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Abstract: Mathematical models have been of great importance in various fields, especially for un-
derstanding the dynamical behaviour of biosystems. Several models, based on classical ordinary
differential equations, delay differential equations, and stochastic processes are commonly employed
to gain insights into these systems. However, there is potential to extend such models further by com-
bining the features from the classical approaches. This work investigates stochastic delay differential
equations (SDDEs)-based models to understand the behaviour of biosystems. Numerical techniques
for solving these models that demonstrate a more robust representation of real-life scenarios are
presented. Additionally, quantitative roles of delay and noise to gain a deeper understanding of their
influence on the system’s overall behaviour are analysed. Subsequently, numerical simulations that
illustrate the model’s robustness are provided and the results suggest that SDDEs provide a more
comprehensive representation of many biological systems, effectively accounting for the uncertainties
that arise in real-life situations.

Keywords: stochastic delay differential equation; biosystems; disease modelling; Euler–Maruyama;
Milstein; numerical techniques and simulations

1. Introduction

Over the years, many models have been formulated to closely represent the behaviour
of biological systems using different forms of differential equations [1,2]. Until recently,
many such models have ignored the potential impact of randomness within the system,
which may be due to the complexity inherent in solving these models. Similarly, several
models have not adequately included the effect of time delays in the system representa-
tions, and it is only recently that there has been a growing interest in understanding the
implications of delays in dynamic systems. However, there is still relatively less work on
models that combine both the influences of randomness and delay within the system, a
gap that warrants attention [3]. Notably, the limited application of stochastic delay dif-
ferential equations (SDDEs) is partly attributed to their inherent complexity in finding
solutions, which can be particularly challenging when real-time simulation or rapid itera-
tive modelling is required [4–6]. Moreover, SDDEs may demand significant computational
resources and specialised numerical methods to ensure accuracy, rendering them less acces-
sible to researchers with limited computational capabilities. These challenges underscore
the imperative need for ongoing research aimed at developing more efficient numerical
techniques and strategies to enhance the usability of SDDEs, particularly in large-scale
and computationally demanding scenarios. Nevertheless, it is known that many real-life
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physical and biological systems are often exposed to the influences of several conditions
that are not fully understood, making the explicit modelling of such a scenario less feasible.
As such, there is an increasing need to extend the existing deterministic models into a more
rigorous model that could incorporate the variations in the system dynamics. One of the
ways of modelling such dynamics is an inclusion of the stochastic influence often referred
to as the noise [7]. The natural extension of the deterministic model based on the ordinary
differential equations (ODEs) could be an inclusion of delay or noise which leads to the
system of stochastic or delay differential equation where the basic difference is that the
SDEs account for the influence of randomness while DDEs account for the impact of pauses
within the system [8]. Similarly, the standard extension of the DDEs-based model would
therefore be a stochastic delay differential equation where these equations incorporated
the effect of both noise and delay. However, the SDDEs are not just considered as the
extension of the DDEs or SDEs, it is widely regarded as the generalisation of both the
deterministic delay differential equations and the stochastic ordinary differential equations
(SODEs) [9,10]. To date, it has been widely accepted that stochastic differential equations
play a significant role in the modelling of several physical phenomena such as population
dynamics, epidemiology, ecology, and many more. In the same way, the delay differential
equation has been greatly used for the analysis and predictions in various areas of life
sciences. The time delays included in the models often account for the dependency of
the present state on the history [10]. Without loss of generality, both noise and delays are
increasingly inevitable in biological systems and, due to their importance, an important
part of the literature is now devoting attention towards the development and solutions.
Some of the early references that discussed the SDDEs are the books by [11] which pre-
sented the small delay approximation of the equation and considered the effects of noise
on the model equation. The basic introduction to the numerical analysis of these types
of equations was presented by [3], where they considered Itô’s form of the SDDE and
provided a numerical simulation of the solution using the Euler–Maruyama scheme. The
survey of results involving the theory and stability of the differential equations involving
perturbation and delays are documented in [12]. In their work, they discussed the sur-
vey of the existence and uniqueness of the solution of SDDEs together with the Markov
properties, stochastic stability, and parameter estimations. Many more authors further
extend the popular stochastic differential equation to incorporate delays and are used to
describe technical devices such as control circuits, where the delay represents the time
taken by a signal to travel to the control object together with the reaction time, while the
noise accounts for the significant impact of randomness in the circuit performance that
could influence the application with high precision. In finance, this equation could be
used in developing an option pricing formula which will lead to the delayed Geometric
Brownian Motion (GBM) and subsequently help obtain a modified Black–Scholes formula
popularly used in economics for pricing European options. In summary, a delay is pri-
marily introduced due to hidden processes that are not fully understood but are known to
cause time lag [13,14], while the stochastic part is often included to account for the effect of
randomness or behavioural representation which cannot be easily determined, and this
could affect the overall dynamics of the system. In the subsequent section, we shall present
the mathematical representation of this form of equation with their illustration in various
physical modellings.

2. General Formulation

Since SDDEs emerge from both delay and stochastic differential equations, it is ex-
pected that some of the properties of stochastic and delay differential equations would
apply to stochastic delay differential equations. Thus, we define an SDDE as a differential
equation that includes at least one stochastic process term denoted by W(t) and at least
one time delay represented by τ. Mathematically, let 0 ≤ t0 < t1, · · · , tn < T < ∞, and let
W(t) be a one-dimensional Wiener process defined on a filtered probability space (Ω,F ,P),
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where Ω represents the sample space, F denotes the filtration, and P is the probability.
Then, a stochastic delay differential equation can be represented as follows:

dy(t) = f
(

t, y(t), y(t− τ)
)

dt + g
(

t, y(t), y(t− τ)
)

dW(t), t ∈ [0, T],

y(t) = Φ(t), t ∈ [−τ, 0], y ∈ R, Φ(t) ∈ R.

(1)

W(t) represent the Wiener process with zero mean and variance σ2, while the drift coeffi-
cient f : [0, T]×Rd ×Rd −→ Rd and the diffusion coefficient g : [0, T]×Rd ×Rd −→ Rd

are d-dimensional and assumed to be Lipschitz continuous.
Furthermore, the equation given in (1) can be expressed in an integral form as

y(t)− y(0) =

∫ t

0
f
(

s, y(s), y(s− τ)
)

ds + g
(

s, y(s), y(s− τ)
)

dW(s), t ∈ [0, T]

y(t) = Φ(t), t ∈ [−τ, 0], y ∈ R, Φ(t) ∈ R.

(2)

The second integral in (2) is often referred to as the stochastic integral in the Itô sense [15].

2.1. Numerical Scheme for SDDEs

In this section, we outline the numerical approach for solving Equation (2). To begin,
we establish a set of equidistant mesh points within the interval [0, T], denoted as h = T

N
and tn = nh, where n ranges from 0 to N. Additionally, we assume that, for a given step
size h, there exists an integer value, denoted as m, such that the time delay can be expressed
as τ = mh. For all instances where the indices satisfy n− m ≤ 0, we set ỹn−m equal to
Φ(tn − τ). In all other cases, the numerical approximation of (1) takes the following form:

ỹn+1 = ỹn + φ(h, ỹn, ỹn−m, Iφ), n = 0, · · · , N − 1. (3)

We note that the increment function φ(h, ỹn, ỹn−m, Iφ) represents the computation
which updates the numerical approximation of the solution at the next time step based on
the information available at the current time step n and the delayed information from time
step n−m. Similarly, the increment function φ(h, ỹn, ỹn−m, Iφ): R×R −→ R includes a
finite number of multiple Itô-integrals [9,16,17] of the form:

I(j1,··· ,jl),h =
∫ t+h

t

∫ sl

t
· · ·

∫ s2

t
dW j1(s1) · · · dW jl−1(sl−1)dW jl (sl), (4)

where ji ∈ {0, 1} and dW0(t) = dt , and with t = tn for (3), we denote Iφ the collection of
Itô-integrals required to compute the increment function φ.

2.1.1. Euler–Maruyama Scheme

The Euler–Maruyama scheme is a popular method for numerically solving Stochastic
Differential Equations (SDEs). It is also widely used for solving Stochastic Delay Differential
Equations (SDDEs). The basic idea behind the method is to discretise the time domain
into small intervals and approximate the solution at the end of each interval by adding the
deterministic and stochastic terms. The method is derived from the Taylor expansion of
the solution, and it is a first-order weak scheme that converges in the mean-square sense.
Suppose we consider the SDDE given in (1), where Y(t) is the state variable at time t,
f (t, Y(t), Y(t− τ)) is the drift term, g(t, Y(t), Y(t− τ)) is the diffusion term, W(t) is the
Wiener process, and τ is the delay time. The delay term makes the numerical solution
more challenging since it involves the state variable at a previous time. To apply the Euler–
Maruyama scheme to SDDEs, we first discretise the time domain into N equal intervals of
length ∆t = (T − t0)/N, where T is the final time and t0 is the initial time. Then, we can
approximate the solution at the end of each interval using the following formula:
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Y(tn+1) = Y(tn) + f (tn, Y(tn), Y(tn − τ))∆t + g(tn, Y(tn), Y(tn − τ))∆W(tn). (5)

Y(tn) is the numerical solution at time tn, and ∆W(tn) is the Wiener increment over
the time interval [tn, tn + 1]. The Wiener increments are normally distributed with mean
0 and variance ∆t, which implies that ∆W(tn) ∼ N(0, ∆t). To obtain the numerical solu-
tion, we start from the initial condition Y(t0) = Y0 and compute Y(tn + 1) recursively
using the above formula. We generate the Wiener increments using a random number
generator, and we use interpolation or extrapolation techniques to evaluate the delay term
f (tn, Y(tn), Y(tn− τ)) and f (tn, Y(tn), Y(tn− τ)). The Euler–Maruyama scheme is a simple
and efficient method for solving SDDEs, but it is only a first-order weak scheme that may
not be accurate for complex SDDEs. However, it can be extended to higher-order schemes
such as the Milstein method to improve the accuracy.

2.1.2. Milstein Scheme

The Milstein scheme is a popular numerical method for approximating the solutions
of stochastic delay differential equations. It is an extension of the Euler–Maruyama method,
which is a simple but often inaccurate method for approximating solutions of stochastic
differential equations [18]. The Milstein scheme improves on the Euler–Maruyama method
by including a correction term that takes into account the second-order moments of the
Wiener process.

Consider the one-dimensional stochastic delay differential equation given in (1). The
Milstein approximation for the solution Y(t) at a time step tn with time increment ∆t is
given by

Y(tn+1) = Y(tn) + f (tn, Y(tn), Y(tn − τ))∆t + g(tn, Y(tn), Y(tn − τ))∆W(tn)

+
1
2

g(tn, Y(tn), Y(tn − τ))g′(tn, Y(tn), Y(tn − τ))[(∆W(tn))
2 − ∆t],

(6)

where ∆Wn = Wtn+1 −Wtn is the increment of the Wiener process over the time step ∆t.
The first term on the right-hand side of (6) represents the deterministic drift term, which
accounts for the delayed influence of the process. The second term is the random term,
which accounts for the stochastic fluctuations in the process. The third term is the correction
term, which accounts for the second-order moments of the Wiener process. The fourth term
is a further correction term that accounts for the covariance between the Wiener process at
different time steps. We present the algorithm used for Milstein scheme in Listing 1.

Listing 1. Implementation algorithm.

1. Define the initial condition Y[0] and the time interval [0,T].
2. Define the time step and the number of time steps N = (T−t_0)/dt
3. Initialize the solution array Y with Y[0] and the Wiener process array W with incre-

ments W(t_n).
4. For n = 1 to N do the following:
a Compute the drift term f(t_n,Y(t_n),Y(t_n−tau)) and the diffusion term

g(t_n,Y(t_n),Y(t_n−tau)).
b Generate a Wiener increment W(t_n) using a random no generator.
c Compute the approximation Y(t_{n+1}) using the Euler-Maruyama or Milstein formula.
d Append Y(t_{n+1}) to the solution array Y and W(t_n) to the Wiener process array W.
5. Return the solution array Y and the Wiener process array W.

The above pseudo-code implements the numerical scheme for a one-dimensional
stochastic delay differential equation with the delayed term and the noise term. The
solution array Y is initialised with the initial value Y0, and then the scheme is applied
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iteratively to compute the solution values at each time step. For the Milstein scheme, it
includes four terms: the deterministic drift term, the random term, the correction term,
and the covariance correction term. Each term is computed using the current solution
value and the Wiener process increment at the current time step. The scheme has a strong
convergence rate of order 1.5 for linear equations and order 1 for non-linear equations [19].

3. The Evolution of Modelling to SDDEs

Here, we outline the evolution of mathematical modelling, progressing from ordinary
differential equations to the system of stochastic delay differential equations. We emphasise
the expansion of each model to account for the complexity of overall system behaviour. To
begin, we investigate population dynamics. Subsequently, we delve into the applications
of SDDEs in various modelling domains, including epidemiology and ecology. Finally,
we present the development of the model equations and discuss the rationale behind
modifying existing models.

3.1. Population Dynamics

It is well-established that population dynamics discusses the changes in the size and
composition of populations over time. The study of population dynamics has a long and
fascinating history, from early mathematical models of exponential growth to more recent
models that incorporate delays and stochasticity. Here, we will explore the evolution
of population dynamics models from exponential growth to stochastic delay differential
equations. The simplest model of population growth is the exponential growth model.
This model assumes that the rate of population growth is proportional to the size of the
population. Mathematically, this can be represented as:

dP
dt

= rP, (7)

where P is the population size, t is time, and r is the intrinsic growth rate. This model
predicts that populations will grow without bounds unless there are limiting factors, such
as resource availability [20]. As a result of the limitation of this equation, Verhulst proposed
the logistic equation, which is a modification of the exponential growth model that takes
into account limiting factors. The logistic equation assumes that as the population size
approaches a carrying capacity, the rate of growth slows down. Mathematically, this can be
represented as

dP
dt

= rP
(

1− P
K

)
. (8)

The parameter K represents the carrying capacity and the logistic equation predicts
that populations will stabilise at a carrying capacity. The equation has been widely used
to model growth in different phenomena and was accepted to better explain population
dynamics. Even though this model is widely used, it is worth noting that the logistic
equation assumes that the effects of limiting factors on population growth are instantaneous.
However, in reality, there are often delays between changes in limiting factors and changes
in population growth rates. This led to the further modification by Hutchinson [21] to
have a delay logistic equation that takes into account these delays. Mathematically, this is
represented as

dP
dt

= rP
(

1− P(t− τ)

K

)
.

The difference is the inclusion of the delay parameter τ, which thereby allows for the
equation to predict that populations will exhibit oscillatory behaviour before stabilising
at a carrying capacity. We note that the delay logistic equation can be transformed to
become dy

dt = ry(1− y(t− τ)). By considering the equation, we could observe that the
equation assumes that the effects of limiting factors on population growth are deterministic.
In reality, there are often random fluctuations in the environment that affect population



AppliedMath 2023, 3 707

growth rates. Hence, the impact of noise could also be introduced into the system such that
we will have r(t) = r(t) + η(t), where η(t) is the Gaussian white noise with a time-varying
intensity σ2(t) [22]. Thus, we could write η(t)dt = σ(t)dWt, with Wt representing the
Wiener process. Therefore, the stochastic version of the delay logistic equation could be
written as

dy(t) = ry(1− y(t− τ))dt + σy(1− y(t− τ))dWt, (9)

which can therefore predict that populations will exhibit both deterministic and stochastic
behaviour. In Figure 1, we present the effect of delay and noise in population dynamics
using logistic equation.

(a)

(b)
Figure 1. Illustration of the effect of delay and noise in population dynamics. (a) Logistic equa-
tion with varying delay for y0 = 0.1, r = 0.5. (b) Logistic equation incorporated with noise
y0 = 0.1, r = 0.5, τ = 1, and σ = 0.5.
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3.2. Epidemiology

In infectious disease modelling, the population is often classified into different com-
partments based on the population status. The epidemic SIR (Susceptible-Infectious-
Recovered) model has been widely used to study the spread of infectious diseases in
populations. The classical model assumes that the population is well-mixed and that the
transmission rate is constant over time. However, in real-world scenarios, there are often
time lags between the exposure of individuals to the disease and their infectiousness. The
classical SIR model is based on ordinary differential equations (ODEs) and assumes that the
transition between compartments occurs instantaneously. However, this assumption is not
always realistic, especially for diseases with a long incubation period or with a significant
delay in the onset of infectiousness. As a result, the SIR model has been extended to delay
differential equations (DDEs) which are used to model such delays in the transmission
process [9]. Similarly, SDEs are used to capture the randomness in the transmission process
but much work does not consider the scenario wherein there are both delay and random-
ness in the transmission process. Hence, we shall present the stochastic delayed model for
the widely used epidemic SIR model. Mathematically, the classical SIR model is a set of
three coupled ODEs that describe the evolution of the three compartments of a population:
susceptible (S), infectious (I), and recovered (R). The equations are given by

dS
dt

= −βSI,

dI
dt

= βSI − γI,

dR
dt

= γI,

(10)

where β is the transmission rate and γ is the recovery rate. The total population size
N = S + I + R is assumed to be constant. The delayed version of this model indicates that
there may be a time delay between infection and infectiousness. The simple form of the
delay inclusion could be given as

dS
dt

= −βS(t)I(t− τ),

dI
dt

= βS(t)I(t− τ)− γI(t),

dR
dt

= γI(t− τ),

(11)

where τ is the time delay between infection and infectiousness. The delay SIR model has
been used to model the spread of diseases such as tuberculosis [23], COVID-19 [10,24–26]
and HIV [27,28], which have a long incubation period. We note that the delay SIR model
assumes that the time delay is constant and deterministic. However, in many cases, the
time delay may be random and unpredictable. Therefore, to incorporate the randomness in
the delay, there is a need for the representation of the system using the stochastic delay SIR
model. Hence, the model could take the following form:

dS(t) = −βS(t)I(t− τ)dt + σSdWt,

dI(t) = βS(t)I(t− τ)− γI(t) + σIdWt,

dR(t) = γI(t− τ)dt.

(12)

where Wt represent independent Wiener processes and σ is the strength of the noise, which
are motivated by the randomness and uncertainties inherent in the spread of the disease.
We present the illustration of the effect of delay and noise in population dynamics using
SIR model in Figure 2.
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(a)

(b)
Figure 2. Illustration of the effect of delay and noise in population dynamics. (a) SIR model without
noise and delay with β = 0.5, γ = 0.1. (b) SIR model incorporated with noise and delay with
β = 0.5, γ = 0.1, τ = 3, σS = σI = σR = 2.

3.3. Ross–Macdonald Malaria Model

The Ross–Macdonald model is a well-known mathematical model used to study the
transmission dynamics of malaria. The model started with Ross in 1911 and was designed to
describe the transmission of malaria. The concepts were a source of inspiration for a group
of medical entomologists, and beginning in 1950, there was a significant advancement
in the field. This was largely due to the combination of the theoretical work of George
Macdonald and the empirical work of his colleagues [29]. Their work provided a complete
understanding of transmission dynamics and control, and successfully linked the models
and the metrics. To date, this model serves as the basis of countless models for vector-
borne diseases. However, we consider the Aron and May version of the Ross–Macdonald
model [30]. This famous model used the ordinary differential equation, which is given as
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dx
dt

= maby(1− x)− rx,

dy
dt

= acx(1− y)− µy.
(13)

where x(t) and y(t) are the proportion of infected humans and mosquitoes at time t is the
prevalence of malaria, m is the number of mosquitoes per human host, the pathogen’s host
is denoted by a, the proportion of bites by infectious mosquitoes that infect a human is
represented by b. Altogether, the product mabz is the force of infection or “happenings” rate
for human infections and the instantaneous death rate is denoted by ν. Further explanation
of each parameter can be found in [29,31]. By considering this model, it could be observed
that the influence of the time-varying nature of the vector and host populations was not
considered. To account for this, there is therefore a need to incorporate a time delay.
According to [31], the feedback dynamics from mosquito to human and back to mosquito
involve considerable time delays due to the incubation periods of the parasites. Therefore,
a delayed model is required to explicitly account for the incubation periods of parasites
within the human and the mosquito. Thus, this leads to an extension of the model to a
delayed Ross–Macdonald model which is given as [31]

dx
dt

= maby(t− τ1)
(

1− x(t− τ1)
)

e−rτ1 − rx,

dy
dt

= acx(t− τ2)
(

1− y(t− τ2)
)

e−rτ2 − µy,
(14)

where τ1, τ2 represents the delays. These delays represent the time it takes for an infected
mosquito to transmit the disease to a human, and the time it takes for an infected human
to become infectious. Ruan et al. [31] used this model to calculate the basic reproduction
number R0 and carry out the sensitivity analysis of the R0 on the incubation periods. As
the model adequately accounts for the effect of time delays on the basic reproduction
number, it does not include the influence of additional disturbance and randomness.
Hence, there is need for a further modification that would include the impact of delays and
fluctuations. The delay would capture the fact that infected individuals do not become
infectious immediately after being bitten by a mosquito, but instead take a certain amount
of time to develop symptoms and become infectious themselves. Similarly, recovered
individuals do not immediately lose their immunity to the disease, but instead, retain it
for a certain amount of time, while the addition of a stochastic part will account for the
random fluctuations in the transmission and recovery rates. This will therefore lead to a
stochastic delay differential equation (SDDE) model of the form

dx
dt

= maby(t− τ1)
(

1− x(t− τ1)
)

e−rτ1 − rx + σxdWt,

dy
dt

= acx(t− τ2)
(

1− y(t− τ2)
)

e−rτ2 − µy + σydWt,
(15)

where Wt are independent Wiener processes representing the random fluctuations within
the population and σi denoting the corresponding deviations. The illustration of the effect
of delay and noise using the malaria model (15) is presented in Figure 3.
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(a)

(b)
Figure 3. Illustration of the effect of delay and noise in the malaria model. (a) Model without delay
for m = 2, a = 0.2, b = 0.5, c = 0.5, r = 0.05, µ = 0.05. (b) SIR model incorporated with noise and
delay where τ1 = 15, τ2 = 9, σx = σy = 1.

4. Numerical Illustration

In this section, we present the numerical simulation of the SIR model with vaccination
and quarantine which is presented in [32]. The model considered a population of five
compartments which are grouped into Susceptible S(t), Vaccinated class V(t), Infected
class I(t), Quarantine class Q(t), and recovered class R(t). Total population is expressed as
N(t) = S(t) + V(t) + I(t) + Q(t) + R(t). Assuming the population is constant, the birth
rate is denoted by µ, while β represents the transmission rate (the rate at which susceptible
individuals become infected). γ is the transmission rate and the rate at which susceptible
individuals become vaccinated is represented by ω1. Similarly, the quarantine rate is
denoted by θ1, while the rate at which quarantined individuals recovered is represented by
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α2, while α1 is the rate at which infected individuals recover and become immune. Hence,
the model is presented as

dS
dt

= µ− βSI − (γ + ω1)S,

dV
dt

= ω1S− γV,

dI
dt

= βSI − (γ + θ1 + α1)I,

dQ
dt

= θ1 I − (γ + α2)Q,

dR
dt

= α1 I − γR + α2Q.

(16)

The description of parameters in the model (16) is presented in Table 1.

Table 1. Description of the model parameters.

Parameter Description

S(t) Susceptible population at time t. This is the group of individuals who are not
infected but are at risk of becoming infected.

V(t) Vaccinated population at time t which represents individuals who have been
vaccinated against the disease.

I(t) Infectious population at time t. The group of individuals currently infected
and capable of spreading the disease.

Q(t) Quarantined population at time t. Individuals who are quarantined due
to infection.

R(t) Recovered population at time t. Includes individuals who have recovered from
the disease and are no longer infectious.

µ
Recruitment rate of the susceptible population, i.e., the rate at which individu-
als enter the susceptible group.

β
Transmission rate of the disease which is the rate at which susceptible individ-
uals become infected when they come into contact with infectious individuals.

τ
Time delay indicating that newly infected individuals do not become infectious
immediately but after a delay of τ time units.

γ
Recovery rate, i.e., the rate at which infected individuals recover and move to
the recovered compartment.

ω1 Rate at which susceptible individuals become vaccinated.

θ1 Rate at which infected individuals are placed in quarantine.

α1 Rate at which the quarantined individuals are recovered.

α2 Rate at which individuals in quarantine transition to the recovered compartment.

σS, σV , σI , σQ, σR Represent the level of fluctuation within each model compartment.

Firstly, we shall present the quantitative analysis of this model after which we will
incorporate the delay parameter and randomness in the model. We will discuss the
positivity condition and then examine the equilibria as well as the reproduction number.

4.1. Positivity of the Solution

Here, we show that the model (16) satisfies the positivity condition provided that
N(t) = S(t) + V(t) + I(t) + Q(t) + R(t). Then, by considering each compartment of (16),
we have that

dN
dt

=
dS
dt

+
dV
dt

+
dI
dt

+
dQ
dt

+
dR
dt

.
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So,

d
dt
(S + V + I + Q + R) = µ− γ(S + V + I + Q + R),

dN
dt

= µ− γN,

Neγt =
∫

µeγt,

N(t) =
µ

γ
+ ce−γt.

At t = 0, N(0) = N0 = µ
γ + c.

Hence, N(t) at any time t is given by,

N(t) =
µ

γ
+

(
N0 −

µ

γ

)
e−γt, (17)

where
lim

t−→∞
N(t) =

µ

γ
> 0.

4.2. Equilibrium

We shall determine both the disease-free equilibrium and the endemic equilibrium. To
find the disease-free equilibrium, we take I = Q = R = 0, which means that there are no
infected, quarantined, or recovered individuals in the population. By substituting into the
equations, we have

dS
dt

= µ− βSI − (γ + ω1)S = 0.

dV
dt

= ω1S− γV = 0.

From the second equation, we obtain V = ω1
γ S. Therefore,

S∗ =
µ

γ + ω1
.

Now, substituting this expression for S into the equation for V, we obtain

V∗ =
ω1

γ
S∗,

=
ω1

γ

µ

γ + ω1
,

=
µω1

γ2 + ω1γ
.

Thus, the disease-free equilibrium of the system is

(S0, V0, I0, Q0, R0) =

(
µ

γ + ω1
,

µω1

γ2 + ω1γ
, 0, 0, 0

)
.

Similarly, for the endemic equilibrium, we need to solve the system of equations
obtained by setting the derivatives to zero:
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dS
dt

= 0 = µ− βSI − (γ + ω1)S,

dV
dt

= 0 = ω1S− γV,

dI
dt

= 0 = βSI − (γ + θ1 + α1)I,

dQ
dt

= 0 = θ1 I − (γ + α2)Q,

dR
dt

= 0 = α1 I − γR + α2Q.

By Substituting each variable into the equation or alternatively, the equilibrium point
could be obtained using the MATLAB command “vpasolve”. Then, we obtain

S∗ =
α1 + γ + θ1

β
.

Substituting this expression for S into the equation for V, we obtain

V∗ =
ω1(+α + γθ1

βγ
.

Using the equation for I and the expression for Q obtained by setting the derivative to
zero, we have

I∗ =
σ1

β(α1 + γ + θ1)
; where σ1 = α1γ− βµ + α1ω1 + γω1 + γθ1 + ω1θ1 + γ2.

In the same way, we have

Q∗ =
θ1σ1

β(γ2 + α1α2 + α1 + α2(γ + θ1) + γθ1)
.

Finally,

R∗ =
α1γ3 + α2

1γ2 + α2ω1θ2
1 + α1α2γ2 + α2

1α2γ + α2
1α2ω1 + α1γ2ω1 + α2

1γω1 + f ∗ + g∗

βγ3 + α1βγ2 + α2βγ2 + βγ2θ1 + α1α2βγ + α2βγθ1
,

where

f ∗ = α1γ2θ1 + α2γθ2
1 + α2γ2θ1 − α2βµθ1 + 2α1α2ω1θ1 + α1γω1θ1.

g∗ = α2γω1θ1 − α2γω1θ1 − α1α2βµ− α1βγµ− α1α2γω1 + 2α1α2γθ1.

Therefore, the equilibrium points of the system are given by

S∗ = α1+γ+θ1
β ,

V∗ = ω1(+α+γθ1
βγ ,

I∗ = σ1
β(α1+γ+θ1)

,

Q∗ = θ1σ1
β(γ2+α1α2+α1+α2(γ+θ1)+γθ1)

,

R∗ =
α1γ3+α2

1γ2+α2ω1θ2
1+α1α2γ2+α2

1α2γ+α2
1α2ω1+α1γ2ω1+α2

1γω1+ f ∗+g∗

βγ3+α1βγ2+α2βγ2+βγ2θ1+α1α2βγ+α2βγθ1
.

(18)
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4.3. Reproduction Number (R0)

To calculate the basic reproduction number for this model, we need to determine the
expected number of secondary infections caused by one infected individual in a completely
susceptible population. The derivation of R0 involves finding the spectral radius of the
next-generation matrix (NGM), which is a matrix that describes the expected number of
secondary infections caused by each compartment. The NGM for this model is

F =



βS
γ+ω1

0 0 0 0

0 0 0 0 0

βS
γ+ω1

0 βS
γ+θ1+α1

0 0

0 0 θ1 I
γ+γ2 0 0

0 0 α1 I+α2Q
γ 0 0


Next, we find the spectral radius of this matrix where we need to find the eigenvalues

and choose the one with the largest absolute value. Thus, we have the eigenvalues as

λ1 = 0, λ2 =
βS

γ + ω1
, λ3 =

βS
γ + θ1 + α1

, λ4 = 0, λ5 = 0

The spectral radius of the NGM, which represents the basic reproduction number R0
for the SVIQR model, is given by

ρ(F ) = max{| λ2 |, | λ3 |} = max

{∣∣∣∣∣ βS
γ + ω1

∣∣∣∣∣,
∣∣∣∣∣ βS
γ + θ1 + α1

∣∣∣∣∣
}

=
βS

γ + θ1 + α1
, ω1 > θ1 + α1

Hence,

R0 =
βS

γ + θ1 + α1
. (19)

4.4. Numerical Illustration

We display the model behaviour for each compartment, and to further understand the
contributions of the parameters on R0, we shall perform the sensitivity analysis.

Figure 4 shows the behaviour of individuals within the population. It shows that most of
the population is in the susceptible compartment, meaning they have not been exposed to the
disease and are susceptible to infection. By considering the susceptible curve, it indicates that,
as time progresses, the number of infected individuals increases as the disease spreads from
person to person. This increase in the number of infected individuals leads to a decrease in
the number of susceptible individuals as some people become infected and move from the
susceptible compartment to the infected compartment. Eventually, the number of infected
individuals reaches a peak and begins to decline as some individuals recover from the disease
or die. As the number of infected individuals decreases, the number of removed individuals
(those who have recovered from the disease or died) increases. In addition, the result also
shows that, as the number of vaccinated individuals increases over time, there is a slow
spread of the disease, which therefore reduces the number of susceptible individuals. From
a biological perspective, this result shows how vaccination can be an effective strategy for
reducing the spread of infectious diseases. By increasing the number of vaccinated individuals,
we can reduce the number of susceptible individuals and slow the spread of the disease.
Furthermore, it also suggests how the number of infected individuals can peak and decline
over time as individuals recover from the disease or die.
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Next, we plot the reproduction number against the dependent parameters to understand
how the R0 changes with a change in parameter values. The output displayed in Figure 5 shows
how R0 varies with different values of [γ, θ1, α1]. As the value of these parameters increases, the
transmission potential of the disease decreases, which leads to a lower value of R0. The result
exhibits a curve that starts high at low values of the parameters, and then gradually decreases as
the parameter increases. This behaviour of the curve can be interpreted as a trade-off between
the transmission potential of the disease and the ability of the population to mount an immune
response. At low values of [γ, θ1, α1], the transmission potential is high, but the population has
a weak immune response, so R0 is high. Similarly, at high values of [γ, θ1, α1], the transmission
potential is low, which implies that the population has a strong immune response, and therefore
R0 will be low. Hence, the minimum value of R0 would correspond to the optimal balance
between transmission potential and immune response.

Figure 4. Result of the SVIQR model without incorporated delays for µ = 0.02, β = 0.0001, γ = 0.01,
ω1 = 0.01, θ1 = 0.05, α1 = 0.03, and α2 = 0.01.

(a) (b)

(c)
Figure 5. The sensitivity analysis of R0 with respect to the recovery and quarantine rate. (a) R0 dynamic
with varying θ1 and α1. (b) R0 dynamic with varying α1 and γ. (c) R0 dynamic with varying θ1 and γ.
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Figure 5 shows the relationship between the reproduction number (R0) and the
transmission rate (β) for different values of the recovery rate (γ), quarantine rate (θ1), and
quarantine recovery rate (α1). The result shows that R0 decreases with γ, θ1, and α1. In
addition, it shows that the effect of α1 on R0 is more pronounced at lower values of γ and
θ1. This implies that when γ and θ1 are low, infected individuals are more likely to remain
infectious and transmit the disease.

4.5. Model with Incorporated Delay

Here, we present the modification of this model to incorporate the time delay with the
assumption that it takes a time period for the population to move from one compartment
to the other. Hence, a modified version of (16), is given as

dS
dt

= µ− βS(t− τ)I(t− τ)− (γ + ω1)S(t)

dV
dt

= ω1S(t)− γV(t)

dI
dt

= βS(t− τ)I(t− τ)− (γ + θ1 + α1)I(t)

dQ
dt

= θ1 I(t− τ)− (γ + α2)Q(t)

dR
dt

= α1 I(t− τ)− γR(t) + α2Q(t− τ)

(20)

In the model (20), we have added a time delay τ to the terms involving the past values
of S, I, and Q. The time delay is introduced to account for the fact that there is a lag between
the time a person is infected with the disease and the time they become infectious. The
delay also allows for the time it takes for an infected person to seek treatment and be moved
to a quarantine centre. The modified model for the susceptible population includes a delay
term βS(t− τ)I(t− τ), which accounts for the time delay between the time an individual
becomes infected and the time they become infectious. The recovered populations also
include delay term α1 I(t− τ), which represents the delay between the time an individual
becomes infected and the time they recover. θ1 I(t− τ) accounts for the delay between
the time an individual is diagnosed with the disease and the time they are quarantined.
The vaccinated population does not include a delay term, since vaccination is assumed to
take effect immediately. Additionally, it is important to note that the choice of time delays
depends on the specific disease and its transmission dynamics, and may require careful
analysis or calibration to obtain accurate results. Additionally, incorporating time delays
can make the model more complex and may require additional assumptions or parameters.

By comparing the output of Figure 4 with the result obtained in Figure 6, it could be
observed that the delay has a significant impact on the behaviour of the system. In the
model which does not incorporate any delay, the epidemic peaks rapidly and then gradually
declines as the population becomes immune. The overall duration of the epidemic is
relatively short, and the peak of the epidemic occurs at a relatively early time point. In
contrast, the model which incorporates a delay in the transmission of the disease shows
that the epidemic peak is delayed, and the epidemic lasts for a longer time. This delay is
due to the time required for individuals to become infectious after being exposed to the
disease. As a result, the epidemic spreads more slowly and gradually, and the peak of the
epidemic occurs at a later time point. Therefore, we can conclude that incorporating delay
in the transmission of the disease has a significant impact on the behaviour of the epidemic
and can lead to different outcomes compared to a system without delay.
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Figure 6. Result of the SVIQR model with incorporated delays for µ = 0.02, β = 0.0001, γ = 0.01,
ω1 = 0.01, θ1 = 0.05, α1 = 0.03, α2 = 0.01, and τ = 30.

4.6. Model with Incorporated Delay and Additive Noise

The idea of incorporating noise into the system is born from the understanding that
many real-world systems exhibit complex behaviour and are inherently noisy, with many
exhibiting stochastic behaviour due to the presence of random fluctuations. In infectious
disease models, the spread of disease is influenced by a multitude of factors that are
difficult to model precisely. To account for some of the uncertainty in the system, noise
can be added to the model. Moreover, many of the parameters in infectious disease
models are uncertain or difficult to estimate precisely, adding further uncertainty to the
model. By adding noise to the model, this uncertainty can be accounted for, resulting in
a more realistic representation of the system. Additionally, non-linear dynamics can also
contribute to the complexity of the system, even in the absence of external noise. The
interactions between the various components of the system can give rise to hidden patterns
and structures that may be difficult to discern otherwise. Hence, adding noise to the model
can reveal these patterns and structures, allowing for a deeper understanding of the system.
However, there are some challenges in adding noise to a model as there could be difficulty
in determining the appropriate level of noise to add without overfitting or underfitting
the data. Additionally, the choice of noise distribution can also have an impact on the
model results. Therefore, when adding noise to infectious disease models, it is important to
consider the characteristics of the disease being modelled and the specific research question
being addressed. The type of disease, the available data, and the research objectives all
play a role in determining the appropriate level and type of noise to incorporate into the
model. Here, we are not looking into a specific dataset and we will only add a sample
representation of noise into our system to show how the system behaviour changes when
noise is included. Hence, we will represent our model as

dS
dt

= µ− βS(t− τ)I(t− τ)− (γ + ω1)S(t) + σSdWt

dV
dt

= ω1S(t)− γV(t) + σVdWt

dI
dt

= βS(t− τ)I(t− τ)− (γ + θ1 + α1)I(t) + σIdWt

dQ
dt

= θ1 I(t− τ)− (γ + α2)Q(t) + σQdWt

dR
dt

= α1 I(t− τ)− γR(t) + α2Q(t− τ) + σRdWt

(21)

σS,V,I,Q,R represent the noise associated to each model category. The assumption adopted
here is that there is a level of uncertainty in the spread of the diseases and each compartment
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does exhibit random behaviour. A biological justification for noise inclusion in vaccination
could be attributed to the existing knowledge that the efficacy of vaccines could vary based on
factors such as the age and health status of the individual, the timing and number of vaccine
doses, and the prevalence of different strains of the disease, etc. Thus, including noise in
the vaccinated compartment V(t) can help account for this uncertainty and provide a more
realistic representation of the effects of vaccination on the spread of the disease. A similar
argument can be generated for other compartments depending on the type of disease under
consideration. Figure 7 displays the behaviour of the model with the noise. We could note
that without the noise term, the model would be deterministic and assume that all individuals
follow the same path of infection and recovery. However, in reality, there are always variations
and uncertainties in how individuals are infected, vaccinated, or recover. The result here,
therefore, captures the level of randomness exhibited in the system. Also, the result of the
inclusion of noise in the model allows for the assessment of the variability in the predicted
outcomes of the model, which can provide valuable insights into the robustness of the system
and help identify areas of improvement for disease control measures.

Figure 7. Result of the SVIQR model with incorporated delays and added noise where µ = 0.02, β = 0.0001,
γ = 0.01, ω1 = 0.01, θ1 = 0.05, α1 = 0.03, α2 = 0.01, τ = 30 and σS = σV = σI = σQ = σR = 5.

5. Conclusions

Mathematical models have played a crucial role in the understanding of various biosys-
tems. However, classical approaches based on ordinary differential equations (ODEs), delay
differential equations (DDEs), or stochastic differential equations (SDEs) may not fully capture
the real-life scenarios of these systems. Thus, the need arises for a more comprehensive
approach that combines the features of these classical approaches, and this leads to the devel-
opment of Stochastic Delay Differential Equations (SDDEs). In this work, we have investigated
the application of SDDE-based models in understanding the behaviour of biosystems, par-
ticularly in epidemiology. We have presented a numerical technique for solving the model
and shown that the SDDEs provide a more robust representation of real-life scenarios. The
analysis of the quantitative and qualitative role of delay and noise reveals their significant
influence on the overall behaviour of the system. The inclusion of delay terms in the model
helps to capture the dynamics of the system, particularly in cases where there is a time lag
between the infection and the manifestation of symptoms or the recovery process.

Similarly, the incorporation of stochasticity accounts for the uncertainty that arises
in real-life scenarios and provides a more realistic representation of the system. We have
presented numerical simulations to illustrate the robustness of the model, and the results
suggest that the SDDEs provide a richer representation of many biological systems. Fur-
thermore, the effects of delay and noise on the system have been investigated, and our
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results show that both delay and noise significantly impact the system’s behaviour. Delay
leads to oscillatory behaviour in the system, and the amplitude of the oscillations depends
on the size of the delay. On the other hand, the stochasticity introduced by noise leads to
fluctuations in the system, and the size of the fluctuations depends on the strength of the
noise. The combined effect of delay and noise leads to complex behaviour in the system,
with a greater degree of variability and unpredictability than in deterministic systems.

Hence, the model devised in this study stands poised to significantly enhance our
understanding of biosystem dynamics, with a particular focus on epidemiology. The utili-
sation of SDDE-based models offers a substantial leap towards crafting a more resilient
representation of real-world scenarios by adeptly encompassing the dual factors of de-
lay and stochasticity. Our numerical simulations robustly affirm that the model not only
furnishes precise and efficient solutions but also holds substantial potential in predicting
the intricate behaviours exhibited by biological systems. Furthermore, the insights gar-
nered from this model can be instrumental in advancing the development of intervention
strategies for combating diseases, thereby fortifying our ability to safeguard public health.

For future research directions, a pivotal area of exploration is the development of
robust parameter estimation techniques tailored specifically for SDDEs. The accurate
determination of model parameters from empirical data is critical for the practical ap-
plication of SDDEs in epidemiology and other fields. Therefore, innovative approaches
and methodologies for estimating these parameters will undoubtedly contribute to the
model’s refinement and its ability to address real-world challenges effectively. In addition,
we acknowledge that, in more practical scenarios, individual variables may indeed have
different time delays. Future extensions of our work would be to explore the variations in
delay values to provide a more nuanced understanding of the system’s behaviours.
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