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Abstract: For linear optimization problems with a parametric objective, so-called parametric linear
programs (PLP), we show that the optimal decision values are, under few technical restrictions,
unimodal functions of the parameter, at least in the two-degrees-of-freedom case. Assuming that
the parameter is random and follows a known probability distribution, this allows for an efficient
algorithm to determe the quantiles of linear combinations of the optimal decisions. The novel
results are demonstrated with probabilistic economic dispatch. For an example setup with uncertain
fuel costs, quantiles of the resulting inter-regional power flows are computed. The approach is
compared against Monte Carlo and piecewise computation techniques, proving significantly reduced
computation times for the novel procedure. This holds especially when the feasible set is complex
and/or extreme quantiles are desired. This work is limited to problems with two effective degrees of
freedom and a one-dimensional uncertainty. Future extensions to higher dimensions could yield a
key tool for the analysis of probabilistic PLPs and, specifically, risk management in energy systems.

Keywords: parametric linear programming; quantile estimation; computational complexity; probabilistic
economic dispatch

1. Introduction

Economic Dispatch (ED) is a fundamental optimization problem in power system
operations. The target is to cost-optimally schedule the power generation required to meet
given demands, while taking into account generation and transmission constraints [1,2].
It is often formulated as a linear program. This classic problem has recently received
much new interest due to the growing share of variable renewable energies in many power
systems around the world, requiring more flexible scheduling, dealing with many more
units than before as well as error-prone renewable energy forecasts, and also considering
demand side elements and storage units [3]. Economic dispatch is also at the heart of
energy markets [4].

If some parameters of the economic dispatch problem are uncertain, e.g., the available
power of renewable energies or the specific costs of different energy sources, the scheduling
results will also be uncertain. Estimating the quantiles of the resulting distributions of the
scheduling decision variables, given a known distribution over the parameters, is a key
step for many risk quantification applications.

1.1. Related Literature

The predominant techniques employed for quantile estimation in this context are
Monte Carlo Sampling (MCS) and PieceWise Computation (PWC) methods.

To determine the quantiles using MCS [5–7], the optimization problem needs to be
solved a large number of times, the number being on the order of the squared inverse of
the desired quantile accuracy [8]. This is computationally costly, especially for large-scale
problems or when extreme target quantiles close to zero or one are to be determined,
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the number of required samples is especially high in this case [8]. Different variance
reduction techniques can be employed to reduce the number of required samples [9]. Latin
hypercube sampling as an instance of correlation-induction methods can perform very well
for quantile estimation [10,11], with the largest benefits in high dimensions. Importance
sampling is another effective approach for non-extreme quantiles [9].

PWC approaches [12–14], on the other hand, rely on an analytical characterization of
the solution to the optimization problem as the parameters vary. It has been shown that the
solutions of Parametric Linear Programs (PLP) exhibit piecewise constant or linear behavior
with respect to the parameters [15,16]. However, computing the function values for all
or a significant fraction of these pieces—a requisite step for quantile computation—often
becomes computationally infeasible due to the substantial growth in the number of pieces
when dealing with complex feasibility sets or a high number of constraints [17].

Many works on ED under uncertainty [18] develop decision-making strategies that
perform well on average for all instances of the uncertain parameter. These approaches
often employ two-stage stochastic programming [19]. By utilizing the Sample Average
Approximation (SAA) stochastic programs for linear ED, problems can be reformulated into
larger linear programs [19]. Robust versions, which incorporate quantiles or the so-called
conditional value at risk, are also commonplace [20,21]. In stochastic programming, the
precise characterization of the distribution of second-stage decisions is not of paramount
importance as long as it does not alter the optimal first-stage decision. Consequently, it is
often feasible to work with relatively coarse approximations of the second-stage decision
distribution, relying on a limited number of samples in the SAA. In our research, we
aspire to attain more precise distribution results for risk quantification purposes, but not to
optimize the distribution.

A last line of related research uses polynomial chaos expansions to characterize power
flows under uncertainty [22,23]. This approach can offer exact probabilistic characteriza-
tions of power flow problems under uncertainty, i.e., for the solutions of linear or non-linear
equations, and the parameters of the resulting probability distributions can be optimized
using chance constraints. The outcomes of the optimal power flow problem, which is an
instance of an ED optimization problem, are, however, not treated as uncertain.

1.2. Contributions

In this work, we propose a novel, efficient approach to quantile estimation for ED
with uncertain cost parameters and two degrees of freedom. Consequently, the number of
required ED optimization runs is independent of the ED problem structure or the quantile
level to be computed. Instead, it scales with the logarithm of the desired accuracy of the
quantile estimate. For various probabilistic ED instances, the approach can thus lead to
more overall computational efficiency.

Core to our work are the following two abstract, technical contributions. First, we
provide a novel characterization of the solution of a PLP with varying objective function
parameters. It was previously known that the optimal objective value is piecewise linear
and concave in the varied parameters, and that the optimal decisions are piecewise con-
stant [15,16]. No global characterization was available for the decision values as function of
the parameters. For the two-degrees-of-freedom case, we can now show that the decision
value function is unimodal, i.e., has only a single bump or valley over the parameter
domain. This limits the up-down variability of the decision values as a function of the
varied parameter and, in turn, allows for the efficient computation of (upper) quantiles of
a random variable mapped through this function. A second general contribution of this
work is then to provide a novel algorithm for the latter task.

These novel abstract results can be used to attack the aforementioned ED problem. For
an example ED setup, we show how to estimate quantiles of the optimal power transmission
flows given uncertain fuel costs. We compare the accuracy and computational performance
of the new approach to that of MCS and PWC techniques.
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In this work, the analytic results and the algorithms are limited to problems with two
effective degrees of freedom and a one dimensional uncertain parameter. Future extensions
to higher dimensions would yield a key tool for the analysis of probabilistic PLPs and risk
management in energy systems, specifically.

The rest of the paper is structured as follows: in Section 2, we present a novel theorem
for PLP, which serves as the basis for a newly proposed quantile estimation algorithm for the
optimization outcomes, as described in Section 3. Section 4 illustrates how these theoretical
insights can be applied to tackle probabilistic economic dispatch, specifically focusing on
estimating the quantiles of economic dispatch decisions under uncertain fuel costs. This
section also includes a comparative analysis with commonly employed alternatives. Lastly,
in Section 5, we provide a summary of our findings and suggest potential avenues for
future research.

2. Novel Characterization of Optimal PLP Decisions

Consider a two-degree-of-freedom Parametric Linear Program (PLP), where the objec-
tive depends on a one-dimensional parameter θ ∈ [

¯
θ, θ̄] ⊆ R, i.e.,

x∗(θ) ∈ arg max
x∈R2

c(θ)Tx,

s.t. Ax ≤ b.
(1)

Here, c(θ) represents a vector containing coefficients in the objective function, which vary
with the uncertain parameter θ. The matrix A ∈ Rn×2 corresponds to the coefficient matrix
of the constraints and b ∈ Rn is a vector containing constant values associated with these
constraints. We generally denoted matrices with capital bold letters and vectors with small
bold letters in this paper.

We first define the direction φ(z) of a vector z ∈ R2 via its angle to the first basis
vector, according to the standard atan2 definition (https://en.wikipedia.org/wiki/Atan2
(accessed on 1 November 2022)).

Definition 1. The direction φ ∶ R2 → R of vector z = [z1, z2]T is defined as

φ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1(z2

z1
), z1 > 0,

tan−1(z2

z1
)+π, z1 < 0, z2 ≥ 0,

tan−1(z2

z1
)−π, z1 < 0, z2 < 0,

+π

2
, z1 = 0, z2 > 0,

−π

2
, z1 = 0, z2 < 0,

unde f ined, z1 = 0, z2 = 0.

(2)

Since the directions represent circular variables in standard parameterization, we
identify φ(z) and φ(z)+ 2πk, k ∈ Z. Next, we define unimodality.

Definition 2. A map χz ∶ [¯
θ, θ̄] → R is called unimodal with a bump if there exists m ∈ [

¯
θ, θ̄]

such that χz is monotonically increasing for θ ≤ m and χz is monotonically decreasing for θ ≥ m.

Definition 3. A map χz ∶ [¯
θ, θ̄]→ R is called unimodal with a valley if there exists m ∈ [

¯
θ, θ̄]

such that χz is monotonically decreasing for θ ≤ m and χz is monotonically increasing for θ ≥ m.

https://en.wikipedia.org/wiki/Atan2
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Definition 4. A map χz ∶ [¯
θ, θ̄] → R is called unimodal if it is unimodal with either a bump or

a valley.

Now, we can introduce the fundamental idea of this study, namely the unimodality of
any linear combination of the optimal solutions of the PLP.

Theorem 1. For the two-degree of freedom PLP presented in Equation (1), let φc ∶ [
¯
θ, θ̄] → R

defined as φc(θ) = φ(c(θ)) be increasing and its range be contained in an interval of length less
than π. Then, the map χz ∶ [¯

θ, θ̄] → R defined by χz(θ) = zTx∗(θ) is unimodal for any z ∈ R2.
The maximal value of χz(θ) is attained for a θ with φ(c(θ)) = φ(z), if this equation has a solution.

The proof of the Theorem 1 is described in Appendix A. If φc(θ) jumps by 2π for
θ ∈ [

¯
θ, θ̄] due to circularity of the angles, it is sufficient that each segment of the curve is

increasing. Alternatively, one could choose an equivalent representer φc(θ)+ 2πk, k ∈ Z, of
the angle such that the curve is continuous.

The theorem provides an important, global characterization of χz: it limits the up-
down variations when changing θ. As a result, the set {θ ∶ χz(θ) ≥ q} is either one or
two intervals, but it cannot consist of a multitude of disconnected regions that would be
possible without this theorem.

3. Algorithm for Quantile Estimation

The previous characterization of the solution of a PLP can be employed to efficiently
determine quantiles of the decision values of a PLP subject to a probabilistic model for
θ. Using the notation introduced in the previous section and assuming that θ follows
distribution P(θ), we want to find the smallest value qα ∈ R, 0 < α ≤ 1, which χz(θ) would
not exceed with probability α, i.e.,

qα = inf
q

q

s.t. P({θ ∶ χz(θ) ≥ q}) < 1− α.
(3)

Without loss of generality, we assume from now on that χz is unimodal with a bump.
If χz was unimodal with a valley, −χz would be unimodal with a bump and we could
compute the (1− α)-quantile of −χz instead of Equation (3).

If χz is unimodal with a bump, we know that the quantile qα is determined by one
interval containing all θ for which χz(θ) exceeds qα, i.e.

{θ ∶ χz(θ) ≥ qα} = [
¯
θα, θ̄α]. (4)

Our proposed algorithm to compute
¯
θα, θ̄α and thereby qα = χz(¯

θα) is described in
Algorithm 1 and graphically depicted in Figure 1. It is designed to minimize the number of
required optimization runs of Equation (1).

1. We first determine θmax = arg maxθ χz(θ). According to Theorem 1, this can be
achieved by identifying the value of θ such that φ(c(θ)) = φ(z). No optimization run
is required for this step (Alternatively, the maximum of the unimodal function χz
could be determined using the Golden Section Search (GSS) algorithm [24,25]. However,
this would require some optimization runs).

2. The algorithm then proceeds by iteratively searching for two points, the left boundary
θl and the right boundary θr, where

¯
θ ≤ θl ≤ θmax ≤ θr ≤ θ̄, such that χz(θl) = χz(θr) = qα

and P([θl , θr]) = 1− α.
In each iteration we first fix the left boundary θl and then search for right boundary
θr such that P([θl , θr]) = 1− α. This does not require any optimization runs. It can be
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achieved via a bisection routine using the Cumulative Distribution Function (CDF) of
θ, which is assumed to be known analytically, i.e.,

P([θl , θr]) = CDF(θr)−CDF(θl). (5)

The stopping accuracy is ε2.
3. The left boundary θl is adapted in an outer loop again via a bisection-like approach. If

χz(θl) < χz(θr), then θl has to be adapted in rightward direction, and vice versa. The
procedure is repeated until a range is found in which the left and the right boundary
have equal function values with accuracy ε1. One optimization run is required to
determine a new χz(θl) or χz(θr) in each step.

Algorithm 1 Quantile Estimation

1: procedure FINDQ(α, θ, θ̄, χz(.), CDF(.), c(.), ε1, ε2)
2: θmax ← FINDMAX(θ, θ̄, c(.))
3: θd ← ¯

θ
4: θu ← θmax
5: while True do
6: θl ← θu+θd

2
7: θr ← FINDTHETAR(α, θl , θ̄, θmax, CDF(.), ε2)
8: if ∣χz(θl)− χz(θr)∣ ≤ ε1 then
9: return χz(θl)+χz(θr)

2
10: end if
11: if χz(θl) < χz(θr) then
12: θd ← θl
13: else
14: θu ← θl
15: end if
16: end while
17: end procedure
18: function FINDTHETAR(α, θl , θ̄, θmax, CDF(.), ε2)
19: if CDF(θmax)−CDF(θl) > 1− α then
20: return θmax
21: end if
22: θu ← θ̄
23: θd ← θmax
24: while θu − θd > ε2 do
25: θm ← θu+θd

2
26: if CDF(θm)−CDF(θl) > 1− α then
27: θu ← θm
28: else
29: θd ← θm
30: end if
31: end while
32: return θu+θd

2
33: end function

To analyze the total number of optimization runs required by the algorithm, note that
χz(θ) is only evaluated once for each proposed θl . Moreover, for the bisection approach

the number of visited θl is bounded above by log( θ̄−
¯
θ

ε1
). The method is thus highly efficient

in the number of optimization runs. These could become computationally expensive when
the problem size of Equation (1) increases.
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qα

¯ θ
α

¯θ
α

χ̄z

a1

a2b1

b2

¯
θ θ̄

θmax

θ

χz(θ)

Figure 1. Two iterations of Algorithm 1 to find the α quantile for the unimodal function χz(θ): in
the first iteration, θl , θr correspond to a1, a2, in the second iteration to b1, b2. The probability for
θ ∈ [a1, a2] or θ ∈ [b1, b2] is 1− α in both cases.

4. Simulative Validation with Economic Dispatch

We now evaluate the computational performance and the accuracy of the proposed
algorithm for an example economic dispatch problem with uncertain generation costs,
as outlined in Section 4.1. This particular problem serves as an illustrative case for the
parametric linear program that we introduced earlier in Equation (1). Our goal is then
to estimate the magnitudes of the line power flows that are surpassed merely 1% of the
time. This problem is an instance of Equation (3) and can be solved using the algorithm
from Section 3. We compare the performance of the proposed algorithm with two baselines:
Monte Carlo Sampling (MCS) and PieceWise Computation techniques (PWC) as described
in Section 4.2. The numerical results are presented in Section 4.3.

4.1. Problem Setup

Consider an N-bus radial power system where three types of generators, gas, coal,
and reserve power plants, cover a known demand, see Figure 2a. All power plants of the
same type are assumed to have the same activation levels relative to the installed capacity.

The problem is formally defined as follows. Variables and parameters associated with
each generation type have superscripts: g for gas power plants, c for coal power plants,
and r for reserve providers. Matrices and vectors are written in bold letters. We then solve

min
xg ,xc ,xr ,f

πg(θ)xg∥p̄g∥1 +πc(θ)xc∥p̄c∥1 +πr(θ)xr∥p̄r∥1, (6)

s.t. xg(Mgp̄g)+ xc(Mcp̄c)+ xr(Mrp̄r)− Lf = d, (7)

−f̄ ≤ f ≤ f̄, (8)

0 ≤ xg, xc, xr ≤ 1. (9)

The objective function in Equation (6) is to minimize the total costs of electricity
production. Here, π‚(θ) denotes the specific operation costs of power plants of type ‚.
x‚ is a decision variable and represents the fraction of the installed capacity of type ‚ to
be dispatched. p̄‚ ∈ Rn‚

is the vector of installed capacities of the power plants of type
‚, where n‚ is the number of power plants of type ‚. Thus, ∥p̄‚∥1 denotes the summed

capacity of each type. Equation (7) describes the energy balance at each bus. Here, f ∈ Rnl

denotes the vector of transmission line flows with maximal absolute value f̄ ∈ Rnl
, and nl

is the number of transmission lines. Matrix M‚ ∈ {0, 1}N×n‚

encodes whether or not the
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power plants of type ‚ are connected to each of the buses. L ∈ {−1, 0, 1}N×nl
is the line to

bus directed incidence matrix. d ∈ RN is the vector of demands at each bus.
There are three variables for power generation fractions x‚, and N − 1 variables repre-

senting the line flows f of the radial network. Thus, the total number of decision variables
equals 3+ (N − 1). On the other hand, we have N equality constraints regarding the power
balance at each bus. Therefore, the optimization problem has only two effective degrees
of freedom as is the requirement for the PLP introduced in Equation (1). As a result, all
decision variables can be expressed in terms of xg and xc.

We parameterize our networks as follows. All parameters are chosen to yield instances
with a feasible set of varying complexity. As shown in Figure 2a, one bus (i = 1), contains
all of the network load, which is set to 1 p.u. and the single reserve generator. The gas
and coal generators are placed at the other nodes. Each type of generators can together
supply all of the load, i.e., ∥p̄g∥1 = ∥p̄c∥1 = ∥p̄r∥1 = 1 p.u. The generation capacities at nodes
i = 2, . . . , N are chosen as

p̄g
i =

1
Sbase

sin((i − 2)π

N − 2
) p.u., (10)

p̄c
i =

1
Sbase

cos((i − 2)π

N − 2
) p.u.,

where Sbase = ∑N
i=2 sin( (i−2)π

N−2 ) p.u. represents the base apparent power. The transmission
lines all have the capacity of 0.7

Sbase
p.u. These parameter values generate a feasible region

with a number of vertices that matches the number of buses; for N = 30 the resulting
feasible region is shown in Figure 2b. By modifying the number of buses, we can then
analyze the computational performance of different methods depending on the complexity
of the feasible set.

The specific production costs are chosen as πg(θ) = 0.5 + θ, πc(θ) = 0.8 + 0.25θ, and
πr(θ) = 1 for θ ∈ [0, 1], see Figure 2c. The rationale behind this assumption is that in many
applications it might be possible to choose two extreme cost configurations, while linear
combinations thereof are also possible with some probability.

Since xr = 1 p.u.− xg − xc, the objective of the optimization problem can be reduced to two
degrees of freedom, namely xg and xc. It then reads c(θ) = (πg(θ)−πr(θ), πc(θ)−πr(θ))T

and thus, φc(θ) = φ(c(θ)) is monotonically increasing, as is also shown in Figure 2c. The
uncertain parameter θ is assumed to have a normal distribution, i.e., P(θ) = Nc(µ, σ2) with
a mean µ = 0.5, standard deviation σ = 0.167, and the normal distribution being clipped to
the interval [0, 1].

With these settings, the problem formulation meets all the requirements outlined in
Theorem 1. As a result, our proposed algorithm can be applied to efficiently estimate
quantiles of the decision variables xg and xc, or linear combinations thereof, such as the
power flows over the transmission lines.

G

Area 1

C G

Area N-1

C. . .
R

Central Load Area

(a)

0.0 0.2 0.4 0.6 0.8 1.0
xg

0.0

0.2

0.4

0.6

0.8

1.0

xc

(b)
Figure 2. Cont.
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(c)
Figure 2. Setup of the example economic dispatch problem: (a) The radial grid contains a load
(triangle) and a reserve generator (R) at the first bus. N − 1 further buses contain a coal (C) and a gas
(G) generator each. (b) The feasible region (yellow) of the dispatch problem depending on the fraction
of coal and gas generation in covering the load (using N = 30 buses). (c) Specific production costs
c(θ) and the direction φc

(θ) = φ(c(θ)) of the objective function. The assumed probability distribution
P(θ) is depicted via its density function (yellow shaded area).

4.2. Baselines

We evaluate the performance of the proposed quantile estimation method by com-
paring its accuracy and computational performance to that of the two common quantile
estimation techniques in probabilistic linear programming, i.e., MCS and PWC.

To implement PWC we proceed as follows. We start with θ =
¯
θ and run one optimiza-

tion of the PLP presented in Equation (1) to compute an optimal basis for this parameter. It
is known that for increasing θ, the primal solution of the PLP remains constant until the
current basis is not optimal anymore, as the non-zero dual variables are linear functions
of c(θ). When one of these dual variables becomes zero, i.e., the corresponding row of A
is orthogonal to c(θ), another basis becomes optimal. We determine it by re-running the
optimization algorithm. We iterate until θ̄ is reached. The exact quantile of our problem is
computed by piecewise analysis of the probability distribution.

Concerning the MCS baseline, statistical analysis shows that the number of samples
required to obtain a given quantile accuracy ψ is in expectation proportional to ψ−2. The
scaling factor is large if we search for extreme quantiles, i.e., the α-value is close to 0 or
1 [8]. Empirically, we proceed as follows: we first solve the PLP in Equation (1) for a large
number K of random samples of the uncertain parameter θ (K = 5000 in this case). For a
given sample size k ≤ K, we determine the average accuracy of the quantile estimate by
taking 20 random subsamples of size k and determining the mean absolute error, taking
the PWC result as the reference. The minimum numbers k yielding an average quantile
estimation error of less than ψ = 0.1% or ψ = 0.0001%, respectively, are reported below as the
number of required samples / optimization runs. The reported timings are for computing
one sample of size k. The minimum sample size required to determine the (1− α)-quantile
is approximated as ⌈ 1

α ⌉.
All computations are carried out on a machine with a quad core 1.6 GHz CPU and 8

GBs of RAM.

4.3. Results

Figure 3 presents the optimal transmission line flows for several interconnections as a
function of the parameter θ. We observe that the curves are surprisingly complex in shape,
even though the specific costs of the PLP in Equation (1) vary only linearly in θ. This proves
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that the linear optimization represents a highly nonlinear transformation of θ that, at least
in our setting, cannot easily be linearized. Despite the curves’ complexity, we observe that
all curves are unimodal, as predicted by our theoretical derivation.
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Figure 3. Optimal power flows from different areas to the central load, cf. Figure 2, as a function of
the uncertain parameter θ.

Figure 4 shows the resulting probability distribution P(χz) = P(χz(θ)), where χz(θ) is
a selected transmission line flow (here: connection from the central area to area 8). Although
P(θ) is a simple normal distribution, P(χz(θ)) is not. Thus, approximating it with a normal
distribution would not yield reliable quantile estimates.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Transmission Line 8 Power Flows (p.u.)
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Figure 4. Probability distribution of optimal power transfers from area 8 to the central load, as
implied by the distribution P(θ) of the uncertain parameter θ, cf. Figure 2.

Timings for computing the quantiles to different accuracy levels are presented in
Tables 1–3 for the proposed method as well as for the two baselines. The three tables
represent problem setups with different complexity of the feasible set, i.e., we use 30, 100,
and 200-bus networks to compare the performance of the three methods as the problem
dimension increases.
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Table 1. Timings and accuracy for quantile estimation of one transmission line flow, N = 30 buses.

Method Required Number of
Optimizations MAPE ± std (%) Time (s)

MCS (ψ = 10−3) 100 0.08 27

MCS (ψ = 10−6) 143 0 39

PWC 21 0 6

New Method
(ε1 = ε2 = 10−4) 14 0 4

New Method
(ε1 = ε2 = 10−6) 14 0 4

Table 2. Timings and accuracy for quantile estimation of one transmission line flow, N = 100 buses.

Method Required Number of
Optimizations MAPE ± std (%) Time (s)

MCS (ψ = 10−3) 100 0.02± 0.08 53

MCS (ψ = 10−6) 1525 0 808

PWC 74 0 40

New Method
(ε1 = ε2 = 10−4) 8 0.1 5

New Method
(ε1 = ε2 = 10−6) 14 0 9

Table 3. Timings and accuracy for quantile estimation of one transmission line flow, N = 200 buses.

Method Required Number of
Optimizations MAPE ± std (%) Time (s)

MCS (ψ = 10−3) 100 0.03± 0.02 139

MCS (ψ = 10−6) 3000 0 4170

PWC 150 0 210

New Method
(ε1 = ε2 = 10−4) 6 0.5 11

New Method
(ε1 = ε2 = 10−6) 14 0 21

It can be observed that, even for very high accuracy requirements, the proposed
method needs significantly less time and fewer optimization runs compared to the other
two methods. As the problem size increases, the relative performance gain of the pro-
posed method increases even more. These two observations prove experimentally that
the novel characterization of the PLP solution function can be exploited to develop more
efficient algorithms.

The proposed method even reaches an exact solution in many cases. This is because
P(χz(θ)) is a distribution with point masses only, due to the piecewise constant nature of
χz(θ). When the binary search of θl and θr in our algorithm finds the right segment, the
quantile result is precise. Similarly, MCS also benefits from the piecewise constant nature
of optimal decisions, which offsets its inherent randomness.

5. Conclusions

With the existence of uncertainties in different input parameters of the economic
dispatch problem in power systems, such as renewable production and fuel price, the
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optimal dispatch solutions are also uncertain. Estimating the quantiles of the optimal
decisions is necessary for risk quantification purposes. Formally, this problem is an instance
of quantile estimation for the solutions of probabilistic PLPs.

Two methods are often used for this purpose: Monte Carlo Sampling (MCS) and
PieceWise Computation techniques (PWC). When using MCS, the sampling rate should
be large enough to obtain an acceptable accuracy, leading to a large number of required
optimizations to be solved and high computation time. On the other hand, the number of
required optimizations in PWC depends on the number of constraints of the optimization
problem, which can be both an advantage and a disadvantage.

This paper introduces a new algorithm for computing the quantiles of optimal deci-
sions for setups with two degrees of freedom using a novel theorem outlined in Section 2,
resulting in reduced computation time. Results show that the required number of optimiza-
tions in the proposed approach is independent of the problem structure and the quantiles
to be estimated, making it significantly more efficient than common quantile estimation
algorithms as discussed in Section 4.3.

It is important to note that this study is limited to linear optimization problems with
two degrees of freedom and a one-dimensional uncertain parameter. A straight-forward
extension of the underlying theorem to higher dimensions is not possible since counter-
examples for the core unimodality claim can be constructed, if all possible PLPs and all
decision variables are considered. However, future research may explore in more detail
the question of which subclass of PLPs or which subset of the optimal decision variables
unimodality characteristics can still be proved.
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Abbreviations

Symbols of abstract framework
A Coefficient matrix of the PLP constraints
b Right-hand side vector of PLP constraints
θ Uncertain parameter of PLP with domain [

¯
θ, θ̄]

c(θ) Vector of PLP objective function coefficients as a function of θ

φ(z) Direction of the vector z
φc

(θ) Direction of the vector c(θ)

qα α-quantile of χz(θ)-values induced by distribution P(θ)

¯
θα, θ̄α left, right boundary of interval containing α-quantile of χz(θ)

θl , θr Left, right boundary of currently selected range of θ

ε1, ε2 Tolerances of bisection search
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Symbols of specific validation setup
N Number of buses (index i)
n‚ Number of power plants of type ‚

x‚
∈ [0, 1] Production of power plants of type ‚ relative to installed capacity

p̄‚
i Installed capacity of type ‚ at bus i

M‚ Power plant of type ‚ to bus incidence matrix
π‚

(θ) Specific operation costs of power plants of type ‚ as a function of θ

nl Number of transmission lines
f Vector of transmission line flows
f̄ Vector of transmission line capacities
L Line to bus directed incidence matrix
d Vector of demands
Sbase The base apparent power
µ, σ Mean and standard deviation of the uncertain parameter θ

ψ Accepted tolerance of the estimation error in MCS method

Appendix A. Proof of the Theorem

To prove Theorem 1 presented in Section 2, we first establish that the optimal solution
vector x∗(θ) can be characterized as a function of only the direction φ of the objective vector
c(θ). We can thus write x∗(φ) instead of x∗(θ). Then, we show that x∗1 (φ) has at most
one extremum point in any range of φ with length smaller than π. Lastly, we use rotation
arguments to prove the theorem for arbitrary result directions z.

Lemma A1. The optimal decision x∗(θ) of the linear program presented in Equation (1) only
depends on the direction φ(θ) of the objective vector c(θ), not its magnitude.

Proof. Rescaling the objective function does not change the optimum decision variables.

Next, we characterize the first dimension x∗1 (φ) of the optimal decision vector x∗(φ)
as a function of φ.

Theorem A1. The map φ → x∗1 (φ) is increasing for φ ∈ (−π, 0] and decreasing for φ ∈ (0, π].
Therefore, in any range of φ with length less than π, there is at most one extremum point of x∗1 (φ).

The theorem is proven for one quadrant in the following. The other quadrants can be
dealt with analogously.

Lemma A2. x∗1 (φ) ∶ (−π, −π
2 ]→ R is monotonically increasing.

Proof. Suppose we have two objective vectors: c = [c1, c2]T and c′ = [c′1, c′2]T with respec-
tive directions φ ∈ [−π,−π/2] and φ′ ∈ [−π,−π/2] where φ′ > φ. Furthermore, we represent
the optimal solution to the problem with x∗ and x′∗ when the objective vectors are c and
c′, respectively.

For any objective vector, the objective function for the optimal decision vector is greater
than or equal to the objective function value for any other point in the feasible set. Since
both x∗ and x′∗ are feasible solutions, when the objective vector is c, we can write:

c1x′∗1 + c2x′∗2 ≤ c1x∗1 + c2x∗2 (A1)

Similarly, when the objective vector is c′, we have:

c′1x∗1 + c′2x∗2 ≤ c′1x′∗1 + c′2x′∗2 (A2)

since c2 < 0, dividing both sides of the inequality Equation (A1) by c2 we have

c1

c2
x∗1 + x∗2 ≤ c1

c2
x′∗1 + x′∗2 . (A3)
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In the same way, dividing both sides of the inequality Equation (A2) by c′2 (which is
negative) we obtain

x′∗2 +
c′1
c′2

x′∗1 ≤ x∗2 +
c′1
c′2

x∗1 . (A4)

Adding Equations (A3) and (A4) we can derive

( c1

c2
−

c′1
c′2

)(x∗1 − x′∗1 ) ≤ 0 (A5)

and by definition of the angles

( 1
tan φ

− 1
tan φ′

)(x∗1 − x′∗1 ) ≤ 0. (A6)

Since tan is strictly monotonically increasing in the range (−π, −π
2 ] and by assumption

φ′ > φ, we have that
1

tan φ
− 1

tan φ′
> 0. (A7)

Consequently, it must hold that

x∗1 − x′∗1 ≤ 0 Ô⇒ x′∗1 ≥ x∗1 . (A8)

Since φ is a function of θ, we can use Theorem A1 and Equation (2) to determine the
interval of θ in which x∗1 (θ) has at most one maximum or minimum point (Having an
interval for φ, as the inverse of the tangent function is monotonic, we can use the boundaries
of this interval to find the limits for c2(θ)

c1(θ)
and thus for θ, solving the resulting equations).

Now, we generalize the finding of Theorem A1 to obtain Theorem 1. Consequently,
the proof of Theorem 1 is as follows.

Proof. Given z ∈ R2, we define new coordinates,

x̃ = ( zTx

z⊥
T

x
) = ( z1 z2

−z2 z1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
R

x (A9)

where z⊥ is perpendicular to z. The problem that is presented in Equations (6)–(9) then is
equivalent to

x̃∗(θ) ∈ arg max
x̃∈R2

c(θ)TR−1x̃,

s.t. AR−1x̃ ≤ b.
(A10)

This coordinate rotation ensures that the new first axis aligns with z, i.e., the direction of the
linear combination χz(θ) for which we seek to determine quantiles. Given the redefined
coordinates, we can then apply Theorem A1 to x̃∗1 (θ) in this transformed space. This yields
the desired unimodality statement.
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