {i} of size h̃
Sas ← asi(S)
Sh

st,as
i,h̃ ← Sh

st,as
i,h̃ + v(S∪{i})−v(S)

mh̃

Sh
st,as
i,n−h̃−1 ← Sh

st,as
i,n−h̃−1 +

v(Sas∪{i})−v(Sas)
mh̃

end for
if (n mod 2 = 1) ∧ (h̃ = n−1

2 ) then

Sh
st,as
i ← Sh

st,as
i +

Sh
st,as
i,h̃

2n
else

Sh
st,as
i ← Sh

st,as
i +

Sh
st,as
i,h̃ +Sh

st,as
i,n−h̃−1

n
end if

end for

Algorithm 3 Sample allocation for stratified antithetic sampling for Shapley value approxi-
mation

mh̃ ← d
m
n e, ∀h̃ ∈ {0, . . . , d n

2 e − 1}
if n mod 2 = 1 then

m(n−1)/2 ← d
m(n−1)/2

2 e
end if

3.4. Computing Shapley Values Using Two-Stage-Stratification and Antithetic Samples

Castro et al. (2017) [22] proposed an even more sophisticated version of their algorithm
St-ApproShapley, called Two-Stage-St-ApproShapley-opt, that further reduces the variance of
the estimated Shapley values by sampling proportional to the variance of the strata. The
latter approach is normally referred to as optimum allocation or Neyman allocation [43].
Note that unlike St-ApproShapley, this algorithm approximates the Shapley value for all
players at once. Therefore, the population is divided into n× n strata indexed by i and h,
where i ∈ N defines the considered player in the stratum, i.e., the player whose marginal
contributions are calculated, and h ∈ {0, . . . , n− 1} defines the number of players that
player i is joining in the stratum, i.e., the size of S.
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The algorithm is divided into two stages. In the first stage, the estimated Shapley value
is calculated by stratified sampling for every player like it was described for the algorithm
St-ApproShapley, whereby each stratum obtains an equal sample size m/(2n2). We refer to
the beginning of Section 3.3 for more details about stratified sampling in the context of the
Shapley value. In addition to the approximation of the Shapley value, the variance of each
stratum for each player is estimated. Afterwards, the sample sizes for the second stage are
calculated, where the sample sizes of different strata are proportional to the variances of
the strata estimated in the first stage. The second stage is once again a stratified sampling
algorithm for every player like it was described at the beginning of Section 3.3, but this time
with a different sample size for each stratum, i.e., those sample sizes that were calculated
previously and are proportional to the estimated variances forming the first stage are used.
The original algorithm Two-Stage-St-ApproShapley-opt from [22] might take more samples
than specified by the user. This is why we slightly changed the calculation of the sample
sizes for the second stage compared to the original algorithm. In our opinion, this allows
for fairer comparisons with other algorithms. In our antithetic algorithm which we propose
later in this subsection, we use only the generic term Calculate mst

i,h as a placeholder instead
of an exact implementation. We refer to [22] for the original sample allocation method. In
our adapted sample allocation method, on the other hand, the sample size mst

i,h of a stratum
with player i in position h + 1 is calculated as described in Algorithm 4.

Algorithm 4 Adapted optimum sample allocation for stratified antithetic sampling for
Shapley value approximation

mi,h ← dm
s2

i,h

∑n
i∗=1 ∑n−1

h∗=0 s2
i∗ ,h∗
e, ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

mst
i,h ← mi,h −mexp

i,h , ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}
while there are any negative mst

i,h do
for i ∈ N and h ∈ {0, . . . , n− 1} do

if mst
i,h < 0 then

mst
i,h ← 0

end if
end for
mdi f f ← ∑n

i∗=1 ∑n−1
h∗=0

[
mexp

i,h + mst
i,h

]
−m

for i ∈ N and h ∈ {0, . . . , n− 1} do
if mst

i,h > 0 then

mst
i,h ← mst

i,h − dm
di f f s2

i,h

∑n
i∗=1 ∑n−1

h∗=0 s2
i∗ ,h∗
e

end if
end for

end while

Please note that we will also use Algorithm 4 for the sample allocation in the non-
antithetic version of the Two-Stage-St-ApproShapley-opt when conducting comparisons be-
tween the non-antithetic and the antithetic version of the Two-Stage-St-ApproShapley-opt in
Section 5. Furthermore, we emphasize that this slightly changed sample distribution does
affect the usage of antithetic sampling neither in a positive nor a negative way. Again, the
only reason for using this different approach are fairer comparisons to other algorithms.

As for our heuristics for combining antithetic sampling with two-stage sampling,
there are a few aspects that need to be considered. First, it is important to update the
estimated variance in the first stage regardless of using a randomly sampled subset or
a subset derived through the antithetic sampling process, i.e., via asi. Second, it is not
possible to use asi as the function to generate an antithetic subset in the second stage. In the
second stage, the sample sizes are not equal for each stratum, but proportional in their size
to the estimated variance of each stratum and thus bound to a specific stratum with player i
being in position h + 1, i.e., a stratum where player i is joining subsets with h players. When
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using asi for generating the antithetic subset, the antithetic subset would be a sample for
player i in position n− h but not h + 1, i.e., the antithetic subset length would be n− h− 1
but not h. Thus, using asi for antithetic subset generation would result in an incorrect usage
of the sample sizes determined after the first stage.

To solve the latter problem, we define a function called get_antithetic_S_for_same_position.
This function returns an approximated antithetic subset Sas with sas = s for a given player
set N, subset S, and player i. The term for_same_position refers to the fact that player i is
in the same position in the returned antithetic sample Sas as it is in the provided sample
S. Note that this no longer satisfies the definition of antithetic sampling in the context of
permutations by [41] where the authors propose to take the reverse permutation as the
antithetic sample of a given permutation.

The algorithm inside the function get_antithetic_S_for_same_position works as follows:
At first, a prototypical antithetic sample Sas is generated by using asi(S). Since we want
Sas to be used with a player in position s + 1, Sas must be adapted to be of size s. If the
initial antithetic sample is too small, a random subset of size s− sas of the remaining subset
N \ (Sas ∪ {i}) will be appended to it. If Sas is already too large, sas − s elements of Sas

will be discarded and only the resulting smaller subset of it will eventually be used as the
antithetic sample. Algorithm 5 specifies our approach.

Algorithm 5 Defining Sas for a given position s + 1 of player i

function get_antithetic_S_for_same_position(N, S, i)
Sas ← asi(S)
if sas < s then

Take a random subset A ⊆ N \ (Sas ∪ {i}) of size s− sas

Sas ← Sas ∪ A
else if sas > s then

Take a random subset A ⊂ Sas of size s
Sas ← A

end if
return Sas

end function

Unlike our algorithm described in the following, it would also have been possible
to use asi to generate samples in the first stage as was shown in Algorithm 2 because the
sample sizes are equal for each stratum in the first stage. In other words, it would be
possible to employ our function get_antithetic_S_for_same_position only for the second stage.
For simplicity, we will use get_antithetic_S_for_same_position in both stages of the antithetic
version of the Two-Stage-St-ApproShapley-opt.

To obtain our antithetic version of the algorithm Two-Stage-St-ApproShapley-opt, only small
adaptions are needed. In both stages, the sample size of every stratum is halved as compared to
the base algorithm. Furthermore, in both stages, our function get_antithetic_S_for_same_position
will be called for every sampled subset S to generate a corresponding Sas, and those S as
well as Sas will be used to update the average marginal contribution of player i in position
h + 1. In addition to that, both resulting marginal contributions, i.e., x and xas, will be used
to update the estimated variance of the underlying stratum in the first stage. The rest of the
algorithm remains unaffected, and we refer to Algorithm 6 for more details.

Theorem 3. The estimator Sh
st−opt,as
i for the Shapley value of player i from Algorithm 6 with

sample allocation according to Algorithm 5 is both unbiased, i.e., E[Sh
st−opt,as
i ] = Shi, and

consistent, i.e., limm→∞ P(|Sh
st−opt,as
i − Shi| > ε) = 0 for all ε > 0.



AppliedMath 2023, 3 968

Algorithm 6 Stratified antithetic sampling for Shapley value approximation with optimum
sample allocation

mexp
i,h ← d

m
2n2 e, ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

Sh
st−opt,as
i,h ← 0, ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

xsquared−sum
i,h ← 0, ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

for i ∈ N and h ∈ {0, . . . , n− 1} do

for j ∈ {1, . . . , dmexp
i,h
2 e} do

Choose random subset S ⊆ N \ {i} of size h
Sas ← get_antithetic_S_for_same_position(N, S, i)
x ← v(S ∪ {i})− v(S)
xas ← v(Sas ∪ {i})− v(Sas)

Sh
st−opt,as
i,h ← Sh

st−opt,as
i,h + x + xas

xsquared−sum
i,h ← xsquared−sum

i,h + x2 + (xas)2

end for
end for

s2
i,h ←

1
mexp

i,h +mexp
i,h mod 2−1

(xsquared−sum
i,h − (Sh

st−opt,as
i,h )2

mexp
i,h +mexp

i,h mod 2
), ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

Obtain mst
i,h according to Algorithm 4 or Castro et al. (2017) [22], ∀i ∈ N, ∀h ∈ {0, . . . , n− 1}

for i ∈ N and h ∈ {0, . . . , n− 1} do

for j ∈ {1, . . . , dmst
i,h
2 e} do

Choose random subset S ⊆ N \ {i} of size h
Sas ← get_antithetic_S_for_same_position(N, S, i)
Sh

st−opt,as
i,h ← Sh

st−opt,as
i,h + v(S ∪ {i})− v(S) + v(Sas ∪ {i})− v(Sas)

end for
end for

Sh
st−opt,as
i ← ∑n−1

h=0
Sh

st−opt,as
i,h

mexp
i,h +mexp

i,h mod 2+mst
i,h+mst

i,h mod 2
, ∀i ∈ N

Proof. The original algorithm Two-Stage-St-ApproShapley-opt returns an unbiased and con-
sistent estimator [22]. This estimator can be interpreted as a mean of means, which is still
possible for our proposed algorithm. Hence, we need to prove that the estimators of all
strata are unbiased. The true value of each stratum is its population mean, and thus the
estimator of each stratum is unbiased if it is a sample mean, which is given as long as
samples are i.i.d. taken from the stratum.

The process of obtaining the samples from a stratum consists of two steps. First,
subsets are randomly taken from each stratum. Second, for each of these subsets an
antithetic subset is generated by calling get_antithetic_S_for_same_position. Note that this
process is executed in the first as well as the second stage of the algorithm for every stratum,
where the difference between both stages lies only in the sample size. In the following,
we will show that the samples obtained via this process are equally distributed within
each stratum.

Inside our function get_antithetic_S_for_same_position, prototypical antithetic samples
are generated by calling asi. We already proved that asi is bijective, which means it is
a one-to-one-mapping. Thus, as long as its inputs are i.i.d., so are its outputs. This is
always given due to the fact that each subset S within a stratum is equally likely to be taken
during random sampling. Furthermore, each subset maps to an antithetic subset with an
equal probability during random sampling. This is automatically given due to the fact
that all subsets have an equal probability. The following optional operations inside the
function, i.e., extending the prototypical samples or shrinking them, change the prototypical
antithetic samples in a random way which preserves their equal distribution. Therefore, it
can be assumed that the combined samples of each stratum, i.e., those sampled directly
and those generated via get_antithetic_S_for_same_position, behave like i.i.d. samples, and
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thus the estimator of each stratum is a sample mean which results in unbiased estimators of
all strata. Since the estimator Sh

st−opt,as
i is a mean of those estimators of all strata, it is also

unbiased, i.e., E[Sh
st−opt,as
i ] = Shi. Algorithm 6 ensures that m→ ∞ guarantees an infinite

number of samples for all strata with nonzero variance and hence Sh
st−opt,as
i is consistent,

i.e., limm→∞ P(|Sh
st−opt,as
i − Shi| > ε) = 0 for all ε > 0.

3.5. Computing Banzhaf Values Using Antithetic Sampling

In this subsection, we extend the use of antithetic sampling to another eminent point-
valued solution concept for TU games, i.e., the Banzhaf value [25,26]. To do so, we use an
algorithm called simple random sampling with replacement from a paper by Saavedra-Nieves
(2021) [44] as the base algorithm that will be extended to use antithetic sampling. This
algorithm samples m subsets of N \ {i} and averages the marginal contribution of a player
i to these subsets as the estimated Banzhaf value of player i.

We propose a new algorithm taking advantage of antithetic sampling. However, only
small changes compared to the original algorithm are needed. Instead of sampling m
times, the new algorithm only samples dm

2 e times. In every iteration, the antithetic sample
element Sas of the sampled subset S is generated by calling the function asi. The rest is
identical to the original algorithm, which means averaging the marginal contribution of a
player to these subsets, i.e., all sampled coalitions S and all generated antithetic coalitions
Sas, as the estimated Banzhaf value.

Theorem 4. The estimator Bzas
i for the Banzhaf value of player i from Algorithm 7 is both unbiased,

i.e., E[Bzas
i ] = Shi, and consistent, i.e., limm→∞ P(|Bzas

i − Bzi| > ε) = 0 for all ε > 0.

Algorithm 7 Antithetic sampling for Banzhaf value approximation

Bzas
i ← 0

for j ∈ {1, . . . , dm
2 e} do

Take a random subset S ⊆ N \ {i}
Sas ← asi(S)
Bzas

i ← Bzas
i + v(S∪{i})−v(S)+v(Sas∪{i})−v(Sas)

m+m mod 2
end for

Proof. In [44], it was shown that the estimator Bzi of the base algorithm is both unbiased
and consistent since Bzi is a sample mean and Bzi is a population mean. This is also true
for our proposed estimator Bzas

i .
We pointed out that asi is a bijection that maps from 2N\{i} to 2N\{i}, i.e., asi is a

one-to-one-mapping. Thus, as long as the inputs of asi, i.e., the randomly sampled subsets,
are i.i.d., the outputs of asi, i.e., the corresponding antithetic subsets, are also i.i.d. among
themselves. Given that the inputs of asi are in fact i.i.d. since they are randomly sampled
from 2N\{i}, the corresponding antithetic subsets are i.i.d. as well. Therefore, the estimator
is a sample mean, where the whole sample consists of the randomly sampled subsets as
well as those generated via asi. Thus, the estimator Bzas

i is both unbiased, i.e., E[Bzas
i ] = Bzi,

and consistent, i.e. limm→∞ P(|Bzas
i − Bzi| > ε) = 0 for all ε > 0.

4. Antithetic Sampling for the Owen Value

We want to extend the use of antithetic sampling to solution concepts for games with
precoalitions. In this section, we propose a random as well as a stratified sampling algorithm
in combination with antithetic sampling for the Owen value. First, we incorporate the
precoalition structure into our function for generating antithetic subsets from Definition 2.
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4.1. Antithetic Subset Generation for Games with Precoalitions

The elements of P form a partition of the player set N and represent the coalition
structure. This means that elements within a precoalition may never be split when sampling
subsets S. Therefore, not all subsets S ⊆ N \ {i} are compatible with P.

Definition 3. Let N = {1, . . . , n} be the set of players and P be a partition of N specifying the
precoalition structure. We define a set Ci that contains all possible subsets S ⊆ N \ {i} compatible
with P for a given player i, i.e., Ci = {S ⊆ N \ {i}|S is compatible with P}. We introduce a
function ãsi derived from the function asi from Definition 2 which returns a subset compatible with
P from a subset compatible with P, i.e., ãsi : Ci 7→ Ci.

Remark 4. The idea of the function ãsi from Definition 3 is as follows: Let S ∈ Ci be compatible
with P for a given player i. Then, Sas contains all precoalitions from P \ P(i) that are not in S as
well as all players from P(i) \ {i} that are not in S.

It is worthwhile to formally establish

Theorem 5. The map ãsi : Ci 7→ Ci from Definition 3 is a bijection.

Proof. The proof for injectivity of ãsi is trivial, but proving surjectivity provides additional
insight. Ci can be modeled as Ci = {∪A∈R A ∪Q|(R, Q) ∈ 2P\P(i) × 2P(i)\{i}}. From (8), we
know S = N \ (Sas ∪ {i}). Furthermore, Sas being an element of Ci means that it can be
represented in the form ∪A∈R A ∪Q with R ∈ 2P\P(i) and Q ∈ 2P(i)\{i}.

S = N \ (∪A∈R A ∪Q ∪ {i})
S = ∪A∈P A \ (∪A∈R A ∪Q ∪ {i})
S = ∪A∈P\P(i) A ∪ P(i) \ (∪A∈R A ∪Q ∪ {i})

S = ∪A∈P\P(i) A \ ∪A∈R A ∪ P(i) \ (Q ∪ {i})

S = ∪A∈P\(R∪P(i))A ∪ P(i) \ (Q ∪ {i})

which means that any Sas ∈ Ci can be reached from a set S defined as ∪A∈P\(R∪P(i))A ∪
P(i) \ (Q ∪ {i}). It is easy to see that this set S is also an element of Ci. Note that this
set S contains all precoalitions from P \ P(i), that are not in Sas, which is expressed by
∪A∈P\(R∪P(i))A, and all players from P(i) \ {i}, that are not in Sas, which is expressed by
P(i) \ (Q ∪ {i}). Hence, ãsi is a bijection.

Let us reformulate ãsi as a piecewise function.

Remark 5. The map ãsi : Ci 7→ Ci from Definition 3 can be rewritten as a piecewise function

ãsi(S) =



ãs0,0
i (S) if r = 0∧ q = 0

...
...

ãs
0,p(i)−1
i (S) if r = 0∧ q = p(i) − 1

...
...

ãsp−1,0
i (S) if r = p− 1∧ q = 0

...
...

ãs
p−1,p(i)−1
i (S) if r = p− 1∧ q = p(i) − 1

(10)

where the variable r ∈ {0, . . . , p− 1} counts the number of precoalitions from P \ P(i) and the
variable q ∈ {0, . . . , p(i) − 1} counts the number of other players from P(i) \ {i} in S.
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Remark 6. The piecewise function ãsi from Equation (10) introduced in Remark 5 consists of the

subfunctions ãsk,h
i : Ck,h

i 7→ C
p−k−1,p(i)−h−1
i with

Ck,h
i = {∪A∈R A ∪Q|(R, Q) ∈ 2P\P(i) × 2P(i)\{i} ∧ r = k ∧ q = h}

and

C
p−k−1,p(i)−h−1
i = {∪A∈R A ∪Q|(R, Q) ∈ 2P\P(i) × 2P(i)\{i} ∧ r = p− k− 1∧ q = p(i) − h− 1}.

The relationships between domains and codomains of the subfunctions from Remark 6
are visualized in Figure 1.

C0,0
i C0,1

i . . . C
0,p(i)−2
i C

0,p(i)−1
i

C1,0
i C1,1

i . . . C
1,p(i)−2
i C

1,p(i)−1
i

...
...

. . .
...

...

Cp−2,0
i Cp−2,1

i . . . C
p−2,p(i)−2
i C

p−2,p(i)−1
i

Cp−1,0
i Cp−1,1

i . . . C
p−1,p(i)−2
i C

p−1,p(i)−1
i

h

k

Figure 1. Mutually antithetic strata are highlighted in the same color. These are domains and

codomains of all ãsk,h
i , while the matrix itself represents Ci. E.g. ãs0,0

i maps from C0,0
i to C

p−1,p(i)−1
i and

vice versa, ãs
p−1,p(i)−1
i maps from C

p−1,p(i)−1
i to C0,0

i . For clarity, not all combinations are highlighted

in color. We focus on C0,0
i and C

p−1,p(i)−1
i in red, C1,0

i and C
p−2,p(i)−1
i in blue and Cp−2,1

i and C
1,p(i)−2
i

in green.

Remark 7. It is easy to see that the domains of the subfunctions from Remark 6 form a partition

of the domain of ãsi, i.e., ∪p−1
k=0 ∪

p(i)−1
h=0 Ck,h

i = Ci and Cb
i ∩ Cd

i = ∅ for b, d ∈ {0, . . . , p− 1} ×
{0, . . . , p(i) − 1} and b 6= d. It is trivial that this is also true for the codomain of ãsi, i.e., the

codomains of all ãsk,h
i are a partition of the codomain of ãsi. It is clear that the subfunctions from

Remark 6 are bijective.

4.2. Computing Owen Values Using Antithetic Sampling

For the Owen value, we use the algorithm from [38] as the base algorithm. In each
iteration, the algorithm chooses a random permutation of players for each precoalition Pj
with j ∈ {1, . . . , p}. Then, it chooses a random permutation of those precoalitions. This
results in an order Õ. The estimated Owen value is the average marginal contribution of
player i to prei(Õ) for all sampled orders Õ, where prei(·) returns the set of all players
before player i for a given order as explained in Equation (5).

Compared to the base algorithm, in the antithetic variant the number of randomly
taken samples is halved and for each of the remaining dm

2 e samples S an antithetic sample
is generated via ãsi(S). Note that inside the description of Algorithm 8, the sampling
procedure takes each permutation Õ ∈ π̃(N), i.e., each permutation Õ compatible with
the partition P, with the same probability. Concretely, it chooses a random permutation
of the elements of each precoalition and then it takes at random a permutation of the
p precoalitions.

Theorem 6. The estimator Owas
i for the Owen value of player i from Algorithm 8 is both unbiased,

i.e., E[Owas
i ] = Owi, and consistent, i.e., limm→∞ P(|Owas

i −Owi| > ε) = 0 for all ε > 0.
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Proof. The paper [38] shows that the estimator of the base algorithm is both unbiased and
consistent. Again, the estimator is a sample mean while the true value is a population mean.
Thus, we need to show that calling ãsi does not change this behavior, i.e., the resulting
estimator in our algorithm is still a sample mean. To prove that, we need to show that the
samples obtained by calling ãsi follow the same probability distribution as if they were
directly randomly sampled. This means showing that ãsi maps every given subset to a
unique antithetic subset that has an equal probability of being chosen during the random
sampling process. For the Owen value, the probability of randomly sampling a subset S
with k other precoalitions and h other players from player i’s precoalition P(i) is given by

1

p(p−1
k )

1

p(i)(
p(i)−1

h )

whereby it is easy to see that a subset with a given k and h has an equal probability of being
randomly sampled as a subset with p− k− 1 other precoalitions and p(i) − h− 1 other
players from player i’s own precoalition due to the symmetry of the binomial coefficients.
This matches our definitions of all ãsk,h

i , where each ãsk,h
i maps a subset from Ck,h

i to an

antithetic subset from C
p−k−1,p(i)−h−1
i . Thus, the elements from the domain and codomain

of all ãsk,h
i have an equal probability of being chosen during random sampling. Furthermore,

we pointed out that these subfunctions ãsk,h
i are bijective, which means that each element

of the domain maps to a unique element of the codomain and thus the elements of the
codomain are i.i.d. among themselves. Therefore, the antithetic estimator of the Owen
value is still a sample mean and hence both unbiased and consistent.

Algorithm 8 Antithetic sampling for Owen value approximation

Owas
i ← 0 ∀i ∈ N

for j ∈ {1, . . . , dm
2 e} do

Take a random order Õ ∈ π̃(N), i.e., a permutation Õ compatible with the partition P
for i ∈ N do

S← prei(Õ)
Sas ← ãsi(S)
Owas

i ← Owas
i + v(S∪{i})−v(S)+v(Sas∪{i})−v(Sas)

m+m mod 2
end for

end for

4.3. Computing Owen Values Using a Combination of Stratified and Antithetic Sampling

The article [29] presents a stratified sampling algorithm for the Owen value. The
algorithm divides the population into p× p(i) strata based on the number of other precoali-
tions P \ P(i), denoted by k ∈ {0, . . . , p− 1}, and on the number of players from P(i) \ {i},
denoted by h ∈ {0, . . . , p(i) − 1}. The marginal contributions of player i in each of these
strata are averaged and the estimator is the weighted sum over the averages of all strata.
The strata weights are defined as

wOw
k,h =

1
p · p(i)

(11)

for the Owen value.
There are different possibilities of how an antithetic version of this algorithm can be im-

plemented. We already proposed a stratified antithetic sampling algorithm for the Shapley
value in Section 3.3 where the algorithm runs only for h̃ ∈ {0, . . . , dn/2e − 1} instead of for
all h ∈ {0, . . . , n− 1} because the strata of the positions {dn/2e, . . . , n− 1} can be reached
through the antithetic sampling process. Based on that previous observation, an intuitive
approach for the use with precoalitions would be to run only for k̃ ∈ {0, . . . , dp/2e − 1}
and h̃ ∈ {0, . . . , dp(i)/2e − 1}, whereas only samples from these strata are taken and all
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others samples for all other positions are generated via antithetic sampling. However, this
leads to no samples being taken from strata where k ≥ dp/2e ∧ h < dp(i)/2e as well as
k < dp/2e ∧ h ≥ dp(i)/2e. This problem is visualized in Figure 2.

C0,0
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i . . . C
0,p(i)−2
i C

0,p(i)−1
i

C1,0
i C1,1

i . . . C
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i C

1,p(i)−1
i

...
...

. . .
...

...
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i Cp−2,1
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i

Cp−1,0
i Cp−1,1

i . . . C
p−1,p(i)−2
i C

p−1,p(i)−1
i

h

k

Figure 2. It is not possible to reach all strata through antithetic sampling when running for k̃ ∈
{0, . . . , dp/2e − 1} and h̃ ∈ {0, . . . , dp(i)/2e − 1}. Directly sampled strata are highlighted in blue,
those generated through antithetic sampling in green, and those that cannot be reached in red.

Running either one of the variables k̃ or h̃ for {0, . . . , p− 1} or {0, . . . , p(i) − 1}, re-
spectively, are possible solutions to this problem. Both approaches result in reaching all
combinations of k and h. We decided to run k for {0, . . . , p− 1}, which is visualized in
Figure 3 and described in the following. Note that we employ the letter k again instead of k̃,
because we generally aim to use k as a loop variable for the precoalitions throughout this
work whenever possible without creating ambiguity.
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Figure 3. When running for k̃ ∈ {0, . . . , p− 1} and h̃ ∈ {0, . . . , dp(i)/2e − 1}, all strata can be reached.
Directly sampled strata are highlighted in blue and those generated through antithetic sampling
in green.

We commence by describing the algorithm for even p(i). The algorithm becomes
more complicated when p(i) is odd. We will go into more detail regarding the edge cases
occurring for odd p(i) later.

For all k ∈ {0, . . . , p− 1} and h̃ ∈ {0, . . . , dp(i)/2e− 1}, a sample Mk,h̃ of size mk,h̃ from

stratum Ck,h̃
i is taken and the corresponding antithetic sample Mp−k−1,p(i)−h̃−1 from stratum

C
p−k−1,p(i)−h̃−1
i is generated by calling ãsi(S) for all S ∈ Mk,h̃. This leads to Mp−k−1,p(i)−h̃−1

being also of size mk,h̃. Then, for all k ∈ {0, . . . , p− 1} and h̃ ∈ {0, . . . , dp(i)/2e − 1} the
mean of marginal contributions of player i to all S ∈ Mk,h̃ as well as Mp−k−1,p(i)−h̃−1 is

calculated, resulting in Owst,as
i,k,h̃ and Owst,as

i,p−k−1,p(i)−h̃−1, respectively. The estimator Owst,as
i

is the weighted sum over all those Owst,as
i,h,k . The weights are defined in Equation (11). For
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these weights there holds wOw
k,h̃

= wOw
p−k−1,p(i)−h̃−1

, so that the same weight wOw
k,h̃

can be used

for the estimators Owst,as
i,k,h̃ and Owst,as

i,p−k−1,p(i)−h̃−1.

While this idea works fine as long as p(i) is even, things become more complicated
when p(i) is odd. In that case, there holds h̃ = p(i) − h̃ − 1 for h̃ = n−1

2 , which means
that samples with that value of h̃ and any given k are mapped to samples with the same
h̃ and p− k− 1. Therefore, to avoid generating samples by both random sampling and
the antithetic sample generation process, k is only allowed to be ran up to d p

2 e − 1. This is
visualized in Figure 4. Inside Algorithm 9, this is taken into account by calling continue to
skip sampling subsets from strata with h̃ = n−1

2 and k ≥ d p
2 e.

Algorithm 9 Stratified antithetic sampling for Owen value approximation

Owst,as
i ← 0

for k ∈ {0, . . . , p− 1} do
for h̃ ∈ {0, . . . , d p(i)

2 e − 1} do

if (p(i) mod 2 = 1) ∧ (h̃ =
p(i)−1

2 ) ∧ (k ≥ d p
2 e) then

continue
end if
Owst,as

i,k,h̃ ← 0

Owst,as
p−k−1,p(i)−h̃−1 ← 0

for j ∈ {1, . . . , mk,h̃} do
Choose a random subset R ⊆ P \ P(i) of size k
Choose a random subset Q ⊆ P(i) \ {i} of size h̃
S← ⋃

A∈R A ∪Q
Sas ← ãsi(S)
Owst,as

i,k,h̃ ← Owst,as
i,k,h̃ + v(S∪{i})−v(S)

mk,h̃

Owst,as
p−k−1,p(i)−h̃−1 ← Owst,as

p−k−1,p(i)−h̃−1 +
v(Sas∪{i})−v(Sas)

mk,h̃
end for
if (p mod 2 = 1) ∧ (p(i) mod 2 = 1) ∧ (k = p−1

2 ) ∧ (h̃ =
p(i)−1

2 ) then

Owst,as
i ← Owst,as

i +
wOw

k,h̃
2 Owst,as

i,k,h̃
else

Owst,as
i ← Owst,as

i + wOw
k,h̃

(Owst,as
i,k,h̃ + Owst,as

p−k−1,p(i)−h̃−1)

end if
end for

end for

If, in addition to p(i) being odd, p is also odd, there is another effect that needs to be

considered. In that case, there holds k = p− k− 1 and h̃ = p(i) − h̃− 1 for k = p−1
2 and

h̃ =
p(i)−1

2 . Thus, the estimators Owst,as
i,k,h̃ and Owst,as

i,p−k−1,p(i)−h̃−1 are the same estimator. In

that case, the estimator is updated twice per iteration and therefore uses 2mh̃ samples. To
correct that, the estimator will be divided by 2 before being added to the overall estimator
Owst,as

i , which is shown in the conditional statement at the end of the loop in Algorithm 9.
We refer to Figure 5 for more details. The same edge case also needs to be taken into account
if a proportional sample distribution over all strata is desired.
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Figure 4. If p(i) is odd and p is even, samples with h̃ = n−1
2 are only taken from strata up to p

2 − 1,
i.e., those strata highlighted in blue in the middle column. Their corresponding antithetic samples
are samples from the strata with the same amount of other players from player i’s precoalition h̃ and
p− k− 1 other precoalitions involved, i.e., those strata highlighted in green in the middle column.
Note that directly sampled strata are highlighted in blue and those generated through antithetic
sampling in green.
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Figure 5. If p(i) is odd and p is odd, the antithetic sample of the stratum C
(p−1)/2,(p(i)−1)/2
i is also from

C
(p−1)/2,(p(i)−1)/2
i . This stratum is highlighted in orange, all other sampled strata are highlighted in

blue, and the rest of the samples generated through antithetic sampling are highlighted in green.

We already showed that ãsi can alternatively be defined as multiple subfunctions ãsk,h
i .

Taking a look at Equation (11), it is easy to see that the domain Ck,h
i and the codomain

C
p−k−1,p(i)−h−1
i of each ãsk,h

i are always equally weighted. Algorithm 10 creates a sample
distribution that is proportional to the weights of the strata. For a total sample size m,
the sample Mk,h̃ from the domain Ck,h̃

i as well as the sample Mp−k−1,p(i)−h̃−1 from the

codomain C
p−k−1,p(i)−h̃−1
i of each ãsk,h

i can share the sample size mk,h̃ = dwOw
k,h̃

me, and
thus the proportionality of the sample sizes with respect to the weights for all strata is
still satisfied.
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Algorithm 10 Sample allocation for stratified antithetic sampling for Owen value approxi-
mation

for k ∈ {0, . . . , p− 1} do
for h̃ ∈ {0, . . . , d p(i)

2 e − 1} do

if (p(i) mod 2 = 1) ∧ (h̃ =
p(i)−1

2 ) ∧ (k ≥ d p
2 e) then

continue
end if
mk,h̃ ← dwOw

k,h̃
me

end for
end for
if (p mod 2 = 1) ∧ (p(i) mod 2 = 1) then

m(p−1)/2,(p(i)−1)/2 ← d
m(p−1)/2,(p(i)−1)/2

2 e
end if

As we already mentioned, there is one edge case in which the sample size needs to
be adapted if a proportional sample distribution is desired. If both p and p(i) are odd,
then m(p−1)/2,(p(i)−1)/2 must be halved. This is due to the fact that a sample Mk,h̃ leads to a

sample Mp−k−1,p(i)−h̃−1 when using ãsi and ãsk,h̃
i for antithetic sample generation. When

k = (p− 1)/2 and h̃ = (p(i) − 1)/2, there holds k = p− k− 1 and h̃ = p(i) − h̃− 1, which

means that the antithetic sample generated via ask,h̃
i is once again taken from the same

stratum as the input of ask,h̃
i , i.e., the domain Ck,h̃

i and the codomain C
p−k−1,p(i)−h̃−1
i of

ãsk,h̃
i are equal sets. This would result in sampling twice the sample size as specified in

the variable mk,h̃. Hence, m(p−1)/2,(p(i)−1)/2 should be halved in advance as described in
Algorithm 10.

Theorem 7. The estimator Owst,as
i for the Owen value of player i from Algorithm 9 with sample

allocation according to Algorithm 10 is both unbiased, i.e., E[Owst,as
i ] = Owi, and consistent,

i.e., limm→∞ P(|Owst,as
i −Owi| > ε) = 0 for all ε > 0.

Proof. The proof relies heavily on the study of stratified sampling for the Owen value
in the paper by Saavedra-Nieves (2023) [29]. In [29], it is pointed out that the estimators
Owst

i,k,h associated with the strata Ck,h
i are unbiased for all k ∈ {0, . . . , p− 1} and all h ∈

{0, . . . , p(i) − 1}. The estimated Owen value Owst
i is the mean over all those Owst

i,h,k and
hence unbiased as well. A proportional allocation procedure for all strata entails that
m → ∞ implies mk,h → ∞ for all strata Ck,h

i and hence Owst
i is consistent. Since our

estimator Owst,as
i can be interpreted as a weighted sum of means, we continue by showing

that the estimator of each stratum Owst,as
i,k,h is both unbiased and consistent.

In the following, we focus on the case that p(i) is even. For all strata with h̃ ∈
{0, . . . , dp(i)/2e − 1}, the quantity Owst,as

i,k,h̃ is a sample mean and provides an unbiased
estimator for Owi,k,h̃ which is a population mean of the underlying stratum. The samples of
all other strata where h ≥ dp(i)/2e are obtained by generating the antithetic samples from
the strata that were directly sampled, i.e., ãsi(S) for all S ∈ Mk,h̃, h̃ ∈ {0, . . . , dp(i)/2e − 1}.
We already showed that each ãsk,h̃

i is a bijection between its domain and its codomain.

Thus, as long as the sample Mk,h̃ from the domain Ck,h̃
i is i.i.d., the antithetic sample

Mp−k−1,p(i)−h̃−1 from the codomain C
p−k−1,p(i)−h̃−1
i is i.i.d. as well. Due to the random

sampling process, it is given that the samples from the domains Ck,h̃
i are i.i.d. and thus also
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the estimators Owst,as
i,k,h with h ≥ dp(i)/2e are sample means and therefore unbiased. It is

clear that these arguments carry over to the case that p(i) is odd.

We pointed out that estimators Owst,as
i,k,h for all strata are unbiased, which implies that the

estimator Owst,as
i as a weighted mean of those Owst,as

i,k,h is also unbiased, i.e.,E[Owst,as
i ] = Owi.

The sample allocation according to Algorithm 10 ensures that m → ∞ still guarantees
mk,h̃ → ∞ for all strata Ck,h̃

i and thus Owst,as
i is consistent, i.e., limm→∞ P(|Owst,as

i −Owi| >
ε) = 0 for all ε > 0.

5. Results

In this section, we estimate Shapley, Banzhaf, and Owen values by using the algorithms
proposed in this work. We use TU games for which the solution is known to measure the
error. We employ the mean squared error (mse) defined as

mse(Ei, Ei) =
1
n

n

∑
i=1

(Ei − Ei)
2 (12)

for error measurement where E is the estimator and E the true value, i.e., in practice E is
replaced by Sh for the Shapley value, by Bz for the Banzhaf value, and by Ow for the Owen
value. We introduce our test games in Section 5.1 and then display, analyze, and interpret
our computational results in Section 5.2.

5.1. Test Games with Known Solutions

In the following, we describe the four distinguished test games that are used through-
out this section.

Airport Games go back to Littlechild and Thompson (1977) [45]. The problem consists
of n players each owning an airplane that requires a specific runway length. The challenge
that arises is how to divide the costs for a runway in a fashion that fits the needs of all
players. This makes the airport problem into a special case of a maintenance problem in
which the tree representing the problem turns out to be a line graph. For more details on
airport games, including closed form solutions for the Shapley and Owen values, we refer
to [46,47]. Let (N, v) be an airport game with N = {1, . . . , n} and v defined as

v(S) = max
i∈S

ci (13)

with cost vector c = (c1, . . . , cn).
We employ n = 20 players in our tests for the Shapley values in Figure 6 and for the

Banzhaf values in Figure 7. We note in passing that for n = 20 players it is always possible
to compute the exact solution (in an inefficient brute force manner) via the characteristic
function v of the TU game, e.g. employing the R package CoopGame [48]. Concretely, we
test airport games (13) with the cost vector

c = (1, 2, 3, 2, 1, 5, 3, 2, 1, 2, 4, 5, 6, 7, 9, 3, 2, 4, 1, 1) (14)

in Figure 6 for Shapley values and Figure 7 for Banzhaf values.
Furthermore, we always employ n = 40 players in our tests for the Owen value. We

always make use of the following precoalition structure

P = {{1, . . . , 17}, {18, 19, 20}, {21, . . . , 25}, {26, . . . , 40}} (15)

throughout this section. For our airport games with the precoalitions (15) and n = 40
players, we simply duplicate the cost vector (14), i.e., we use cP = (c, c). In Table 1, we also
study Shapley values of airport games (N, v) with low variance of the form
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c = (n− 1, . . . , n− 1︸ ︷︷ ︸
n/2 times

, n, . . . , n︸ ︷︷ ︸
n/2 times

), (16)

airport games (N, v) with medium variance of the form

c = (1, 2, . . . , n− 1, n) (17)

and airport games (N, v) with high variance of the form

c = (1, . . . , 1︸ ︷︷ ︸
n/2 times

, n, . . . , n︸ ︷︷ ︸
n/2 times

). (18)

Bankruptcy games go back to O’Neill (1982) [49] who studied a problem of rights
arbitration from the Talmud. Imagine a person dies leaving debts c1, . . . , cn to n creditors.
When the sum ∑n

i=1 ci of the debts is greater than the value of the estate E of the deceased,
we are confronted with the dilemma that the debts are mutually inconsistent because
the estate is too small in order to meet all of the claims of the n creditors. We define a
bankruptcy game v for a set of players N = {1, . . . , n}, a debt vector c of length n, and an
estate E as

v(S) = max(0, E−∑
i/∈S

ci). (19)

Concretely, we use the claim vector c from (14) with estate E = 40 for our bankruptcy
games with n = 20 players. In the case of the precoalitions (15) and n = 40 players, we
simply duplicate the claims vector (14), i.e., we use cP = (c, c) with estate EP = 80.

Glove games are defined by a set N = {1, . . . , n} of n players and a disjoint union
N = L ∪ R with L being the set of players in possession of one left-hand glove each and R
being the set of players in possession of one right-hand glove each. The worth of a coalition
S is the number of pairs of gloves that the members of S can supply

v(S) = min(|S ∩ L|, |S ∩ R|). (20)

For more details on glove games, we refer to the textbook by Peters (2015) [50],
pp. 155–156. Concretely, for our glove games with n = 20 players, the set of players with
left-hand gloves is

L = {1, 2, 5, 7, 12, 17, 18, 19}

and hence the set of players with right-hand gloves is R = N \ L. In the case of the
precoalitions (15) and n = 40 players, we work with

LP = {1, 2, 5, 7, 12, 17, 18, 19, 21, 22, 25, 27, 32, 37, 38, 39}

and RP = N \ LP.
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Figure 6. Performance gain analysis of antithetic sampling for Shapley value estimation.
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Figure 7. Performance gain analysis of antithetic sampling for Banzhaf value estimation.
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Table 1. Execution times and MSEs for different antithetic sampling algorithms for approximating
the Shapley value of four different airport games described in Section 5.1. The sample size per player
is 30,000.

Game Algorithm Exec Time MSE

Random Sampling 17.6 s 6.27× 10−4

Airport Game, Random Antithetic Sampling 21.8 s 5.61× 10−4

n = 40 players, Stratified Sampling 30.7 s 1.06× 10−4

Medium variance (17) Stratified Antithetic Sampling 24.2 s 1.00× 10−4

Two-Stage Stratified Sampling 29.6 s 2.61× 10−5

Two-Stage Stratified Antithetic Sampling 37.4 s 2.44× 10−5

Random Sampling 25.5 s 1.94× 10−3

Airport Game, Random Antithetic Sampling 32.6 s 1.83× 10−3

n = 60 players, Stratified Sampling 45.7 s 1.82× 10−7

Low variance (16) Stratified Antithetic Sampling 36.0 s 1.90× 10−7

Two-Stage Stratified Sampling 42.4 s 2.81× 10−8

Two-Stage Stratified Antithetic Sampling 53.9 s 2.82× 10−8

Random Sampling 32.6 s 2.48× 10−3

Airport Game, Random Antithetic Sampling 42.2 s 2.37× 10−3

n = 80 players, Stratified Sampling 59.4 s 8.24× 10−4

High variance (18) Stratified Antithetic Sampling 47.2 s 8.61× 10−4

Two-Stage Stratified Sampling 53.3 s 1.06× 10−4

Two-Stage Stratified Antithetic Sampling 69.4 s 1.08× 10−4

Random Sampling 39.2 s 1.62× 10−3

Airport Game Random Antithetic Sampling 51.8 s 1.48× 10−3

n = 100 players, Stratified Sampling 72.4 s 2.63× 10−4

Medium variance (17) Stratified Antithetic Sampling 56.8 s 2.63× 10−4

Two-Stage Stratified Sampling 63.5 s 4.50× 10−5

Two-Stage Stratified Antithetic Sampling 81.8 s 4.14× 10−5

Weighted games (also known as weighted voting games, weighted majority games, or
quota games) have their origins in decision-making and voting in committees. Each player
i from the player set N = {1, . . . , n} is assigned a weight wi. A law or motion is passed in
the voting body if the quota q is reached or exceeded, i.e.,

v(S) =

{1 if ∑
i∈S

wi ≥ q

0 else.
(21)

There are fast algorithms for computing point-valued solutions of weighted games.
We refer to [51] for the exact algorithms and software we use for the Shapley and Banzhaf
values and to [52,53] for solving weighted games with precoalitions. Despite these efficient
methods for computing solutions exactly, weighted games also come out be very worth-
while test problems for Monte Carlo approximations. Concretely, we use the vector of
weights w = (w1, . . . , w20) = c with c from (14) and quota q = 1

2 ∑i∈N wi for our weighted
games with n = 20 players. In the case of the precoalitions (15) and n = 40 players, we
simply keep the idea of our quota as half the sum of all weights and duplicate our vector of
weights (14), i.e., we use wP = cP = (c, c).

5.2. Numerical Results

We implemented our new algorithms introduced in Sections 3 and 4 in R [54]. The
implementations are part of an R package on Monte Carlo methods for cooperative games
which is freely available via the github page of the first author at https://github.com/jhsta
udacher/MonteCarloCooperativeGames/ (accessed on 4 October 2023).

https://github.com/jhstaudacher/MonteCarloCooperativeGames/
https://github.com/jhstaudacher/MonteCarloCooperativeGames/
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All results were obtained under Microsoft Windows 10 Home (64-bit) on an Intel(R)
Core(TM) i7-1165G7 CPU with a clock speed of 2.80 GHz and 16 GB RAM, i.e., on a standard
laptop PC.

For our sampling algorithms, it is safe to assume that sampling the characteristic
function (of the TU game to be approximated) is the most costly part of the computation.
Hence, we always plot the number of samples per player (x-axis) against the mean squared
error (mse, y-axis) (12).

Let us look at Figure 6 for the Shapley values first. For the airport, bankruptcy, and
glove games, antithetic sampling (Algorithm 1) clearly outperforms classical random sam-
pling. For the airport game, stratified antithetic sampling (Algorithm 2) performs better
than stratified sampling, while it is safe to say that for the bankruptcy game and the
glove game, stratified antithetic sampling does not do worse than stratified sampling.
Also, for the airport, bankruptcy, and glove games, two-stage stratified antithetic sam-
pling (Algorithm 6) never shows a worse performance than two-stage stratified sampling
(Algorithm 4). However, for the weighted game the picture changes. Stratified antithetic
sampling performs worse than stratified sampling and even loses to classical random
sampling while antithetic sampling (without stratification) converges most slowly. Only
two-stage antithetic stratified sampling performs equally well as its baseline counterpart
for the weighted game. We study approximations of the Banzhaf value in Figure 7. For
the airport, bankruptcy, and glove games, antithetic sampling (Algorithm 7) leads to faster
convergence than classical random sampling in all three cases. Again, for the weighted
game the observation is reversed as classical random sampling outperforms antithetic
sampling.

We next turn our attention to the Owen value and Figure 8. For both the airport game
and the bankruptcy game, antithetic sampling (Algorithm 8) clearly outperforms classical
random sampling and stratified antithetic sampling (Algorithm 9) converges faster than
stratified sampling. For the glove game, antithetic sampling still beats the base algorithm
slightly, whereas stratified antithetic sampling and stratified sampling perform equally
well. Again, for the weighted game our observations are different. The two antithetic
variants converge more slowly than the base algorithms.

We finally compare execution times and MSEs for Shapley value approximations for
larger airport games with 40, 60, 80, and 100 players and 30000 samples per player in
Table 1. As for the execution times, the authors are very well aware how these depend
on their concrete implementation in R. Random antithetic sampling (Algorithm 1) always
takes a little more time than random sampling (ApproShapley) and so does two-stage
stratified antithetic sampling (Algorithm 6) as compared to two-stage stratified sampling
(Algorithm 4). On the other hand, our stratified antithetic sampling approach (Algorithm 2)
always needs slightly less computing time than stratified sampling (St-ApproShapley). In
terms of the MSEs (which we deem much more meaningful and important than our
execution times), the picture in Table 1 is very clear. Stratification in both its classical
and our antithetic variant pays off in all four test cases when compared to approaches
without stratification. Two-stage stratification in both its classical and our antithetic variant
performs even better.



AppliedMath 2023, 3 983

0 10,000 20,000 30,000
0.0

1.0

2.0

3.0

4.0

5.0
×10−5

samples per player

m
se

Airport Game, n = 40

0 10,000 20,000 30,000
0.0

1.0

2.0

3.0

4.0

5.0
×10−4

samples per player

m
se

Bankruptcy Game, n = 40

0 10,000 20,000 30,000
0.0

0.2

0.4

0.6

0.8

1.0
×10−5

samples per player

m
se

Glove Game, n = 40

0 10,000 20,000 30,000
0.0

0.2

0.4

0.6

0.8

1.0
×10−5

samples per player

m
se

Weighted Game, n = 40

Random Sampling Antithetic Sampling
Stratified Sampling Stratified Antithetic Sampling

Figure 8. Performance gain analysis of antithetic sampling for Owen value estimation.

5.3. Comparison with the Ergodic Sampling Approach by Illés and Kerényi

Illés and Kerényi (2022) [55] propose ergodic sampling for approximating Shapley
values, i.e., their sampled permutations are ergodic (meaning they follow the strong law of
large numbers) but not independent. Ergodic sampling aims to construct pairs of negatively
correlated samples in order to reduce the variance of the estimate implying that antithetic
sampling can be regarded as the simplest heuristic for creating ergodic samples. Illés
and Kerényi [55] propose a sophisticated algorithm to learn the best ergodic transform
for a TU game at hand. Their algorithm consists of two stages. In the first stage m1,
random permutations are sampled in order to learn an optimal ergodic transform t for a
specific TU game via a greedy approach. In the second stage, this transform t is employed
for actual ergodic rather than independent sampling, see [55] for a detailed description



AppliedMath 2023, 3 984

of the algorithms. Illés and Kerényi [55] provide a MATLAB implementation of their
approach via https://de.mathworks.com/matlabcentral/fileexchange/71822-estimation-o
f-the-shapley-value-by-ergodic-sampling (accessed on 4 October 2023).

We ported their algorithm to R and integrated it into the package mentioned at the
beginning of Section 5.2.

Table 2 compares our antithetic approaches and ergodic sampling with six different
values of m1 for a bankruptcy game with n = 20 players. For all values of m1 except for
m1 = 5, ergodic sampling leads to a lower MSE than random sampling (ApproShapley), but
it is outperformed by random antithetic sampling (Algorithm 1). All the four stratified
sampling approaches lead to superior results.

Table 2. Execution times and MSEs for different antithetic sampling algorithms and ergodic sam-
pling for approximating the Shapley value of the bankruptcy game described in Section 5.1, i.e., a
bankruptcy game with n = 20 players, the claims vector defined in Equation (14), and estate E = 40.
The sample size per player is 100,000, which means the overall sample size is m=2,000,000.

Algorithm Exec Time MSE

Random Sampling 28.8 s 2.85× 10−5

Random Antithetic Sampling 30.6 s 1.11× 10−5

Stratified Sampling 40.6 s 4.70× 10−6

Stratified Antithetic Sampling 34.2 s 4.43× 10−6

Two-Stage Stratified Sampling 41.4 s 1.70× 10−6

Two-Stage Stratified Antithetic Sampling 48.7 s 1.42× 10−6

Ergodic Sampling, m1 = 5 43.4 s 3.44× 10−5

Ergodic Sampling, m1 = 10 43.6 s 2.39× 10−5

Ergodic Sampling, m1 = 25 45.3 s 1.59× 10−5

Ergodic Sampling, m1 = 50 47.5 s 1.50× 10−5

Ergodic Sampling, m1 = 100 51.1 s 1.54× 10−5

Ergodic Sampling, m1 = 200 59.3 s 1.90× 10−5

5.4. Critical Appraisal of Antithetic Sampling

On the one hand, our experiments confirm that the concept of antithetic sampling
bears plenty of promise for accelerating estimations of Shapley, Banzhaf, and Owen values.
On the other hand, we observe that this concept cannot be recommended unconditionally.
From a very broad perspective, our experiments affirm in the context of permutation
sampling for TU games that “stratification” is a much more powerful concept for variance
reduction than “incorporating antithetic samples into an established algorithm”.

The question whether antithetic sampling algorithms truly lead to acceleration appears
to depend on the game at hand, its properties, and its parametrization. For example, we
observe that both airport games and bankruptcy games are convex games, whereas glove
games and weighted games are not convex in general. A TU game v is called convex
if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for all S, T ⊆ N, see [2], p. 10. Our experiments
show that antithetic sampling can lead to an increase rather than a decrease in variance, a
phenomenon Illés and Kerényi [55] also observe for ergodic sampling in some examples in
their paper.

Finally, there is clearly a lack of analytical understanding of antithetic sampling in the
context of estimating Shapley values. As long as we are unable to estimate the decrease in
variance achieved via antithetic sampling, we will not be able to quantify the sample size
a practitioner needs in order to guarantee a certain theoretical error. In such a case, one
could only rely on the error bound for the base variant (rather than the antithetic variant)
of the algorithm. For example, for the classical ApproShapley algorithm, we could still rely
on bounds for the estimation error based on Hoeffding’s inequality from the paper by
Maleki et al. (2013) [42] in cases where the variance of marginal contributions or the range
of marginal contributions is known. We agree with the remarks by Illés and Kerényi [55]
that it is not known how to quantify the quality of variance reduction methods for the

https://de.mathworks.com/matlabcentral/fileexchange/71822-estimation-of-the-shapley-value-by-ergodic-sampling
https://de.mathworks.com/matlabcentral/fileexchange/71822-estimation-of-the-shapley-value-by-ergodic-sampling
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Shapley value as one can find only illustrative examples, but no statistical results, on this
question in the literature.

6. Conclusions

This article studies antithetic permutation sampling for approximating three point-
valued solution concepts from cooperative game theory, i.e., the Shapley, Banzhaf, and
Owen values. We provide a detailed analysis of antithetic subset generation and present
novel antithetic sampling algorithms for the Banzhaf and Owen values. We show how to
combine stratified sampling and antithetic sampling and develop sophisticated algorithms
for the Shapley and Owen values. We point out that all our estimators are both unbiased
and consistent.

This study was motivated by the widespread usage of antithetic sampling approx-
imations of Shapley values in interpretable machine learning [18,20,23] which employ
randomly sampled permutations together with their reverse permutations. The goal of our
research was to provide a detailed assessment of the potential of antithetic sampling in the
context of sampling permutations or subsets. Deliberately, we did not only study Shapley
values, but also the Banzhaf and Owen values in order to ensure that our observations are
also valid for other solution concepts based on marginal contributions and in the presence
of precoalitions.

Our numerical experiments support the assessment that the concept of antithetic
variates can lead to faster convergence of sampling algorithms for Shapley, Banzhaf, and
Owen values, especially when combined with existing approaches for stratified sampling.
However, we also find that this is not always the case and hence antithetic sampling
should not be recommended without reservation. We regret the lack of theoretical bounds
for the estimation error for antithetic sampling as compared to their corresponding base
methods employing i.i.d. sampling. Our experiments show that stratification has a more
profound effect on improving Shapley value estimations than our additional incorporation
of antithetic sampling.

We wish to emphasize that this article is definitely not meant to be an overview of
state-of-the-art algorithms for estimating Shapley values. Our subject is limited to antithetic
sampling with replacement. While our paper reports very favorable results for Neyman
sampling, i.e., the two-stage stratified sampling algorithm from [22], we need to stress
that we omitted other important stratification methods, in particular Bernstein sampling
introduced by Burgess and Chapman in their papers [31,32]. We are certain it would not
have changed our evaluation of antithetic sampling. Also, we deliberately did not include
sampling approaches without replacement [31,32] in this study. While these approaches
allow for sharper error bounds, they are more sophisticated to implement and discuss as
storage requirements might become more critical. We are convinced that incorporating
antithetic samples into existing algorithms without replacement in a similar fashion to our
study would not lead to a different assessment of the advantages and disadvantages of
antithetic sampling.

Finally, our research emphasizes an open research question already posed similarly by
Illés and Kerényi [55]. Can we identify classes of TU games for which specific Monte Carlo
methods perform well? Can we identify certain favorable properties of TU games in the
latter context, ideally independent from the parametrization of the games? Trying to build
upon the work by Liben-Nowell et al. (2012) [30] could provide a starting point.
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